2601002767
  • Open Access
  • Perspective

Spatio-Temporal Confinement in Two-Dimensional Channels for Neuromorphic Computing

  • Honglin Wang,   
  • Hongwei Zhu *

Received: 30 Oct 2025 | Revised: 05 Jan 2026 | Accepted: 06 Jan 2026 | Published: 13 Jan 2026

Abstract

Graphene oxide (GO), with its unique two-dimensional structure, adjustable functional groups, and tunable nanofluidic channels, has emerged as a promising platform for bio-inspired neuromorphic computing. This perspective explores the structural and functional analogies between GO membranes and biological ion channels, emphasizing GO’s ability to support selective ion transport, stimuli-responsive behavior, and synaptic plasticity. Recent advances in material engineering and device integration have enabled GO-based artificial synapses, including memristors and ion-gated transistors, to emulate key neuronal features such as excitatory postsynaptic currents, paired-pulse facilitation, and spike-timing-dependent plasticity with sub-millisecond response times and picojoule-level energy consumption. Moreover, the incorporation of GO with polymers, quantum dots, and semiconductors has facilitated multimodal control via electric, optical, and chemical inputs. Together, these developments position GO as a powerful material system for future neuromorphic devices that operate in aqueous and dynamic biological environments, paving the way toward brain-inspired hardware, neuroprosthetics, and intelligent biointerfaces.

Graphical Abstract

References 

  • 1.

    Shen, J.; Liu, G.P.; Han, Y.; et al. Artificial channels for confined mass transport at the sub-nanometre scale. Nat. Rev. Mater. 2021, 6, 294–312.

  • 2.

    Hou, Y.Q.; Hou, X. Bioinspired nanofluidic iontronics. Science 2021, 373, 628–629.

  • 3.

    Sun, P.Z.; Wang, K.L.; Zhu, H.W. Recent developments in graphene-based membranes: Structure, mass transport mechanism and potential applications. Adv. Mater. 2016, 28, 2287.

  • 4.

    He, Z.J.; Zhou, J.; Lu, X.H.; et al. Bioinspired graphene nanopores with voltage-tunable ion selectivity for Na+ and K+. ACS Nano 2013, 7, 10148–10157.

  • 5.

    Zhao, G.K.; Zhu, H.W. Cation-π interactions in graphene containing systems for water treatment and beyond. Adv. Mater. 2020, 32, 1905756.

  • 6.

    Kim, S.S.; Choi, S.J.; Lee, H.G.; et al. Neuromorphic van der Waals crystals for substantial energy generation. Nature Commun. 2021, 12, 47.

  • 7.

    Barua, M.; Sreedhara, M.B.; Pramoda, K.; et al. Quantification of surface functionalities on graphene, boron nitride and borocarbonitrides by fluorescence labeling. Chem. Phys. Lett. 2017, 683, 459.

  • 8.

    Costinas, C.; Salagean, C.A.; Cotet, L.C.; et al. Insights into the stability of graphene oxide aqueous dispersions. Nanomaterials 2022, 12, 4489.

  • 9.

    Wang, X.W.; Sun, Y.H.; Liu, K. Chemical and structural stability of 2D layered materials. 2D Mater. 2019, 6, 042001.

  • 10.

    Chen, S.Y.; Tan, G.S.X.; Ivanov, A.; et al. Tunable anion transport and the chemical transistor effect in functionalized graphene oxide membranes. NPJ 2D Mater. Appl. 2025, 9, 62.

  • 11.

    Huang, Q.B.; Liu, S.; Guo, Y.A.; et al. Separation of mono-/di-valent ions charged interlayer channels of graphene oxide membranes. J. Membrane Sci. 2022, 645, 120212.

  • 12.

    Wang, K.; Ruan, J.; Song, H.; et al. Biocompatibility of graphene oxide. Nanoscale Res. Lett. 2010, 6, 8.

  • 13.

    Ryoo, S.R.; Kim, Y.K.; Kin, M.H.; et al. Behaviors of NIH-3T3 fibroblasts on graphene/carbon nanotubes: Proliferation, focal adhesion, and gene transfection studies. ACS. Nano 2010, 4, 6587–6598.

  • 14.

    Xue, Y.H.; Xia, Y.; Yang, S.; et al. Atomic-scale ion transistor with ultrahigh diffusivity. Science 2021, 372, 501–503.

  • 15.

    Huang, M.R.; Li, Z.C.; Zhu, H.W. Recent advances of graphene and related materials in artificial intelligence. Adv. Intell. Syst. 2022, 4, 2200077.

