- 1.
Thaiss, C.A.; Zmora, N.; Levy, M.; et al. The microbiome and innate immunity. Nature 2016, 535, 65–74. https://doi.org/10.1038/nature18847.
- 2.
Johnson, K.V.; Foster, K.R. Why does the microbiome affect behaviour? Nat. Rev. Microbiol. 2018, 16, 647–655. https://doi.org/10.1038/s41579-018-0014-3.
- 3.
Afzaal, M.; Saeed, F.; Anjum, F.M.; et al. Human gut microbiota in health and disease: Unveiling the relationship. Front. Microbiol. 2022, 13, 999001. https://doi.org/10.3389/fmicb.2022.999001.
- 4.
Lloyd-Price, J.; Abu-Ali, G.; Huttenhower, C. The healthy human microbiome. Nature 2017, 550, 61–66. https://doi.org/10.1038/nature24648.
- 5.
Ma, Y.Y.; Li, X.; Yu, J.T.; et al. Therapeutics for neurodegenerative diseases by targeting the gut microbiome: From bench to bedside. Transl. Neurodegener. 2024, 13, 12. https://doi.org/10.1186/s40035-024-00404-1.
- 6.
Gounot, J.S. Genomic catalogues of the human gut microbiome: Expanding diversity and function. Nat. Biotechnol. 2022, 40, 1780–1790. https://doi.org/10.1038/s41587-022-01356-4.
- 7.
Sutcliffe, I.C.; Trujillo, M.E.; Goodfellow, M. A call to arms for systematists: Revitalising the description of microbial diversity. Antonie Van Leeuwenhoek 2021, 114, 559–564. https://doi.org/10.1007/s10482-021-01539-0.
- 8.
Hou, K.; Wu, Z.-X.; Chen, X.-Y.; et al. Microbiota in health and diseases. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 639–657. https://doi.org/10.1038/s41575-022-00698-4.
- 9.
Peterson, C.T. Gut microbiota-mediated biotransformation of medicinal herb-derived natural products: A narrative review of new frontiers in drug discovery. J 2024, 7, 351–372. https://doi.org/10.3390/j7030020.
- 10.
Agus, A.; Clément, K.; Sokol, H. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut 2021, 70, 1174–1182. https://doi.org/10.1136/gutjnl-2020-323071.
- 11.
Wang, Y.; Xu, H.; Zhou, X.; et al. Dysregulated bile acid homeostasis: Unveiling its role in metabolic diseases. Med. Rev. 2024, 4, 262–283. https://doi.org/10.1515/mr-2024-0020.
- 12.
Rinninella, E.; Tohumcu, E.; Raoul, P.; et al. The role of diet in shaping human gut microbiota. Best. Pract. Res. Clin. Gastroenterol. 2023, 62–63, 101828. https://doi.org/10.1016/j.bpg.2023.101828.
- 13.
Wu, J.; Wang, K.; Wang, X.; et al. The role of the gut microbiome and its metabolites in metabolic diseases. Protein Cell 2021, 12, 360–373. https://doi.org/10.1007/s13238-020-00814-7.
- 14.
Hu, X.; Zhang, Y.; Li, J.; et al. Polyphenol-induced gut metabotypes and their implications for host health. Food Funct. 2024, 15, 456–472. https://doi.org/10.1039/D3FO03045A.
- 15.
Bolte, L.A.; Vich Vila, A.; Imhann, F.; et al. Long-term dietary patterns are associated with pro-inflammatory and anti-inflammatory features of the gut microbiome. Gut 2021, 70, 1287–1298. https://doi.org/10.1136/gutjnl-2020-322670.
- 16.
Zeng, Q.; Feng, X.; Hu, Y.; et al. The human gut microbiota is associated with host lifestyle: A comprehensive narrative review. Front. Microbiol. 2025, 16, 1549160. https://doi.org/10.3389/fmicb.2025.1549160.
- 17.
Ye, X.; Li, H.; Anjum, K.; et al. Dual role of indoles derived from intestinal microbiota on human health. Front. Immunol. 2022, 13, 903526. https://doi.org/10.3389/fimmu.2022.903526.
- 18.
Hasan, M.N.; Li, T.; Gu, L. Gut microbiota and vagus nerve signalling in health and disease. Front. Neurosci. 2025, 19, 1523456. https://doi.org/10.3389/fnins.2025.1523456.
- 19.
O’Riordan, K.J.; Moloney, G.M.; Keane, L.; et al. The gut microbiota-immune-brain axis: Therapeutic implications. Cell Rep. Med. 2025, 6, 101982. https://doi.org/10.1016/j.xcrm.2025.101982.
- 20.
