2601002911
  • Open Access
  • Article

In silico Prediction of Anticancer Potential of Cajanus cajan (L.) Millsp Phytochemicals as Multi-Target Inhibitors of CTNNB1, BRAF, FGFR and EGFR in Hepatocellular Carcinoma (HCC)

  • Sibashish Kityania 1,   
  • Deepa Nath 2,*,   
  • Priyakshi Nath 1,   
  • Tamim Ahmed 1,   
  • Monjur Ahmed Laskar 3,   
  • Satyajit D. Sarker 4,   
  • Anupam Das Talukdar 1,*

Received: 13 Oct 2025 | Revised: 08 Jan 2026 | Accepted: 23 Jan 2026 | Published: 03 Feb 2026

Abstract

Hepatocellular carcinoma (HCC) is the world’s fifth most prevalent malignancy and the second major cause of cancer-related mortality. Although synthetic and plant-based therapies are used to treat a variety of liver illnesses, treatments for HCC are frequently associated with considerable adverse effects as well as drug resistance. Plant-derived natural bioactive compounds, which are known for their low toxicity and protective properties, offer a possibly safer choice for HCC treatment. This study focuses on the most potent plant bioactive compounds for developing new therapeutic alternatives against Hepatocellular carcinoma. A primary phytochemical evaluation was carried out on Cajanus cajan (L.) Millsp., exploring both qualitative and quantitative assays and an analysis of its antioxidant properties using DPPH. Metabolites profiling using LC-MS analysis identified 88 phytochemicals from the methanolic extract of the selected plant as bioactive compounds. The HCC molecular target, such as CTNNB1, was identified through the network analysis and BRAF, FGFR and EGFR, were selected based literature study, and their 3D structures were retrieved from the RCSB Protein Data Bank (PDB, https://www.rcsb.org/ (accessed on 12 November 2025). Ligand structures were retrieved from the NCBI PubChem database (https://pubchem.ncbi.nlm.nih.gov/ (accessed on 12 November 2025) and converted into 3D sdf. format for molecular docking analysis. Molegro Virtual Docker (MVD) 6.0 to evaluate the Molecular docking studies considering the interaction between the selected ligands and HCC targets, and compare with positive controls. Among the compounds evaluated, Cis-Mulberroside A, Asperuloside tetraacetate, Rutin, Biorobin and Cassiaside C showed better binding efficiency with the selected targets compared with the positive controls of respective targets. Among these, Cis-Mulberroside A (also referred to as Mulberroside D), a stilbenoid glycoside, exhibited the highest binding affinity for CTNNB1, BRAF, FGFR and EGFR, outperforming the reference compounds. These results suggest that Mulberroside D holds significant inhibitory potential against critical targets in hepatocellular carcinoma (HCC), particularly CTNNB1, BRAF, FGFR and EGFR, which are crucial in the signaling pathways of HCC progression. Based on the phytochemical analysis along with metabolite profiling, Cis-Mulberroside A, stands most prominent bioactive constituent. The molecular docking scores and hydrogen bonding analysis of the selected targets compared to the respective positive control, Cis-Mulberroside A, revealed as a promising compound and could be a potential bioactive phytoconstituent for a valuable drug lead for future use in hepatocellular carcinoma (HCC).

References 

  • 1.

    Islam, M.R.; Rauf, A.; Alash, S.; et al. A comprehensive review of phytoconstituents in liver cancer prevention and treatment: Targeting insights into molecular signaling pathways. Med. Oncol. 2024, 41, 134.

  • 2.

    Li, S.; Yin, S.; Ding, H.; et al. Polyphenols as potential metabolism mechanisms regulators in liver protection and liver cancer prevention. Cell Proliferat. 2023, 56, e13346.

  • 3.

    Niu, C.; Zhang, J.; Okolo, P.I. Liver cancer wars: Plant-derived polyphenols strike back. Med. Oncol. 2024, 41, 106.

  • 4.

    Giri, S.; Singh, A. Epidemiology of Hepatocellular Carcinoma in India–An Updated Review for 2024. J. Clin. Exp. Hepatol. 2024, 14, 101447.

  • 5.

