- 1.
Li, C.; He, J.; Xiao, Y.; et al. Earth-Abundant Cu-Based Metal Oxide Photocathodes for Photoelectrochemical Water Splitting. Energy Environ. Sci. 2020, 13, 3269–3306.
- 2.
Feng, C.; Faheem, M.B.; Fu, J.; et al. Fe-Based Electrocatalysts for Oxygen Evolution Reaction: Progress and Perspectives. ACS Catal. 2020, 10, 4019–4047.
- 3.
Huang, Q.; Ye, Z.; Xiao, X. Recent Progress in Photocathodes for Hydrogen Evolution. J. Mater. Chem. A 2015, 3, 15824–15837.
- 4.
Xiao, W.; Lin, H.; Lu, L.; et al. Elucidating the Origin of Positive Onset Potential and Low Photovoltage of CuBi2O4 Photocathode. J. Catal. 2025, 450, 116325.
- 5.
Cheng, C.; Zhang, W.; Chen, X.; et al. Strategies for improving photoelectrochemical water splitting performance of Si—based electrodes. Energy Sci. Eng. 2022, 10, 1526–1543.
- 6.
Li, Y.; Xiao, Y.; Wu, C.; et al. Strategies To Construct N-Type Si-Based Heterojunctions for Photoelectrochemical Water Oxidation. ACS Mater. Lett. 2022, 4, 779–804.
- 7.
Wang, H.-P.; Sun, K.; Noh, S.Y.; et al. High-Performance a-Si/c-Si Heterojunction Photoelectrodes for Photoelectrochemical Oxygen and Hydrogen Evolution. Nano Lett. 2015, 15, 2817–2824.
- 8.
Ji, L.; McDaniel, M.D.; Wang, S.; et al. A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst. Nat. Nanotechnol. 2014, 10, 84–90.
- 9.
Li, Y.; Ding, C.; Li, Y.; et al. Engineering the SiOX Interfacial Layer of Si-Based Metal-Insulator-Semiconductor Junction for Photoelectrochemical Hydrogen Production. J. Catal. 2024, 434, 115533.
- 10.
Li, Y.; Ding, C.; Li, Y.; et al. Engineering the Inhomogeneity of Metal–Insulator–Semiconductor Junctions for Photoelectrochemical Methanol Oxidation. ACS Appl. Mater. Interfaces 2023, 15, 59403–59412.
- 11.
Zhang, D.; Liang, W.; Sharma, A.; et al. Ultrathin HfO2 Passivated Silicon Photocathodes for Efficient Alkaline Water Splitting. Appl. Phys. Lett. 2021, 119, 193901.
- 12.
Sharma, A.; Duong, T.; Liu, P.; et al. Direct Solar to Hydrogen Conversion Enabled by Silicon Photocathodes with Carrier Selective Passivated Contacts. Sustain. Energy Fuels 2022, 6, 349–360.
- 13.
Pérez-del-Rey, D.; Boix, P.P.; Sessolo, M.; et al. Interfacial Modification for High-Efficiency Vapor-Phase-Deposited Perovskite Solar Cells Based on a Metal Oxide Buffer Layer. J. Phys. Chem. Lett. 2018, 9, 1041–1046.
- 14.
Moon, D.G.; Rehan, S.; Yeon, D.H.; et al. A Review on Binary Metal Sulfide Heterojunction Solar Cells. Sol. Energy Mater. Sol. Cells 2019, 200, 109963.
- 15.
Yi, G.; Wang, Q.; Arbiol, J.; et al. Emerging Metal Oxide/Nitride Protection Layers for Enhanced Stability of Silicon Photoelectrodes in Photoelectrochemical Catalysis: Recent Advancements and Challenges. Mater. Today Chem. 2023, 34, 101795.
- 16.
Wang, J.; Lin, S.; Tian, N.; et al. Nanostructured Metal Sulfides: Classification, Modification Strategy, and Solar—Driven CO2 Reduction Application. Adv. Funct. Mater. 2020, 31, 2008008.
- 17.