Ratsika, A.; Cruz Pereira, J.S.; Lynch, C.M.K.; et al. Microbiota-immune-brain interactions: A lifespan perspective. Curr. Opin. Neurobiol. 2023, 78, 102652. https://doi.org/10.1016/j.conb.2022.102652.
- 21.
Wang, Y.J.; Yeh, T.L.; Shih, M.C.; et al. Dietary polyphenols and gut microbiota interactions. Nutrients 2020, 12, 2934. https://doi.org/10.3390/nu12102934.
- 22.
Jin, J.; Zhang, H.; Zhang, J.; et al. Gut microbiota and natural product metabolism: Emerging mechanisms. Phytomedicine 2022, 98, 153933. https://doi.org/10.1016/j.phymed.2022.153933.
- 23.
Wang, L.Y.; He, L.H.; Xu, L.J.; et al. Short-chain fatty acids: Bridges between diet, gut microbiota, and health. J. Gastroenterol. Hepatol. 2024, 39, 1728–1736. https://doi.org/10.1111/jgh.16619.
- 24.
Du, Y. Fermentation of dietary fibers and production of SCFAs. Front. Nutr. 2022, 9, 876543. https://doi.org/10.3389/fnut.2022.876543.
- 25.
Kumar, J.; Rani, K.; Datt, C. Molecular link between dietary fibre, gut microbiota and health. Mol. Biol. Rep. 2020, 47, 6229–6237. https://doi.org/10.1007/s11033-020-05611-3.
- 26.
Martin-Gallausiaux, C.; Marinelli, L.; Blottière, H.M.; et al. SCFA: Mechanisms and functional importance in the gut. Proc. Nutr. Soc. 2021, 80, 37–49. https://doi.org/10.1017/S0029665120006916.
- 27.
Chambers, E.S.; Viardot, A.; Psichas, A.; et al. Effects of targeted delivery of propionate to the human colon on appetite regulation. Gut 2015, 64, 1744–1754. https://doi.org/10.1136/gutjnl-2014-307913.
- 28.
Yan, H.; Ajuwon, K.M. Butyrate enhances intestinal barrier function. PLoS ONE 2017, 12, e0179586. https://doi.org/10.1371/journal.pone.0179586.
- 29.
Vyhlídalová, B.; Krasulová, K.; Pečinková, P.; et al. Gut microbial catabolites of tryptophan as AhR ligands. Int. J. Mol. Sci. 2020, 21, 2614. https://doi.org/10.3390/ijms21072614.
- 30.
Li, S. Modulation of immunity by tryptophan microbial metabolites. Front. Nutr. 2023, 10, 1209613. https://doi.org/10.3389/fnut.2023.1209613.
- 31.
Trabelsi, M.S.; Lestavel, S.; Staels, B.; et al. Intestinal bile acid receptors as regulators of glucose homeostasis. Proc. Nutr. Soc. 2017, 76, 192–202. https://doi.org/10.1017/S0029665116002834.
- 32.
Yu, H.; Nie, R.; Shen, C. The role of bile acids in regulating glucose and lipid metabolism. Endocr. J. 2023, 70, 359–374. https://doi.org/10.1507/endocrj.EJ22-0544.
- 33.
Sharma, A.; Sharma, G.; Im, S.H. Gut microbiota in regulatory T cell generation and function. Gut Microbes 2025, 17, 2516702. https://doi.org/10.1080/19490976.2025.2516702.
- 34.
Mukhopadhya, I.; Louis, P. Gut microbiota-derived SCFAs and their role in health and disease. Nat. Rev. Microbiol. 2025, 23, 215–232. https://doi.org/10.1038/s41579-025-01183-w.
- 35.
Li, T.H.; Liu, L.; Hou, Y.Y.; et al. C-type lectin receptor-mediated immune recognition of gut microbiota. Gastroenterol. Rep. 2019, 7, 312–321. https://doi.org/10.1093/gastro/goz028.
- 36.
Garabatos, N.; Santamaria, P. Gut microbial antigenic mimicry in autoimmunity. Front. Immunol. 2022, 13, 873607. https://doi.org/10.3389/fimmu.2022.873607.
- 37.
Shaheen, W.A.; Quraishi, M.N.; Iqbal, T.H. Gut microbiome and autoimmune disorders. Clin. Exp. Immunol. 2022, 209, 161–174. https://doi.org/10.1093/cei/uxac057.
- 38.
Gieryńska, M.; Szulc-Dąbrowska, L.; Struzik, J.; et al. Integrity of the intestinal barrier: The involvement of epithelial cells and microbiota. Animals 2022, 12, 145. https://doi.org/10.3390/ani12020145.
- 39.
Dmytriv, T.R.; Storey, K.B.; Lushchak, V.I. Intestinal barrier permeability: The influence of gut microbiota, nutrition, and exercise. Front. Physiol. 2024, 15, 1380713. https://doi.org/10.3389/fphys.2024.1380713.