    Yang, F.; Sun, D.; Xia, C.; et al. Global trajectories of liver cancer burden from 1990 to 2019 and projection to 2035. Chin. Med. J. 2023, 136, 1413–1421.

  • 6.

    Mak, L.-Y.; Liu, K.; Chirapongsathorn, S.; et al. Liver diseases and hepatocellular carcinoma in the Asia-Pacific region: Burden, trends, challenges and future directions. Nat. Rev. Gastro. Hepat. 2024, 21, 387–404.

  • 7.

    Urquijo-Ponce, J.J.; Alventosa-Mateu, C.; Latorre-Sánchez, M.; et al. Present and future of new systemic therapies for early and intermediate stages of hepatocellular carcinoma. World J. Gastroenterol. 2024, 30, 2512–2525.

  • 8.

    Yang, J.D.; Hainaut, P.; Gores, G.J.; et al. A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat. Rev. Gastro. Hepat. 2019, 16, 589–604.

  • 9.

    Rumgay, H.; Arnold, M.; Ferlay, J.; et al. Global burden of primary liver cancer in 2020 and predictions to 2040. J. Hepatol. 2022, 77, 1598–1606.

  • 10.

    Bray, F.; Laversanne, M.; Sung, H.; et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263.

  • 11.

    Sun, J.; Luo, Q.; Liu, L.; et al. Low-level shear stress promotes migration of liver cancer stem cells via the FAK-ERK1/2 signalling pathway. Cancer Lett. 2018, 427, 1–8.

  • 12.

    Abou-El-Enein, M.; Grainger, D.W.; Kili, S. Registry contributions to strengthen cell and gene therapeutic evidence. Mol. Ther. 2018, 26, 1172–1176.

  • 13.

    Ma, Y.-S.; Liu, J.-B.; Wu, T.-M.; et al. New therapeutic options for advanced hepatocellular carcinoma. Cancer Control 2020, 27, 1073274820945975.

  • 14.

    Liu, W.; Cui, X.; Zhong, Y.; et al. Phenolic metabolites as therapeutic in inflammation and neoplasms: Molecular pathways explaining their efficacy. Pharmacol. Res. 2023, 193, 106812.

  • 15.

    Mathew, S.; Faheem, M.; Suhail, M.; et al. Updates on traditional medicinal plants for hepatocellular carcinoma. Pharmacogn. J. 2016, 8, 203–214.

  • 16.

    Monsuez, J.-J.; Charniot, J.-C.; Vignat, N.; et al. Cardiac side-effects of cancer chemotherapy. Int. J. Cardiol. 2010, 144, 3–15.

  • 17.

    Raoul, J.-L.; Kudo, M.; Finn, R.S.; et al. Systemic therapy for intermediate and advanced hepatocellular carcinoma: Sorafenib and beyond. Cancer Treat. Rev. 2018, 68, 16–24.

  • 18.

    Lee, J.K.; Abou-Alfa, G.K. An update on clinical trials in the treatment of advanced hepatocellular carcinoma. J. Clin. Gastroenterol. 2013, 47, S16–S19.

  • 19.

    Bruix, J.; Tak, W.-Y.; Gasbarrini, A.; et al. Regorafenib as second-line therapy for intermediate or advanced hepatocellular carcinoma: Multicentre, open-label, phase II safety study. Eur. J. Cancer 2013, 49, 3412–3419.

  • 20.

    Chuma, M.; Terashita, K.; Sakamoto, N. New molecularly targeted therapies against advanced hepatocellular carcinoma: From molecular pathogenesis to clinical trials and future directions. Hepatol. Res. 2015, 45, E1–E11.

  • 21.

    Kudo, M.; Finn, R.S.; Qin, S.; et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial. Lancet 2018, 391, 1163–1173.

  • 22.

    Cheng, A.-L.; Finn, R.S.; Qin, S.; et al. Phase III trial of lenvatinib (LEN) vs sorafenib (SOR) in first-line treatment of patients (pts) with unresectable hepatocellular carcinoma (uHCC). J. Clin. Oncol. 2017, 35, 4001–4015.

  • 23.

