• Open Access
  • Article

Dynamics of Social Balance with Ternary Interpersonal Relationships

  • Hirotaka Goto 1,2,*,   
  • Masashi Shiraishi 3,4,   
  • Hiraku Nishimori 4,   
  • Joshua B. Plotkin 2,5

Received: 18 Oct 2025 | Revised: 10 Dec 2025 | Accepted: 12 Dec 2025 | Published: 18 Dec 2025

Abstract

Interpersonal relationships are building blocks of human social groups and resulting social behavior. The dynamics of social groups can be critical in understanding the origins of polarization, cooperation, and conflict. Social balance is a classical notion that defines which configurations of pairwise relationships among three individuals are favored. Previous studies have found that the principle of social balance, when applied to all triads within a population, leads to two mutually antagonistic groups that are internally friendly or one giant friendly group. However, this body of theory assumes interpersonal relationships are binary—either friendly or unfriendly. Neutrality adds another layer of complexity. We develop and analyze two models of social balance with interpersonal relationships that are positive, negative, or neutral. We find that the population almost never reaches a fully polarized or paradise state: even though the overall frequencies of triad configurations reach an equilibrium, individuals continue to update their interpersonal relationships over time. We also identify the equilibrium triad frequencies, based on a mean-field analysis. Subsequently, we derive an effective mapping between these two alternative models, which clarifies a nontrivial connection between distinct social processes. We also find a phase transition when some parameters are small, which characterizes the emergence of a giant component connected by active (i.e., friendly or unfriendly) links; and we discuss how the critical regime is relevant in a growing society. Our analysis helps fill a theoretical gap in the literature, and reveals qualitatively new dynamics that arise from a theory of triadic social interactions.

References 

  • 1.

    Wasserman, S.; Faust, K. Social Network Analysis; Cambridge University Press: Cambridge, UK, 1994.

  • 2.

    Castellano, C.; Fortunato, S.; Loreto, V. Statistical physics of social dynamics. Rev. Mod. Phys. 2009, 81, 591–646.

  • 3.

    Holme, P.; Newman, M.E.J. Nonequilibrium phase transition in the coevolution of networks and opinions. Phys. Rev. 2006, 74, 56108.

  • 4.

    Marvel, S.A.; Hong, H.; Papush, A.; et al. Encouraging Moderation: Clues from a Simple Model of Ideological Conflict. Phys. Rev. Lett. 2012, 109, 118702.

  • 5.

    Baumann, F.; Lorenz-Spreen, P.; Sokolov, I.M.; et al. Modeling Echo Chambers and Polarization Dynamics in Social Networks. Phys. Rev. Lett. 2020, 124, 48301.

  • 6.

    Mittal, D.; Constantino, S.M.; Vasconcelos, V.V. Anticonformists catalyze societal transitions and facilitate the expression of evolving preferences. PNAS Nexus 2024, 3, 302.

  • 7.

    Zachary, W.W. An Information Flow Model for Conflict and Fission in Small Groups. J. Anthropol. Res. 1977, 33, 452–473.

  • 8.

    Facchetti, G.; Iacono, G.; Altafini, C. Computing global structural balance in large-scale signed social networks. Proc. Natl. Acad. Sci. USA 2011, 108, 20953–20958.

  • 9.

    Szell, M.; Lambiotte, R.; Thurner, S. Multirelational organization of large-scale social networks in an online world. Proc. Natl. Acad. Sci. USA 2010, 107, 13636–13641.

  • 10.

    Belaza, A.M.; Hoefman, K.; Ryckebusch, J.; et al. Statistical physics of balance theory. PloS ONE 2017, 12, e0183696.

  • 11.

    Pham, T.M.; Korbel, J.; Hanel, R.; et al. Empirical social triad statistics can be explained with dyadic homophylic interactions. Proc. Natl. Acad. Sci. USA 2022, 119, e2121103119.

  • 12.

    Galesic, M.; Olsson, H.; Pham, T.M.; et al. Experimental evidence confirms that triadic social balance can be achieved through dyadic interactions. NPJ Complex. 2025, 2, 1.