- 40.
Schroeder, B.O. Fight them or feed them: How the intestinal mucus layer manages the gut microbiota. Gastroenterol. Rep. 2019, 7, 3–12. https://doi.org/10.1093/gastro/goy052.
- 41.
Di Vincenzo, F.; Del Gaudio, A.; Petito, V.; et al. Gut microbiota, intestinal permeability, and systemic inflammation: A narrative review. Intern. Emerg. Med. 2024, 19, 275–293. https://doi.org/10.1007/s11739-023-03374-w.
- 42.
Mayer, E.A.; Knight, R.; Mazmanian, S.K.; et al. Gut microbes and the brain: Paradigm shift in neuroscience. J. Neurosci. 2014, 34, 15490–15496. https://doi.org/10.1523/JNEUROSCI.3299-14.2014.
- 43.
Jameson, K.G.; Kazmi, S.A.; Ohara, T.E.; et al. Select microbial metabolites in the small intestinal lumen regulate vagal activity via receptor-mediated signalling. iScience 2024, 28, 111699. https://doi.org/10.1016/j.isci.2024.111699.
- 44.
Dicks, L.M.T. Gut bacteria and neurotransmitters. Microorganisms 2022, 10, 1838. https://doi.org/10.3390/microorganisms10091838.
- 45.
Cheng, J.; Hu, H.; Ju, Y.; et al. Gut microbiota-derived short-chain fatty acids and depression: Deep insight into biological mechanisms and potential applications. Gen. Psychiatry 2024, 37, e101374. https://doi.org/10.1136/gpsych-2023-101374.
- 46.
Li, T.; Hasan, M.N.; Gu, L. Bile acids regulation of cellular stress responses in liver physiology and diseases. eGastroenterology 2024, 2, e100074. https://doi.org/10.1136/egastro-2024-100074.
- 47.
Barrio, C.; Arias-Sánchez, S.; Martín-Monzón, I. The gut microbiota-brain axis, psychobiotics and its influence on brain and behaviour: A systematic review. Psychoneuroendocrinology 2022, 137, 105640. https://doi.org/10.1016/j.psyneuen.2021.105640.
- 48.
Ramadan, Y.N.; Alqifari, S.F.; Alshehri, K.; et al. Microbiome gut-brain axis: Impact on brain development and mental health. Mol. Neurobiol. 2025, 62, 10813–10833. https://doi.org/10.1007/s12035-025-04846-0.
- 49.
Zhao, Y.; Zhong, X.; Yan, J.; et al. Gut microbiota-derived metabolites and host signalling. Front. Microbiol. 2022, 13, 956378. https://doi.org/10.3389/fmicb.2022.956378.
- 50.
Feng, W.; Liu, J.; Cheng, H.; et al. Dietary compounds in modulation of gut microbiota-derived metabolites. Front. Nutr. 2022, 9, 939571. https://doi.org/10.3389/fnut.2022.939571.
- 51.
Kim, C.H. Immune regulation by microbiome metabolites. Immunology 2018, 154, 220–229. https://doi.org/10.1111/imm.12930.
- 52.
Yang, W.; Cong, Y. Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases. Cell Mol. Immunol. 2021, 18, 866–877. https://doi.org/10.1038/s41423-021-00661-4.
- 53.
Zhao, L.; Sui, M.; Zhang, T.; et al. The interaction between ginseng and gut microbiota. Front. Nutr. 2023, 10, 1301468. https://doi.org/10.3389/fnut.2023.1301468.
- 54.
Zhang, Z.W.; Cong, L.; Peng, R.; et al. Transformation of berberine to its demethylated metabolites by the CYP51 enzyme in the gut microbiota. J. Pharm. Anal. 2020, 10, 600–608. https://doi.org/10.1016/j.jpha.2020.10.001.
- 55.
Chu, L.L.; Huy, N.Q.; Tung, N.H. Microorganisms for ginsenosides biosynthesis: Recent progress, challenges, and perspectives. Molecules 2023, 28, 1437. https://doi.org/10.3390/molecules28031437.
- 56.
Ornelas, A.; Dowdell, A.S.; Lee, J.S.; et al. Microbial metabolite regulation of epithelial cell-cell interactions and barrier function. Cells 2022, 11, 944. https://doi.org/10.3390/cells11060944.
- 57.
Lee, J.S.; Wang, R.X.; Colgan, S.P. Microbial metabolite regulation of epithelial tight junctions and barrier. In Tight Junctions; Springer: Berlin/Heidelberg, Germany, 2022; pp. 181–200. https://doi.org/10.1007/978-3-030-97204-2_8.
