Downloads
Download
Additional Files
Download - Supplementary Materials


This work is licensed under a Creative Commons Attribution 4.0 International License.
Article
Constructing Co Cluster Sites for Selective CO2 Hydrogenation via Phase Segregation from Co-Doped TiO2 Nanocrystals
Xiangru Wei 1, Yizhen Chen 1, Yulu Zhang 1, Liyue Zhang 1, Lu Ma 2, Matthew M. Yung 3 and Sen Zhang 1,*
1 Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
2 National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
3 Bioenergy Science and Technology Directorate, National Renewable Energy Laboratory, Denver West Parkway,
Golden, CO 80401, USA
* Correspondence: sz3t@virginia.edu
Received: 7 November 2024; Revised: 2 January 2025; Accepted: 3 January 2025; Published: 23 January 2025
Abstract: This article presents a Co phase segregation strategy for creating stable Co cluster catalytic sites on TiO2, enabling selective CO2 hydrogenation to CO. Through oxidative calcination, pre-synthesized Co-doped brookite TiO2 nanorods transform into a mixed TiO2 phase, leading to the phase segregation of Co species. The resulting Co clusters, stabilized by strong Co-TiO2 interactions during reductive CO2 hydrogenation, effectively suppress the formation of larger nanoparticles. The undercoordinated sites of these clusters promote a high CO production rate with near-unit selectivity, contrasting with Co nanoparticles, which favor CH4 formation under identical conditions. In-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis indicates that the weakened CO adsorption on Co clusters is key to their enhanced CO selectivity, highlighting this method as a promising approach for efficient CO2 utilization.
Keywords:
CO2 hydrogenation heterogeneous catalysis cluster sites selectivity phase segregationReferences
- Ra, E.C.; Kim, K.Y.; Kim, E.H.; Lee, H.; An, K.; Lee, J.S. Recycling carbon dioxide through catalytic hydrogenation: recent key developments and perspectives. ACS Catal. 2020, 10, 11318–11345. https://doi.org/10.1021/acscatal.0c02930.
- Tackett, B.M.; Gomez, E.; Chen, J.G., Net reduction of CO2 via its thermocatalytic and electrocatalytic transformation reactions in standard and hybrid processes. Nature Catal. 2019, 2, 381–386. https://doi.org/10.1038/s41929-019-0266-y.
- Roy, S.; Cherevotan, A.; Peter, S.C. Thermochemical CO2 hydrogenation to single carbon products: scientific and technological challenges. ACS Energy Lett. 2018, 3, 1938–1966. https://doi.org/10.1021/acsenergylett.8b00740.
- Ye, R.P.; Ding, J.; Gong, W.; Argyle, M.D.; Zhong, Q.; Wang, Y.; Russell, C.K.; Xu, Z.; Russell, A.G.; Li, Q.; et al. CO2 hydrogenation to high-value products via heterogeneous catalysis. Nat. Commun. 2019, 10, 5698. https://doi.org/10.1038/s41467-019-13638-9.
- Orege, J.I.; Wei, J.; Ge, Q.; Sun, J. Spinel-structured nanocatalysts: New opportunities for CO2 hydrogenation to value-added chemicals. Nano Today 2023, 51, 101914. https://doi.org/10.1016/j.nantod.2023.101914.
- Len, T.; Luque, R. Addressing the CO2 challenge through thermocatalytic hydrogenation to carbon monoxide, methanol and methane. Green Chem. 2023, 25, 490–521. https://doi.org/10.1039/d2gc02900f.
- Cheng, K.; Li, Y.; Kang, J.; Zhang, Q.; Wang, Y. Selectivity control by relay catalysis in CO and co2 hydrogenation to multicarbon compounds. Acc. Chem. Res. 2024, 57, 714–725. https://doi.org/10.1021/acs.accounts.3c00734.
- Yang, H.; Zhang, C.; Gao, P.; Wang, H.; Li, X.; Zhong, L.; Wei, W.; Sun, Y. A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons. Catal. Sci. Technol. 2017, 7, 4580–4598. https://doi.org/10.1039/C7CY01403A.
- Liao, W.; Yue, M.; Chen, J.; Wang, Z.; Ding, J.; Xu, Y.; Bai, Y.; Liu, X.; Jia, A.; Huang, W.; et al. Decoupling the interfacial catalysis of CeO2-supported rh catalysts tuned by CeO2 morphology and Rh particle size in CO2 hydrogenation. ACS Catal. 2023, 13, 5767–5779. https://doi.org/10.1021/acscatal.3c00512.