  • 13.

    Leskovec, J.; Huttenlocher, D.; Kleinberg, J. Signed networks in social media. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Atlanta, GA, USA, 10–15 April 2010; pp. 1361–1370.

  • 14.

    Estrada, E.; Benzi, M. Walk-based measure of balance in signed networks: Detecting lack of balance in social networks. Phys. Rev. 2014, 90, 042802.

  • 15.

    Doreian, P.; Mrvar, A. A partitioning approach to structural balance. Soc. Netw. 1996, 18, 149–168.

  • 16.

    Antal, T.; Krapivsky, P.L.; Redner, S. Social balance on networks: The dynamics of friendship and enmity. Phys. Nonlinear Phenom. 2006, 224, 130–136.

  • 17.

    Lee, J.H.; Sato, N.; Yano, K.; et al. Universal association between depressive symptoms and social-network structures in the workplace. Sci. Rep. 2022, 12, 10170.

  • 18.

    Auster, C.J. Balance Theory and other Extra-Balance Properties: An Application to Fairy Tales. Psychol. Rep. 1980, 47, 183–188.

  • 19.

    Saiz, H.; Gomez-Gardenes, J.; Nuche, P.; et al. Evidence of structural balance in spatial ecological networks. Ecography 2017, 40, 733–741.

  • 20.

    Ilany, A.; Booms, A.S.; Holekamp, K.E. Topological effects of network structure on long-term social network dynamics in a wild mammal. Ecol. Lett. 2015, 18, 687–695.

  • 21.

    Rotzmeier-Keuper, J.; Hendricks, J.; Wunderlich, N.V.; et al. Triadic relationships in the context of services for animal companions. J. Bus. Res. 2018, 85, 295–303.

  • 22.

    Heider, F. Attitudes and Cognitive Organization. J. Psychol. 1946, 21, 107–112.

  • 23.

    Cartwright, D.; Harary, F. Structural balance: a generalization of Heider’s theory. Psychol. Rev. 1956, 63, 277–293.

  • 24.

    Harary, F. On the notion of balance of a signed graph. Mich. Math. J. 1953, 2, 143–146.

  • 25.

    Antal, T.; Krapivsky, P.L.; Redner, S. Dynamics of social balance on networks. Phys. Rev. 2005, 72, 36121.

  • 26.

    Kułakowski, K.; Gawronski, P.; Gronek, P. The Heider Balance: A Continuous Approach. Int. J. Mod. Phys. 2005, 16, 707–716.

  • 27.

    Marvel, S.A.; Kleinberg, J.; Kleinberg, R.D.; Strogatz, S.H. Continuous-time model of structural balance. Proc. Natl. Acad. Sci. USA 2011, 108, 1771–1776.

  • 28.

    Goto, H.; Shiraishi, M.; Nishimori, H. Onset of Intragroup Conflict in a Generalized Model of Social Balance. Phys. Rev. Lett. 2024, 133, 127402.

  • 29.

    Belaza, A.M.; Ryckebusch, J.; Bramson, A.; et al. Social stability and extended social balance—Quantifying the role of inactive links in social networks. Phys. Stat. Mech. Its Appl. 2019, 518, 270–284.

  • 30.

    Dekker, D.; Krackhardt, D.; Doreian, P.; et al. Balance correlations, agentic zeros, and networks: The structure of 192 years of war and peace. PLoS ONE 2024, 19, e0315088.

  • 31.

    White, H.C.; Boorman, S.A.; Breiger, R.L. Social Structure from Multiple Networks. I. Blockmodels of Roles and Positions. Am. J. Sociol. 1976, 81, 730–780.

  • 32.

    Newman, M. Networks; Oxford University Press: Oxford, UK, 2018.

  • 33.

    Baumann, F.; Lorenz-Spreen, P.; Sokolov, I.M.; et al. Emergence of Polarized Ideological Opinions in Multidimensional Topic Spaces. Phys. Rev. 2021, 11, 11012.

  • 34.

    Waller, I.; Anderson, A. Quantifying social organization and political polarization in online platforms. Nature 2021, 600, 264–268.