    Rimassa, L.; Danesi, R.; Pressiani, T.; et al. Management of adverse events associated with tyrosine kinase inhibitors: Improving outcomes for patients with hepatocellular carcinoma. Cancer Treat. Rev. 2019, 77, 20–28.

  • 24.

    García, E.R.; Gutierrez, E.A.; Melo, F.C.S.A.d.; et al. Flavonoids effects on hepatocellular carcinoma in murine models: A systematic review. Evid. Based Compl. Alt. 2018, 2018, 6328970.

  • 25.

    Dantzer, C.; Dif, L.; Vache, J.; et al. Specific features of ß-catenin-mutated hepatocellular carcinomas. Br. J. Cancer 2024, 131, 1871–1880.

  • 26.

    Xu, C.; Xu, Z.; Zhang, Y.; et al. β-Catenin signaling in hepatocellular carcinoma. J. Clin. Invest. 2022, 132, e154515.

  • 27.

    Qiao, Q.; Zhang, J.; Wang, W.; et al. Over expression of transforming growth factor-alpha and epidermal growth factor receptor in human hepatic cirrhosis tissues. Hepatogastroenterology 2008, 55, 169–172.

  • 28.

    Harada, K.I.; Shiota, G.; Kawasaki, H. Transforming growth factor-α and epidermal growth factor receptor in chronic liver disease and hepatocellular carcinoma. Liver 1999, 19, 318–325.

  • 29.

    Funakoshi-Tago, M.; Okamoto, K.; Izumi, R.; et al. Anti-inflammatory activity of flavonoids in Nepalese propolis is attributed to inhibition of the IL-33 signaling pathway. Int. Immunopharmacol. 2015, 25, 189–198.

  • 30.

    Bhatt, N.; Deshpande, M. A critical review of Indian medicinal plants for hepatocellular carcinoma. Int. J. Ayurvedic Herb Med. 2022, 12, 4150–4186.

  • 31.

    Rawat, D.; Shrivastava, S.; Naik, R.A.; et al. An overview of natural plant products in the treatment of hepatocellular carcinoma. Anti Cancer Agents Med. Chem. 2018, 18, 1838–1859.

  • 32.

    Mandlik, D.S.; Mandlik, S.K. Herbal and natural dietary products: Upcoming therapeutic approach for prevention and treatment of hepatocellular carcinoma. Nutr. Cancer 2021, 73, 2130–2154.

  • 33.

    Adekilekun, H.A.; Oyewusi, H.A.; Odoma, S.; et al. An Overview of Traditional Medicinal Plants Used in Treating Hepatocellular Carcinoma (HCC) with Emphasis on Mechanisms of Action: Traditional Medicinal Treatment of Hepatocellular Carcinoma (HCC). J. Trop. Life Sci. 2024, 14, 405–428.

  • 34.

    Nasreen, S.; Safeer, S.; Dar, K.K.; et al. Etiology of hepatocellular carcinoma and treatment through medicinal plants: A comprehensive review. Orient. Pharm. Exp. Med. 2018, 18, 187–197.

  • 35.

    Saeed, R.A.; Maqsood, M.; Saeed, R.A.; et al. Plant-based foods and hepatocellular carcinoma: A review on mechanistic understanding. Crit. Rev. Food Sci. 2023, 63, 11750–11783.

  • 36.

    Yang, S.-E.; Vo, T.-L.T.; Chen, C.-L.; et al. Nutritional composition, bioactive compounds and functional evaluation of various parts of Cajanus cajan (L.) Millsp. Agriculture 2020, 10, 558.

  • 37.

    Mathew, D.; Manila, T.; Divyasree, P.; et al. Therapeutic molecules for multiple human diseases identified from pigeon pea (Cajanus cajan L. Millsp.) through GC–MS and molecular docking. Food Sci. Hum. Well. 2017, 6, 202–216.

  • 38.

    Abubakar, A.R.; Haque, M. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. J. Pharm. Bioallied Sci. 2020, 12, 1–10.

  • 39.

    Bakir Çilesizoğlu, N.; Yalçin, E.; Çavuşoğlu, K.; et al. Qualitative and quantitative phytochemical screening of Nerium oleander L. extracts associated with toxicity profile. Sci. Rep. 2022, 12, 21421.