- Karelovic, A.; Ruiz, P. CO2 hydrogenation at low temperature over Rh/γ-Al2O3 catalysts: Effect of the metal particle size on catalytic performances and reaction mechanism. Appl. Catal. B Environ. 2012, 113–114, 237–249. https://doi.org/10.1016/j.apcatb.2011.11.043.
- An, Z.; Ma, N.; Xu, Y.; Yang, H.; Zhao, H.; Wu, L.; Tan, L.; Zou, C.; Meng, F.; Zhang, B.; et al. Shape dependency of CO2 hydrogenation on ceria supported singly dispersed Ru catalysts. J. Catal. 2024, 429, 115245. https://doi.org/10.1016/j.jcat.2023.115245.
- Chen, M.; Liu, L.; Chen, X.; Qin, X.; Li, K.; Zhang, J.; Bao, X.; Ma, L.; Zhang, C. Effects of Ru particle size over TiO2 on the catalytic performance of CO2 hydrogenation. Appl. Surf. Sci. 2024, 654, 159460. https://doi.org/10.1016/j.apsusc.2024.159460.
- Li, S.; Xu, Y.; Wang, H.; Teng, B.; Liu, Q.; Li, Q.; Xu, L.; Liu, X.; Lu, J. Tuning the CO2 hydrogenation selectivity of rhodium single-atom catalysts on zirconium dioxide with alkali ions. Angew. Chem. Int. Ed. 2023, 62, e202218167. https://doi.org/10.1002/anie.202218167.
- Galhardo, T.S.; Braga, A.H.; Arpini, B.H.; Szanyi, J.; Goncalves, R.V.; Zornio, B.F.; Miranda, C.R.; Rossi, L.M. Optimizing active sites for high CO selectivity during CO2 hydrogenation over supported nickel catalysts. J. Am. Chem. Soc. 2021, 143, 4268–4280. https://doi.org/10.1021/jacs.0c12689.
- Vogt, C.; Groeneveld, E.; Kamsma, G.; Nachtegaal, M.; Lu, L.; Kiely, C.J.; Berben, P.H.; Meirer, F.; Weckhuysen, B.M. Unravelling structure sensitivity in CO2 hydrogenation over nickel. Nat. Catal. 2018, 1, 127–134. https://doi.org/10.1038/s41929-017-0016-y.
- Cao, F.; Song, Z.; Zhang, Z.; Xiao, Y.S.; Zhang, M.; Hu, X.; Liu, Z.W.; Qu, Y. Size-controlled synthesis of Pd nanocatalysts on defect-engineered CeO2 for CO2 hydrogenation. ACS Appl. Mater. Interfaces 2021, 13, 24957–24965. https://doi.org/10.1021/acsami.1c05722.
- Simons, J.F.M.; de Heer, T.J.; van de Poll, R.C.J.; Muravev, V.; Kosinov, N.; Hensen, E.J.M. Structure sensitivity of CO2 hydrogenation on Ni revisited. J. Am. Chem. Soc. 2023, 145, 20289–20301. https://doi.org/10.1021/jacs.3c04284.
- Zhang, R.; Wang, X.; Wang, K.; Wang, H.; Song, S.; Zhang, H. Effects of metal size on supported catalysts for CO2 hydrogenation. Mater. Chem. Front. 2023, 7, 6411–6426. https://doi.org/10.1039/d3qm00384a.
- Adhikari, D.; Whitcomb, C.A.; Zhang, W.; Zhang, S.; Davis, R.J. Revisiting the influence of Ni particle size on the hydrogenation of CO2 to CH4 over Ni/CeO2. J. Catal. 2024, 438, 115708. https://doi.org/10.1016/j.jcat.2024.115708.
- Niu, K.; Chen, L.; Rosen, J.; Björk, J. CO2 hydrogenation with high selectivity by single Bi atoms on MXenes enabled by a concerted mechanism. ACS Catal. 2024, 14, 1824–1833. https://doi.org/10.1021/acscatal.3c04480.
- Swallow, J.E.N.; Jones, E.S.; Head, A.R.; Gibson, J.S.; David, R.B.; Fraser, M.W.; van Spronsen, M.A.; Xu, S.; Held, G.; Eren, B.; et al. Revealing the role of CO during CO2 hydrogenation on Cu surfaces with In Situ soft X-Ray spectroscopy. J. Am. Chem. Soc. 2023, 145, 6730–6740. https://doi.org/10.1021/jacs.2c12728.