  • 35.

    Santos, F.P.; Lelkes, Y.; Levin, S.A. Link recommendation algorithms and dynamics of polarization in online social networks. Proc. Natl. Acad. Sci. USA 2021, 118, e2102141118.

  • 36.

    Liu, J.; Huang, S.; Aden, N.M.; et al. Emergence of Polarization in Coevolving Networks. Phys. Rev. Lett. 2023, 130, 37401.

  • 37.

    Peralta, A.F.; Ramaciotti, P.; Kertesz, J.; et al. Multidimensional political polarization in online social networks. Phys. Rev. Res. 2024, 6, 13170.

  • 38.

    Levin, S.A.; Milner, H.V.; Perrings, C. The dynamics of political polarization. Proc. Natl. Acad. Sci. USA 2021, 118, e2116950118.

  • 39.

    Wang, S.S.H.; Cervas, J.; Grofman, B.; et al. A systems framework for remedying dysfunction in US democracy. Proc. Natl. Acad. Sci. USA 2021, 118, e2102154118.

  • 40.

    Bednar, J. Polarization, diversity, and democratic robustness. Proc. Natl. Acad. Sci. USA 2021, 118, e2113843118.

  • 41.

    Baldassarri, D.; Page, S.E. The emergence and perils of polarization. Proc. Natl. Acad. Sci. USA 2021, 118, e2116863118.

  • 42.

    Stewart, A.J.; Plotkin, J.B.; McCarty, N. Inequality, identity, and partisanship: How redistribution can stem the tide of mass polarization. Proc. Natl. Acad. Sci. USA 2021, 118, e2102140118.

  • 43.

    Axelrod, R.; Daymude, J.J.; Forrest, S. Preventing extreme polarization of political attitudes. Proc. Natl. Acad. Sci. USA 2021, 118, e2102139118.

  • 44.

    Lerner, J. Structural balance in signed networks: Separating the probability to interact from the tendency to fight. Soc. Netw. 2016, 45, 66–77.

  • 45.

    Tadic, B.; Dankulov, M.M.; Melnik, R. Mechanisms of self-organized criticality in social processes of knowledge creation. Phys. Rev. 2017, 96, 32307.

  • 46.

    Munoz, M.A. Colloquium: Criticality and dynamical scaling in living systems. Rev. Mod. Phys. 2018, 90, 31001.

  • 47.

    Nowak, M.A.; Sigmund, K. Evolution of indirect reciprocity. Nature 2005, 437, 1291–1298.

  • 48.

    Sigmund, K. Moral assessment in indirect reciprocity. J. Theor. Biol. 2012, 299, 25–30.

  • 49.

    Tanabe, S.; Suzuki, H.; Masuda, N. Indirect reciprocity with trinary reputations. J. Theor. Biol. 2013, 317, 338–347.

  • 50.

    Murase, Y.; Kim, M.; Baek, S.K. Social norms in indirect reciprocity with ternary reputations. Sci. Rep. 2022, 12, 455.

  • 51.

    Bae, M.; Shimada, T.; Baek, S.K. Indirect reciprocity as a dynamics for weak balance. Phys. Rev. 2025, 112, L032304.

  • 52.

    Traag, V.A.; Dooren, P.V.; Leenheer, P.D. Dynamical Models Explaining Social Balance and Evolution of Cooperation. PLoS ONE 2013, 8, e60063.

  • 53.

    Oishi, K.; Miyano, S.; Kaski, K.; Shimada, T. Balanced-imbalanced transitions in indirect reciprocity dynamics on networks. Phys. Rev. 2021, 104, 24310.

  • 54.

    Pham, T.M.; Kondor, I.; Hanel, R.; Thurner, S. The effect of social balance on social fragmentation. J. R. Soc. Interface 2020, 17, 20200752.

Share this article:
How to Cite
Goto, H.; Shiraishi, M.; Nishimori, H.; Plotkin, J. B. Dynamics of Social Balance with Ternary Interpersonal Relationships. Journal of Social Physics 2025, 1 (1), 1.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.