  • 40.

    Evans, W. Trease and Evans Pharmacognosy, 15th ed.; Saunders Publishers: Philadelphia, PA, USA, 2002.

  • 41.

    Shaikh, J.R.; Patil, M. Qualitative tests for preliminary phytochemical screening: An overview. Int. J. Chem. Stud. 2020, 8, 603–608.

  • 42.

    Siddiqui, A.A.; Ali, M. Practical Pharmaceutical Chemistry; CBS Publishers & Distributors: Patparganj, Delhi, 1997.

  • 43.

    Sofowara, A. Medicinal Plants and Traditional Medicine in Africa Spectrum Books LTD; Spectrum Books Ltd.: Ibadan, Nigeria, 1993.

  • 44.

    Sankhalkar, S.; Vernekar, V. Quantitative and qualitative analysis of phenolic and flavonoid content in Moringa oleifera Lam and Ocimum tenuiflorum L. Pharmacogn. Res. 2016, 8, 16–22.

  • 45.

    Sati, S.; Kumar, P. Assessment of Himalayan juniper, Juniperus squamata buch–ham ex d. don for phytochemical screening and antimicrobial potential against some infection causing pathogens. World J. Pharmaceut. Res. 2015, 4, 998–1011.

  • 46.

    Archana, P.; Samatha, T.; Mahitha, B.; et al. Preliminary phytochemical screening from leaf and seed extracts of Senna alata L. Roxb-an ethnomedicinalplant. Int. J. Pharm. Sci. Res. 2012, 3, 82–89.

  • 47.

    Auwal, M.S.; Saka, S.; Mairiga, I.A.; et al. Preliminary phytochemical and elemental analysis of aqueous and fractionated pod extracts of Acacia nilotica (Thorn mimosa). Vet. Res. Forum 2014, 5, 95–100.

  • 48.

    Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Method. Enzymol. 1999, 299, 152–178.

  • 49.

    Lamuela-Raventós, R.M. Folin–Ciocalteu Method for the Measurement of Total Phenolic Content and Antioxidant Capacity. In Measurement of Antioxidant Activity & Capacity; John Wiley & Sons: Hoboken, NJ, USA, 2018; pp. 107–115.

  • 50.

    Arvouet-Grand, A.; Vennat, B.; Pourrat, A.; et al. Standardization of propolis extract and identification of principal constituents. J. Pharm. Belg. 1994, 49, 462–468.

  • 51.

    Shraim, A.M.; Ahmed, T.A.; Rahman, M.M.; et al. Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. Lwt 2021, 150, 111932.

  • 52.

    Kumarasamy, Y.; Byres, M.; Cox, P.J.; et al. Screening seeds of some Scottish plants for free radical scavenging activity. Phytother. Res. 2007, 21, 615–621.

  • 53.

    Gulcin, İ.; Alwasel, S.H. DPPH radical scavenging assay. Processes 2023, 11, 2248.

  • 54.

    Almulaiky, Y.Q.; Aldhahri, M.; Al-abbasi, F.A.; et al. In vitro assessment of antioxidant enzymes, phenolic contents and antioxidant capacity of the verdolaga (Portulacaceae). Int. J. Nutr. 2020, 4, 36–47.

  • 55.

    Mehraj, S.S.; Kamili, A.N.; Nazir, R.; et al. Comparative evaluation of extraction methods for total proteins from Crocus sativus L. (Saffron). Saudi J. Biol. Sci. 2018, 25, 1603–1608.

  • 56.

    Aebi, H. [13] Catalase in vitro. Method. Enzymol. 1984, 105, 121–126.

  • 57.

    Tekin, S.; Seven, E. Assessment of serum catalase, reduced glutathione, and superoxide dismutase activities and malondialdehyde levels in keratoconus patients. Eye 2022, 36, 2062–2066.

  • 58.

    Beyer, W.F., Jr.; Fridovich, I. Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Anal. Biochem. 1987, 161, 559–566.

  • 59.