- Kattel, S.; Liu, P.; Chen, J.G. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. J. Am. Chem. Soc. 2017, 139, 9739–9754. https://doi.org/10.1021/jacs.7b05362.
- Zhang, J.; Yang, Y.; Liu, J.; Xiong, B. Mechanistic understanding of CO2 hydrogenation to methane over Ni/CeO2 catalyst. Appl. Surf. Sci. 2021, 558, 149866. https://doi.org/10.1016/j.apsusc.2021.149866.
- Yang Lim, J.; McGregor, J.; Sederman, A.J.; Dennis, J.S. Kinetic studies of CO2 methanation over a Ni/γ-Al2O3 catalyst using a batch reactor. Chem. Eng. Sci. 2016, 141, 28–45. https://doi.org/10.1016/j.ces.2015.10.026.
- Song, J.; Chen, B.; Bian, J.; Cai, Y.; Ali, S.; Cai, D.; Zheng, B.; Huang, J.; Zhan, G. ZnZrOx nanoparticles derived from metal–organic frameworks as superior catalysts to boost CO2 hydrogenation to methanol. ACS Appl. Nano Mater. 2024, 7, 19677–19687. https://doi.org/10.1021/acsanm.4c03801.
- Li, K.; Li, X.; Li, L.; Chang, X.; Wu, S.; Yang, C.; Song, X.; Zhao, Z.-J.; Gong, J. Nature of catalytic behavior of cobalt oxides for CO2 hydrogenation. JACS Au 2023, 3, 508–515. https://doi.org/10.1021/jacsau.2c00632.
- Struijs, J.J.C.; Muravev, V.; Verheijen, M.A.; Hensen, E.J.M.; Kosinov, N. Ceria-supported cobalt catalyst for low-temperature methanation at low partial pressures of CO2. Angew. Chem. Int. Ed. Engl. 2023, 62, e202214864. https://doi.org/10.1002/anie.202214864.
- Wang, L.; Guan, E.; Wang, Y.; Wang, L.; Gong, Z.; Cui, Y.; Meng, X.; Gates, B.C.; Xiao, F.-S. Silica accelerates the selective hydrogenation of CO2 to methanol on cobalt catalysts. Nat. Commun. 2020, 11, 1033. https://doi.org/10.1038/s41467-020-14817-9.
- Rahmati, M.; Safdari, M.S.; Fletcher, T.H.; Argyle, M.D.; Bartholomew, C.H. Chemical and thermal sintering of supported metals with emphasis on cobalt catalysts during Fischer-Tropsch synthesis. Chem. Rev. 2020, 120, 4455–4533. https://doi.org/10.1021/acs.chemrev.9b00417.
- Liu, S.; He, Y.; Fu, W.; Chen, J.; Ren, J.; Liao, L.; Sun, R.; Tang, Z.; Mebrahtu, C.; Zeng, F. Hetero-site cobalt catalysts for higher alcohols synthesis by CO2 hydrogenation: A review. J. CO2 Util. 2023, 67, 102322. https://doi.org/10.1016/j.jcou.2022.102322.
- Miyazaki, R.; Belthle, K.S.; Tüysüz, H.; Foppa, L.; Scheffler, M. Materials genes of CO2 hydrogenation on supported cobalt catalysts: An artificial intelligence approach integrating theoretical and experimental data. J. Am. Chem. Soc. 2024, 146, 5433–5444. https://doi.org/10.1021/jacs.3c12984.
- Zhang, Z.; Wu, Q.; Johnson, G.; Ye, Y.; Li, X.; Li, N.; Cui, M.; Lee, J.D.; Liu, C.; Zhao, S.; et al. Generalized synthetic strategy for transition-metal-doped brookite-phase TiO2 nanorods. J. Am. Chem. Soc. 2019, 141, 16548–16552. https://doi.org/10.1021/jacs.9b06389.
- Liu, C.; Qian, J.; Ye, Y.; Zhou, H.; Sun, C.-J.; Sheehan, C.; Zhang, Z.; Wan, G.; Liu, Y.-S.; Guo, J.; et al. Oxygen evolution reaction over catalytic single-site Co in a well-defined brookite TiO2 nanorod surface. Nat. Catal. 2021, 4, 36–45. https://doi.org/10.1038/s41929-020-00550-5.