Chae, S.Y.; Park, S.J.; Han, S.G.; et al. Enhanced Photocurrents with ZnS Passivated Cu(In,Ga)(Se,S)2 Photocathodes Synthesized Using a Nonvacuum Process for Solar Water Splitting. J. Am. Chem. Soc. 2016, 138, 15673–15681.
- 18.
Wang, K.; Huang, D.; Yu, L.; et al. Environmentally Friendly Cu2ZnSnS4-Based Photocathode Modified with a ZnS Protection Layer for Efficient Solar Water Splitting. J. Colloid Interface Sci. 2019, 536, 9–16.
- 19.
Patel, S.L.; Purohit, A.; Chander, S.; et al. Thermal Annealing Evolution to Physical Properties of ZnS Thin Films as Buffer Layer for Solar Cell Applications. Phys. E Low Dimens. Syst. Nanostructures 2018, 101, 174–177.
- 20.
Chen, S.; Song, L.; Zhang, P.; et al. Influence of Low-Temperature Sulfidation on the Structure of ZnS Thin Films. Chin. Phys. B 2019, 28, 024214.
- 21.
Sharma, K.; Kumar, A.; Ahamad, T.; et al. Sulphur Vacancy Defects Engineered Metal Sulfides for Amended Photo (Electro) Catalytic Water Splitting: A Review. J. Mater. Sci. Technol. 2023, 152, 50–64.
- 22.
Dai, P.; Li, W.; Xie, J.; et al. Forming Buried Junctions to Enhance the Photovoltage Generated by Cuprous Oxide in Aqueous Solutions. Angew. Chem. 2014, 126, 13711–13715.
- 23.
Buckley, A.N.; Wouterlood, H.J.; Woods, R. The Surface Composition of Natural Sphalerites under Oxidative Leaching Conditions. Hydrometallurgy 1989, 22, 39–56.
- 24.
Agostinelli, E.; Battistoni, C.; Fiorani, D.; et al. An XPS Study of the Electronic Structure of the ZnXCd1−XCr2(X = S, Se) Spinel System. J. Phys. Chem. Solids 1989, 50, 269–272.
- 25.
Hu, S.; Jin, L.; Si, W.; et al. Sulfur Vacancies Enriched 2D ZnIn2S4 Nanosheets for Improving Photoelectrochemical Performance. Catalysts 2022, 12, 400.
- 26.
Loget, G.; Mériadec, C.; Dorcet, V.; et al. Tailoring the photoelectrochemistry of catalytic metal-insulator-semiconductor (MIS) photoanodes by a dissolution method. Nat. Commun. 2019, 10, 3522.
- 27.
Zhang, D.; Li, H.; Riaz, A.; et al. Unconventional Direct Synthesis of Ni3N/Ni with N-Vacancies for Efficient and Stable Hydrogen Evolution. Energy Environ. Sci. 2022, 15, 185–195.
- 28.
Zhang, D.; Pan, W.; Sharma, A.; et al. Over 14% Unassisted Water Splitting Driven by Immersed Perovskite/Si Tandem Photoanode with Ni-Based Catalysts. Mater. Today Energy 2025, 48, 101809.
- 29.
Streetman, B.G.; Banerjee, S. Solid State Electronic Devices New Jersey; Prentice Hall: Upper Saddle River, NJ, USA, 2000.
- 30.
Wang, L.; Xia, L.; Wu, Y.; et al. Zr-Doped β-In2S3 Ultrathin Nanoflakes as Photoanodes: Enhanced Visible-Light-Driven Photoelectrochemical Water Splitting. ACS Sustain. Chem. Eng. 2016, 4, 2606–2614.
- 31.
Cheiwchanchamnangij, T.; Lambrecht, W.R. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Phys. Rev. B Condens. Matter Mater. Phys. 2012, 85, 205302.
- 32.
Zhao, Z.; Cao, Y.; Yi, J.; et al. Band-Edge Electronic Structure of β-In2S3: The Role of s or p Orbitals of Atoms at Different Lattice Positions. ChemPhysChem 2012,13, 1551–1556.