    Chen, X.; Li, D.; Guo, J.; et al. Identification and analysis of the superoxide dismutase (SOD) gene family and potential roles in high-temperature stress response of herbaceous peony (Paeonia lactiflora pall.). Antioxidants 2024, 13, 1128.

  • 60.

    Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; et al. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646.

  • 61.

    Rivera, C.G.; Vakil, R.; Bader, J.S. NeMo: Network module identification in Cytoscape. BMC Bioinformatics 2010, 11, S61.

  • 62.

    Su, G.; Morris, J.H.; Demchak, B.; et al. Biological network exploration with Cytoscape 3. Curr. Protoc. Bioinform. 2014, 47, 8.13.1–8.13.24.

  • 63.

    Sherman, B.T.; Hao, M.; Qiu, J.; et al. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 50, W216–W221.

  • 64.

    Bitencourt-Ferreira, G.; de Azevedo, W.F. Molegro Virtual Docker for Docking. In Docking Screens for Drug Discovery; Springer: New York, NY, USA, 2019; pp. 149–167.

  • 65.

    Dere, D.; Pehlivan, S.N.; da Silva, A.D.; et al. Hands-On Docking with Molegro Virtual Docker. In Docking Screens for Drug Discovery; Springer: New York, NY, USA, 2025; pp. 125–138.

  • 66.

    Rivera-Pérez, J.; Martínez-Rosas, M.; Conde-Castañón, C.A.; et al. Epigallocatechin 3-gallate has a neuroprotective effect in retinas of rabbits with ischemia/reperfusion through the activation of Nrf2/HO-1. Int. J. Mol. Sci. 2020, 21, 3716.

  • 67.

    Deng, X.; Yang, Z.; Han, M.; et al. Comprehensive Insights into the Combinatorial Uses of Selected Phytochemicals in Colorectal Cancer Prevention and Treatment: Isothiocyanates, Quinones, Carotenoids, and Alkaloids. Phytother. Res. 2024, 38, 2884–2907.

  • 68.

    Nadia, M.; Maryam, M. Use of Medicinal Plants for The Treatment of Cancer in Different Parts of The World: An Overview. Adv. J. Chem. A 2024, 7, 189–199.

  • 69.

    Gezici, S.; Şekeroğlu, N. Current perspectives in the application of medicinal plants against cancer: Novel therapeutic agents. Anti Cancer Agents Med. Chem. 2019, 19, 101–111.

  • 70.

    Teiten, M.-H.; Gaascht, F.; Dicato, M.; et al. Anticancer bioactivity of compounds from medicinal plants used in European medieval traditions. Biochem. Pharmacol. 2013, 86, 1239–1247.

  • 71.

    Brito, S.A.; Rodrigues, F.F.; Campos, A.R.; et al. Evaluation of the antifungal activity and modulation between Cajanus cajan (L.) Millsp. leaves and roots ethanolic extracts and conventional antifungals. Pharmacogn. Mag. 2012, 8, 103.

  • 72.

    Zu, Y.-G.; Liu, X.-L.; Fu, Y.-J.; et al. Chemical composition of the SFE-CO2 extracts from Cajanus cajan (L.) Huth and their antimicrobial activity in vitro and in vivo. Phytomedicine 2010, 17, 1095–1101.

  • 73.

    Dinore, J.M.; Farooqui, M. GC-MS and LC-MS: An integrated approach towards the phytochemical evaluation of methanolic extract of Pigeon Pea [Cajanus cajan (L.) Millsp] leaves. Nat. Prod. Res. 2022, 36, 2177–2181.

  • 74.

    Huang, M.-Y.; Lin, J.; Lu, K.; et al. Anti-inflammatory effects of cajaninstilbene acid and its derivatives. J. Agric. Food Chem. 2016, 64, 2893–2900.

  • 75.

    Vo, T.-L.T.; Yang, N.-C.; Yang, S.-E.; et al. Effects of Cajanus cajan (L.) millsp. roots extracts on the antioxidant and anti-inflammatory activities. J. Physiol. Invest. 2020, 63, 137–148.

  • 76.