- 58.
Paudel, D.; Nair, D.V.T.; Joseph, G.; et al. Gastrointestinal microbiota-directed nutritional and therapeutic interventions for inflammatory bowel disease: Opportunities and challenges. Gastroenterol. Rep. 2024, 12, goae033. https://doi.org/10.1093/gastro/goae033.
- 59.
Sun, X.; Shukla, M.; Wang, W.; et al. Unlocking gut-liver-brain axis communication metabolites: Energy metabolism, immunity, and barriers. NPJ Biofilms Microbiomes 2024, 10, 61. https://doi.org/10.1038/s41522-024-00610-9.
- 60.
Blachier, F. Metabolism of dietary substrates by intestinal bacteria and consequences for the host intestine. In Metabolism of Alimentary Compounds by the Intestinal Microbiota and Health; Springer: Berlin/Heidelberg, Germany, 2023; pp. 45–144. https://doi.org/10.1007/978-3-031-26322-4_3.
- 61.
Konopelski, P.; Mogilnicka, I. Biological effects of indole-3-propionic acid, a gut microbiota-derived metabolite, and its precursor tryptophan. Int. J. Mol. Sci. 2022, 23, 1222. https://doi.org/10.3390/ijms23031222.
- 62.
Su, D.; Ağagündüz, D.; Cemali, Ö.; et al. Interaction between natural products and gut microbiota. Curr. Pharmacol. Rep. 2023, 9, 7–31. https://doi.org/10.1007/s40495-022-00309-5.
- 63.
Li, C.; Yao, J.; Yang, C.; et al. Gut microbiota-derived short-chain fatty acids act as mediators of the gut-liver-brain axis. Metab. Brain Dis. 2025, 40, 122. https://doi.org/10.1007/s11011-025-01554-5.
- 64.
Zhu, S.; Jiang, Y.; Xu, K.; et al. The progress of gut microbiome research related to brain disorders. J. Neuroinflamm. 2020, 17, Article 25. https://doi.org/10.1186/s12974-020-1705-z.
- 65.
Wahlström, A.; Sayin, S.I.; Marschall, H.U.; et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 2016, 24, 41–50. https://doi.org/10.1016/j.cmet.2016.05.005.
- 66.
Sharp, C.; Foster, K.R. Host control and the evolution of cooperation in host microbiomes. Nat. Commun. 2022, 13, 3567. https://doi.org/10.1038/s41467-022-30971-8.
- 67.
Zhang, X.; Li, L.; Butcher, J.; et al. Advancing functional and translational microbiome research using meta-omics approaches. Microbiome 2019, 7, 154. https://doi.org/10.1186/s40168-019-0767-6.
- 68.
Brown, A.J.; Goldsworthy, S.M.; Barnes, A.A.; et al. The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short-chain carboxylic acids. J. Biol. Chem. 2003, 278, 11312–11319. https://doi.org/10.1074/jbc.M211609200.
- 69.
Ariaeenejad, S.; Gharechahi, J.; Foroozandeh Shahraki, M.; et al. Precision enzyme discovery through targeted mining of metagenomic data. Nat. Prod. Bioprospecting 2024, 14, 7. https://doi.org/10.1007/s13659-023-00426-8.
- 70.
Zielinski, J.M.; Luke, J.J.; Guglietta, S.; et al. High-throughput multi-omics approaches for clinical trial evaluation and drug discovery. Front. Immunol. 2021, 12, 590742. https://doi.org/10.3389/fimmu.2021.590742.
- 71.
Liu, Z.; Ma, A.; Mathé, E.; et al. Network analyses in microbiome based on high-throughput multi-omics data. Brief. Bioinform. 2021, 22, 1639–1655. https://doi.org/10.1093/bib/bbaa005.
- 72.
Grieneisen, L.; Blekhman, R.; Archie, E. How longitudinal data can contribute to understanding host genetic effects on the gut microbiome. Gut Microbes 2023, 15, 2178797. https://doi.org/10.1080/19490976.2023.2178797.
- 73.
Novak, V.; Andeer, P.F.; King, E.; et al. Breaking the reproducibility barrier with standardized protocols for microbiome research. PLoS Biol. 2025, 23, e3003358. https://doi.org/10.1371/journal.pbio.3003358.
- 74.
Peleg, M. Microbial dose-response curves and disinfection efficacy models revisited. Food Biophys. 2020, 15, 289–303. https://doi.org/10.1007/s12393-020-09249-6.
- 75.
Sudar, M.; Findrik Blažević, Z. Enzyme cascade kinetic modelling. In Enzyme Cascade Design and Modelling; Springer: Cham, Switzerland, 2021; pp. 91–108. https://doi.org/10.1007/978-3-030-65718-5_6.