  • 16.

    Teng, Y.F.; Liu, P.L.; Fu, L.; et al. Bioinspired nervous signal transmission system based on two-dimensional laminar nanofluidics: From electronics to ionics. Proc. Natl. Acad. Sci. USA 2020, 117, 16743–16748.

  • 17.

    Gradov, O.V. Can graphene bilayers be the membrane mimetic materials? arXiv 2018, arXiv:1808.00109.

  • 18.

    Gradov, O.V.; Gradova, M.A. Can graphene bilayers be the membrane mimetic materials? Ion channels in graphene-based nanostructures. arXiv 2018, arXiv:1807.10139.

  • 19.

    Zhang, Y.C.; Liu, L.; Qiao, Y.; et al. Confinement of ions within graphene oxide membranes enables neuromorphic artificial gustation. Proc. Natl. Acad. Sci. USA 2025, 122, e2413060122.

  • 20.

    Sahu, D.P.; Jetty, P.; Jammalamadaka, S.N. Graphene oxide based synaptic memristor device for neuromorphic computing. Nanotechnology 2021, 32, 155701.

  • 21.

    Rauti, R.; Lozano, N.; Leon, V.; et al. Graphene oxide nanosheets reshape synaptic function in cultured brain networks. ACS Nano 2016, 10, 4459–4471.

  • 22.

    Biagioni, A.F.; Cellot, G.; Pati, E.; et al. Graphene oxide prevents lateral amygdala dysfunctional synaptic plasticity and reverts long lasting anxiety behavior in rats. Biomaterials 2021, 271, 120749.

  • 23.

    Li, Y.T.; Jin, X.; Tang, L.N.; et al. Receptor-mediated field effect transistor biosensor for real-time monitoring of glutamate release from primary hippocampal neurons. Anal. Chem. 2019, 91, 8229–8236.

  • 24.

    Robin, P.; Kavokine, N.; Bocquet, L. Modeling of emergent memory and voltage spiking in ionic transport through angstrom-scale slits. Science 2021, 373, 687–691.

  • 25.

    Hui, F.; Zhang, C.; Yu, H.; et al. Self-assembly of Janus graphene oxide via chemical breakdown for scalable high-performance memristors. Adv. Funct. Mater. 2024, 34, 2302073.

  • 26.

    Mei, T.T.; Zhang, H.J.; Xiao, K. Bioinspired artificial ion pumps. ACS Nano 2022, 16, 13323–13338.

  • 27.

    Noy, A.; Darling, S.B. Nanofluidic computing makes a splash. Science 2023, 379, 143–144.

  • 28.

    Xiong, T.Y.; Li, C.W.; He, X.L.; et al. Neuromorphic functions with a polyelectrolyte-confined fluidic memristor. Science 2023, 379, 156–161.

  • 29.

    Robin, P.; Emmerich, T.; Ismail, A.; et al. Long-term memory and synapse-like dynamics in two-dimensional nanofluidic channels. Science 2023, 379, 161–167.

  • 30.

    Chen, M.; Wan, Z.F.; Dong, H.; et al. Direct laser writing of graphene oxide for ultra-low power consumption memristors in reservoir computing for digital recognition. Natl. Sci. Open 2022, 1, 20220020.

  • 31.

    Li, Y.; Ling, S.T.; He, R.Y.; et al. A robust graphene oxide memristor enabled by organic pyridinium intercalation for artificial biosynapse application. Nano Res. 2023, 16, 11278–11287.

  • 32.

    Moazzeni, A.; Madvar, H.R.; Hamedi, S.; et al. Fabrication of graphene oxide-based resistive switching memory by the spray pyrolysis technique for neuromorphic computing. ACS Appl. Nano Mater. 2023, 6, 2236.

  • 33.

    Meng, X.R.; Qin, G.X.; Sun, Y.M. Graphene oxide-based bioinspired neuromorphic transistors with artificial synaptic plasticity. Mater. Sci. Semicond. Process. 2025, 186, 109053.

  • 34.

    Yu, X.W.; Cheng, H.H.; Zhang, M.; et al. Graphene-based smart materials. Nat. Rev. Mater. 2017, 2, 17046.

Share this article:
How to Cite
Wang, H.; Zhu, H. Spatio-Temporal Confinement in Two-Dimensional Channels for Neuromorphic Computing. Low-Dimensional Materials 2026, 2 (1), 2. https://doi.org/10.53941/ldm.2026.100002.
RIS
BibTex
Copyright & License
Copyright (c) 2026 by the authors.