    Nicholson, R.A.; David, L.S.; Le Pan, R.; et al. Pinostrobin from Cajanus cajan (L.) Millsp. inhibits sodium channel-activated depolarization of mouse brain synaptoneurosomes. Fitoterapia 2010, 81, 826–829.

  • 77.

    Nahar, L.; Nasrin, F.; Zahan, R.; et al. Comparative study of antidiabetic activity of Cajanus cajan and Tamarindus indica in alloxan-induced diabetic mice with a reference to in vitro antioxidant activity. Pharmacogn. Res. 2014, 6, 180–187.

  • 78.

    Luo, M.; Liu, X.; Zu, Y.; et al. Cajanol, a novel anticancer agent from Pigeonpea [Cajanus cajan (L.) Millsp.] roots, induces apoptosis in human breast cancer cells through a ROS-mediated mitochondrial pathway. Chem.-Biol. Interact. 2010, 188, 151–160.

  • 79.

    Kim, Y.C. Neuroprotective phenolics in medicinal plants. Arch. Pharm. Res. 2010, 33, 1611–1632.

  • 80.

    Aggarwal, A.; Nautiyal, U.; Negi, D. Characterization and evaluation of antioxidant activity of Cajanus cajan and Pisum sativum. Int. J. Recent Adv. Sci. Technol. 2015, 2, 21–26.

  • 81.

    Wang, X.-Q.; Wei, W.; Zhao, C.-J.; et al. Negative-pressure cavitation coupled with aqueous two-phase extraction and enrichment of flavonoids and stilbenes from the pigeon pea leaves and the evaluation of antioxidant activities. Sep. Purif. Technol. 2015, 156, 116–123.

  • 82.

    Duker-Eshun, G.; Jaroszewski, J.W.; Asomaning, W.A.; et al. Antiplasmodial constituents of Cajanus cajan. Phytother. Res. 2004, 18, 128–130.

  • 83.

    Abo-Zeid, M.A.; Abdel-Samie, N.S.; Farghaly, A.A.; et al. Flavonoid fraction of Cajanus cajan prohibited the mutagenic properties of cyclophosphamide in mice in vivo. Mutat. Res. Gen. Tox. En. 2018, 826, 1–5.

  • 84.

    Orni, P.R.; Ahmed, S.Z.; Monefa, M.; et al. Pharmacological and phytochemical properties of Cajanus cajan (L.) Huth. (Fabaceae): A review. Int. J. Pharm. Sci. Res. 2018, 9, 886–894.

  • 85.

    Sinan, K.I.; Mahomoodally, M.F.; Eyupoglu, O.E.; et al. HPLC-FRAP methodology and biological activities of different stem bark extracts of Cajanus cajan (L.) Millsp. J. Pharm. Biomed. Anal. 2021, 192, 113678.

  • 86.

    Ashidi, J.; Houghton, P.; Hylands, P.; et al. Ethnobotanical survey and cytotoxicity testing of plants of South-western Nigeria used to treat cancer, with isolation of cytotoxic constituents from Cajanus cajan Millsp. leaves. J. Ethnopharmacol. 2010, 128, 501–512.

  • 87.

    Lim, T.; Lim, T. Cajanus cajan. In Edible Medicinal and Non-Medicinal Plants; Springer: Dordrecht, Netherlands, 2012; Volume 2, pp. 549–568.

  • 88.

    Hassan, E.M.; Matloub, A.A.; Aboutabl, M.E.; et al. Assessment of anti-inflammatory, antinociceptive, immunomodulatory, and antioxidant activities of Cajanus cajan L. seeds cultivated in Egypt and its phytochemical composition. Pharm. Biol. 2016, 54, 1380–1391.

  • 89.

    Zhou, L.; Du, Y.; Kong, L.; et al. Identification of molecular target genes and key pathways in hepatocellular carcinoma by bioinformatics analysis. OncoTargets Ther. 2018, 11, 1861–1869.

  • 90.

    Tong, Z.; Zhou, Y.; Wang, J. Identifying potential drug targets in hepatocellular carcinoma based on network analysis and one-class support vector machine. Sci. Rep. 2019, 9, 10442.

  • 91.