- Wu, L.; Li, Q.; Wu, C.H.; Zhu, H.; Mendoza-Garcia, A.; Shen, B.; Guo, J.; Sun, S. Stable Cobalt nanoparticles and their monolayer array as an efficient electrocatalyst for oxygen evolution reaction. J. Am. Chem. Soc. 2015, 137, 7071–7074. https://doi.org/10.1021/jacs.5b04142.
- Liu, Q.; Jiang, Y.; Yan, W.; Sun, Z.; Pan, Z.; Yao, T.; Wu, Z.; Wei, S. Co-doped rutile TiO2-δthin films studied by XANES and first principles calculations. J. Phys. Conf. Ser. 2009, 190, 012107. https://doi.org/10.1088/1742-6596/190/1/012107.
- Bao, S.; Yang, L.; Fu, H.; Qu, X.; Zheng, S. Fine Ru-Ru2P heterostructure enables highly active and selective CO2 hydrogenation to CO. ACS Catal. 2024, 14, 18134–18144. https://pubs.acs.org/doi/full/10.1021/acscatal.4c05369.
- Zhou, X.; Price, G.A.; Sunley, G.J.; Copéret, C. Small cobalt nanoparticles favor reverse water-gas shift reaction over methanation under CO2 hydrogenation conditions. Angew. Chem. Int. Ed. Engl. 2023, 62, e202314274. https://doi.org/10.1002/ange.202314274.
- Yan, Y.; Liu, C.; Jian, H.; Cheng, X.; Hu, T.; Wang, D.; Shang, L.; Chen, G.; Schaaf, P.; Wang, X.; et al. Substitutionally dispersed high-oxidation CoOx clusters in the lattice of rutile TiO2 triggering efficient Co-Ti cooperative catalytic centers for oxygen evolution reactions. Adv. Funct. Mater. 2020, 31, 2009610. https://doi.org/10.1002/adfm.202009610.
- Zhou, T.; Xu, W.; Zhang, N.; Du, Z.; Zhong, C.; Yan, W.; Ju, H.; Chu, W.; Jiang, H.; Wu, C.; et al. Ultrathin cobalt oxide layers as electrocatalysts for high-performance flexible Zn-Air batteries. Adv. Mater. 2019, 31, e1807468. https://doi.org/10.1002/adma.201807468.
- Mori, K.; Jida, H.; Kuwahara, Y.; Yamashita, H. CoOx-decorated CeO2 heterostructures: Effects of morphology on their catalytic properties in diesel soot combustion. Nanoscale 2020, 12, 1779–1789. https://doi.org/10.1039/c9nr08899g.
- Wang, X.; Du, L.Y.; Du, M.; Ma, C.; Zeng, J.; Jia, C.J.; Si, R. Catalytically active ceria-supported cobalt-manganese oxide nanocatalysts for oxidation of carbon monoxide. Phys. Chem. Chem. Phys. 2017, 19, 14533–14542. https://doi.org/10.1039/c7cp02004j.
- Savereide, L.; Gosavi, A.; Hicks, K.E.; Notestein, J.M. Identifying properties of low-loaded CoOx/CeO2 via X-ray absorption spectroscopy for NO reduction by CO. J. Catal. 2020, 381, 355–362. https://doi.org/10.1016/j.jcat.2019.11.016.
- Li, J.; Lu, G.; Wu, G.; Mao, D.; Guo, Y.; Wang, Y.; Guo, Y. Effect of TiO2 crystal structure on the catalytic performance of Co3O4/TiO2 catalyst for low-temperature CO oxidation. Catal. Sci. Technol. 2014, 4, 1268–1275. https://doi.org/10.1039/c3cy01004j.
- Platero, F.; Todorova, S.; Aoudjera, L.; Michelin, L.; Lebeau, B.; Blin, J.L.; Holgado, J.P.; Caballero, A.; Colon, G. Cobalt stabilization through mesopore confinement on TiO2 support for Fischer-Tropsch reaction. ACS Appl. Energy Mater. 2023, 6, 9475–9486. https://doi.org/10.1021/acsaem.3c01432.
- Lima, T.M.; Castelblanco, W.N.; Rodrigues, A.D.; Roncolatto, R.E.; Martins, L.; Urquieta-González, E.A. CO oxidation over Co-catalysts supported on silica-titania—The effects of the catalyst preparation method and the amount of incorporated Ti on the formation of more active Co3+ species. Appl. Catal. A Gen. 2018, 565, 152–162. https://doi.org/10.1016/j.apcata.2018.08.006.
- Li, W.H.; Zhang, G.H.; Jiang, X.; Liu, