2507000961
  • Open Access
  • Article
Pharmacological Investigation of the Active Fractions of Ficus benjamina Leaf Extract
  • As-Sazzad Mahmud 1, 2, *,   
  • Israt Jahan Meem 1,   
  • Md. Rabbi Hasan 1,   
  • Md. Mohiuddin Maruf 1,   
  • Ariful Islam 1,   
  • Mst. Sharmin Akter 1

Received: 21 Apr 2025 | Revised: 25 May 2025 | Accepted: 01 Jul 2025 | Published: 14 Jul 2025

Abstract

Objective: Ficus benjamina, commonly known as the weeping fig, is valued for its medicinal properties and potential health benefits. Due to its antibacterial, anti-inflammatory, and antioxidant effects, it can treat infections, reduce inflammation, and minimize oxidative damage. This study aimed to investigate the analgesic, anti-inflammatory, and antipyretic effects, along with the acute toxicity, of ethyl acetate (EA) and n-hexane (n-H) fractions derived from ethanolic leaf extract. Methods: In vivo evaluations were conducted to assess the analgesic, anti-inflammatory, antipyretic, and acute toxicity effects of the extracts. The acetic acid-induced writhing method was used to evaluate analgesic activity, while the formaldehyde-induced paw edema method was employed to assess anti-inflammatory effects. Antipyretic activity was determined by monitoring changes in rectal temperature in mice. Acute oral toxicity testing was performed according to OECD Guideline 423 (Organization for Economic Co-operation and Development) using the Fixed Dose Procedure. Results: The extract of F. benjamina exhibited significant analgesic, anti-inflammatory, and antipyretic activities. In analgesic tests, the ethyl acetate fraction (250 and 500 mg/kg) inhibited pain by 36.78% and 48.27%, respectively, while the n-hexane fraction showed 37.93% and 49.42% inhibition. Anti-inflammatory assays confirmed significant activity, with the ethyl acetate fraction reducing inflammation by 34.24% and 36.98%, and the n-hexane fraction by 27.84% and 29.17% at the same respective doses. Both fractions demonstrated antipyretic effects, with the ethyl acetate fraction (500 mg/kg) showing the highest efficacy. Acute toxicity tests indicated no toxic effects at doses up to 5000 mg/kg. Conclusion: F. benjamina leaf extract demonstrated notable analgesic, anti-inflammatory, and antipyretic properties.

References 

  • 1.
    Aziz, M.A.; Khan, A.H.; Adnan, M.; et al. Traditional uses of medicinal plants used by Indigenous communities for veterinary practices at Bajaur Agency, Pakistan. J. Ethnobiol. Ethnomed. 2018, 14, 11.
  • 2.
    Al-Khayri, J.M.; Rashmi, R.; Toppo, V.; et al. Plant secondary metabolites: The weapons for biotic stress management. Metabolites 2023, 13, 716.
  • 3.
    Riaz, M.; Khalid, R.; Afzal, M.; et al. Phytobioactive compounds as therapeutic agents for human diseases: A review. Food Sci. Nutr. 2023, 11, 2500–2529.
  • 4.
    Rizvi, S.A.; Einstein, G.P.; Tulp, O.L.; et al. Introduction to traditional medicine and their role in prevention and treatment of emerging and re-emerging diseases. Biomolecules 2022, 12, 1442.
  • 5.
    Timbadiya, M.J.; Nishteswar, K.; Acharya, R.; et al. Experimental evaluation of antipyretic and analgesic activities of Amalakyadi Gana: An Ayurvedic formulation. AYU Int. Q. J. Res. Ayurveda 2015, 36, 220–224.
  • 6.
    Ghlichloo, I.; Gerriets, V. Nonsteroidal anti-inflammatory drugs (NSAIDs); StatPearls Publishing: Treasure Island, FL, USA, 2019.
  • 7.
    Turnaturi, R.; Piana, S.; Spoto, S.; et al. From plant to chemistry: Sources of active opioid antinociceptive principles for medicinal chemistry and drug design. Molecules 2023, 28, 7089.
  • 8.
    Calderon-Rivera, A.; Loya-Lopez, S.; Gomez, K.; et al. Plant and fungi derived analgesic natural products targeting voltage-gated sodium and calcium channels. Channels 2022, 16, 198–215.
  • 9.
    Kim, S.E.; Chung, G.; Kim, S.K. Phytochemical-based therapeutics from traditional eastern medicine: Analgesic effects and ion channel modulation. Front. Pain Res. 2025, 6, 1537154.
  • 10.
    Kifayatullah, M.; Mustafa, M.S.; Sengupta, P.; et al. Evaluation of the acute and sub-acute toxicity of the ethanolic extract of Pericampylus glaucus (Lam.) Merr. in BALB/c mice. J. Acute Dis. 2015, 4, 309–315.
  • 11.
    Mahomoodally, M.F.; Asif, F.; Rahman, R.; et al. A review of the pharmacological potential and phytochemical profile of weeping fig-Ficus benjamina L. Int. J. Chem. Biochem. Sci. 2019, 16, 70–75.
  • 12.
    Ramalakshmana, J.; Sowmithri, C.; Babu, Y.R.; et al. Phytochemical Screening, Antioxidant, Antimicrobial activities and GC-MS Analysis of Ficus benjamina L. and Ficus hispida L. f. Int. J. Eng. Manag. Res. 2023, 12, 100–115.
  • 13.
    Fahmida, M.; Ahmed, M.P.; Jeem, M.F.; et al. Fig trees (Ficus spp.): Species diversity, medicinal usage and conservation at the Bangladesh Agricultural University Campus. Int. J. Minor Fruits Med. Aromat. Plants 2024, 10, 41–50.
  • 14.
    Mumtaz, M.W.; Al-Zuaidy, M.H.; Abdul Hamid, A.; et al. Metabolite profiling and inhibitory properties of leaf extracts of Ficus benjamina towards α-glucosidase and α-amylase. Int. J. Food Prop. 2018, 21, 1560–1574.
  • 15.
    Salehi, B.; Prakash Mishra, A.; Nigam, M.; et al. Ficus plants: State of the art from a phytochemical, pharmacological, and toxicological perspective. Phytother. Res. 2021, 35, 1187–1217.
  • 16.
    Imran, M.; Rasool, N.; Rizwan, K.; et al. Chemical composition and biological studies of Ficus benjamina. Chem. Cent. J. 2014, 8, 12.
  • 17.
    Oladiji, A.T.; Yakubu, M.T.; Oyegoke, R.A. Evaluation of the Antidiarrhoeal Property and Safety of Ethanolic Extract of Ficus Benjamina ‘Variegata’Fruits in Wistar Rats. Niger. J. Gastroenterol. Hepatol. 2012, 4, 25–31.
  • 18.
    Jadhav, M.M.; Chhajed, M.; Saluja, M.S. Phytochemical, pharmacological investigation and isolation of various extracts fractions of Ficus benjamina leaves. NeuroQuantology 2021, 19, 401.
  • 19.
    Jadhav, M.M.; Chhajed, M.; Saluja, M.S. Extraction & pharmacological investigation of various extracts of Ficus benjamina leaves. NeuroQuantology 2021, 19, 381–400.
  • 20.
    Mbunga, D. Anti-inflammatory activities of aqueous extract of beringin (Ficus benjamina L.) And kersen (Muntingia calabura L.) Leaves in albino rats. J. Katalisator 2021, 6, 254–260.
  • 21.
    Debnath, S.L.; Kundu, P.; Golder, M.; et al. Phytochemical Characterization and Evaluation of Pharmacological Activities of Leaves of a Mangrove Plant Species—Aegiceras corniculatum (L.). Trop. J. Nat. Prod. Res. 2020, 4, 516–522.
  • 22.
    Martins, R.; Barbosa, A.; Advinha, B.; et al. Green extraction techniques of bioactive compounds: A state-of-the-art review. Processes 2023, 11, 2255.
  • 23.