    Wang, J.; Peng, R.; Zhang, Z.; et al. [Retracted] Identification and Validation of Key Genes in Hepatocellular Carcinoma by Bioinformatics Analysis. BioMed Res. Int. 2021, 2021, 6662114.

  • 92.

    Ding, H.; Xing, F.; Zou, L.; et al. QSAR analysis of VEGFR-2 inhibitors based on machine learning, Topomer CoMFA and molecule docking. BMC Chem. 2024, 18, 59.

  • 93.

    Wang, S.; Chen, W.; Dong, C.; et al. Exploring the mechanism of genistein in treating hepatocellular carcinoma through network pharmacology and molecular docking. Oncologie 2024, 26, 799–811.

  • 94.

    Kumosani, T.A.; Al-Bogami, T.J.; Barbour, E.K.; et al. Molecular docking analysis of some medicinal extracts for pro-apoptotic, antiinflammatory and antioxidative activities using HCC cell lines. Nat. Prod. Res. 2024, 39, 6665–6670.

  • 95.

    Zhang, X.; Dong, P.; Song, J.; et al. Identification and mechanism prediction of mulberroside A metabolites in vivo and in vitro of rats using an integrated strategy of UHPLC-Q-Exactive Plus Orbitrap MS and network pharmacology. Front. Chem. 2022, 10, 981173.

  • 96.

    Liu, Y.; Chen, M.; Chen, C.; et al. In vitro and in vivo investigation of the capacity of mulberroside A to inhibit senescence. npj Sci. Food 2025, 9, 198.

  • 97.

    Naowaratwattana, W.; De-Eknamkul, W.; De Mejia, E.G. Phenolic-containing organic extracts of mulberry (Morus alba L.) leaves inhibit HepG2 hepatoma cells through G2/M phase arrest, induction of apoptosis, and inhibition of topoisomerase IIα activity. J. Med. Food 2010, 13, 1045–1056.

  • 98.

    Boro, H.; Usha, T.; Babu, D.; et al. Hepatoprotective activity of the ethanolic extract of Morus indica roots from Indian Bodo tribes. SN Appl. Sci. 2022, 4, 49.

  • 99.

    Kalantari, H.; Aghel, N.; Bayati, M. Hepatoprotective effect of Morus alba L. in carbon tetrachloride-induced hepatotoxicity in mice. Saudi J. Gastroenterol. 2009, 15, 193–197.

  • 100.

    Tang, C.-C.; Huang, H.-P.; Lee, Y.-J.; et al. Hepatoprotective effect of mulberry water extracts on ethanol-induced liver injury via anti-inflammation and inhibition of lipogenesis in C57BL/6J mice. Food Chem. Toxicol. 2013, 62, 786–796.

  • 101.

    Fathy, S.A.; Singab, A.N.B.; Agwa, S.A.; et al. The antiproliferative effect of mulberry (Morus alba L.) plant on hepatocarcinoma cell line HepG2. Egypt. J. Med. Hum. Genet. 2013, 14, 375–382.

  • 102.

    Zhang, Z.; Shi, L. Anti-inflammatory and analgesic properties of cis-mulberroside A from Ramulus mori. Fitoterapia 2010, 81, 214–218.

  • 103.

    Shal, B.; Ding, W.; Ali, H.; et al. Anti-neuroinflammatory potential of natural products in attenuation of Alzheimer’s disease. Front. Pharmacol. 2018, 9, 548.

  • 104.

    Eo, H.J.; Park, J.H.; Park, G.H.; et al. Anti-inflammatory and anti-cancer activity of mulberry (Morus alba L.) root bark. BMC Complement. Altern. Med. 2014, 14, 200.

Share this article:
How to Cite
Kityania, S.; Nath, D.; Nath, P.; Ahmed, T.; Laskar, M. A.; Sarker, S. D.; Talukdar, A. D. In silico Prediction of Anticancer Potential of Cajanus cajan (L.) Millsp Phytochemicals as Multi-Target Inhibitors of CTNNB1, BRAF, FGFR and EGFR in Hepatocellular Carcinoma (HCC). Journal of Medicinal Natural Products 2026, 3 (1), 100001. https://doi.org/10.53941/jmnp.2026.100001.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.