    Pajović, R.; Mijović, S.; Božinović, Z.; et al. The Effect of Length of Maceration on the Phenolic Content in Wine Vranac in Podgorica Sub-Region. Available online: http://www.fznh.ukim.edu.mk/images/stories/symposium2012/proceedings/section_2_viticulture_and_wine_production_simposium2012_fznh.pdf#page=147 (accessed on 15 December, 2023).
  • 24.
    Hossain, M.A.; Al-Hdhrami, S.S.; Weli, A.M.; et al. Isolation, fractionation and identification of chemical constituents from the leaves crude extracts of Mentha piperita L grown in Sultanate of Oman. Asian Pac. J. Trop. Biomed. 2014, 4, S368–S372.
  • 25.
    Shahlal, M.; Mahmud, A.-S.; Bairagi, R.D.; et al. Evaluation of Therapeutic Activity of Physalis angulata (In Vitro Studies). J. Med. Nat. Prod. 2024, 1, 100007.
  • 26.
    Yousuf, H.; Miah, M.S.; Rahman, M.F.; et al. Bioactive Potential of Premna esculanta: A Study on Antioxidant, Antimicrobial and Antidiarrheal Efficacy. J. Med. Nat. Prod. 2025, 2, 100001.
  • 27.
    Garrido, G.; González, D.; Delporte, C.; et al. Analgesic and anti‐inflammatory effects of Mangifera indica L. extract (Vimang). Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2001, 15, 18–21.
  • 28.
    Subedi, N.K.; Rahman, S.A.; Akbar, M.A. Analgesic and antipyretic activities of methanol extract and its fraction from the root of Schoenoplectus grossus. Evid.-Based Complement. Altern. Med. 2016, 2016, 3820704.
  • 29.
    Anderson, B.J. Paracetamol (Acetaminophen): Mechanisms of action. Pediatr. Anesth. 2008, 18, 915–921.
  • 30.
    Malik, M.K.; Bhatt, P.; Singh, J.; et al. Preclinical safety assessment of chemically cross-linked modified mandua starch: Acute and sub-acute oral toxicity studies in Swiss albino mice. ACS Omega 2022, 7, 35506–35514.
  • 31.
    Milani, D.A.Q.; Davis, D.D. Pain management medications. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023.
  • 32.
    Al-Khayri, J.M.; Sahana, G.R.; Nagella, P.; et al. Flavonoids as potential anti-inflammatory molecules: A review. Molecules 2022, 27, 2901.
  • 33.
    de Melo, L.F.M.; de Queiroz Aquino-Martins, V.G.; da Silva, A.P.; et al. Biological and pharmacological aspects of tannins and potential biotechnological applications. Food Chem. 2023, 414, 135645.
  • 34.
    Puangpraphant, S.; Cuevas-Rodríguez, E.-O.; Oseguera-Toledo, M. Anti-inflammatory and antioxidant phenolic compounds. In Current Advances for Development of Functional Foods Modulating Inflammation and Oxidative Stress; Elsevier: Amsterdam, The Netherlands, 2022; pp. 165–180.
  • 35.
    Sen, S.; Chakraborty, R.; Rekha, B.; et al. Anti-inflammatory, analgesic, and antioxidant activities of Pisonia aculeata: Folk medicinal use to scientific approach. Pharm. Biol. 2013, 51, 426–432.
  • 36.
    Vane, J.; Botting, R. Inflammation and the mechanism of action of anti‐inflammatory drugs. FASEB J. 1987, 1, 89–96.
  • 37.
    Roome, T.; Razzak, A.; Ali, P.; et al. Therapeutic effect of Aegiceras corniculatum in chronic granulomatous inflammation and arthritis. J. Dow Univ. Health Sci. 2014, 8, 98–103.
  • 38.
    Khan, I.; Nisar, M.; Ebad, F.; et al. Anti-inflammatory activities of Sieboldogenin from Smilax china Linn.: Experimental and computational studies. J. Ethnopharmacol. 2009, 121, 175–177.
  • 39.
    Flower, R.; Vane, J. Inhibition of prostaglandin synthetase in brain explains the anti-pyretic activity of paracetamol (4-acetamidophenol). Nature 1972, 240, 410–411.
  • 40.
    Sirisha, N.; Sreenivasulu, M.; Sangeeta, K.; et al. Antioxidant properties of Ficus species—A review. Int. J. PharmTech Res. 2010, 2, 2174–2182.
  • 41.
    Antwi, A.O.; Obiri, D.D.; Osafo, N.; et al. Stigmasterol inhibits lipopolysaccharide-induced innate immune responses in murine models. Int. Immunopharmacol. 2017, 53, 105–113.
  • 42.
    Tseha, S.T.; Mekonnen, Y.; Desalegn, A.; et al. Toxicity study and antibacterial effects of the leaves extracts of Boscia coriacea and Uvaria leptocladon. Ethiop. J. Health Sci. 2022, 32, 823–832.
  • 43.
    Tiwari, R.; Siddiqui, M.H.; Mahmood, T.; et al. An exploratory analysis on the toxicity & safety profile of Polyherbal combination of curcumin, quercetin and rutin. Clin. Phytosci. 2020, 6, 82.
Share this article:
How to Cite
Mahmud, A.-S.; Meem, I. J.; Hasan, Md. R.; Maruf, Md. M.; Islam, A.; Akter, Mst. S. Pharmacological Investigation of the Active Fractions of Ficus benjamina Leaf Extract. Journal of Medicinal Natural Products 2025, 2 (3), 100015. https://doi.org/10.53941/jmnp.2025.100015.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.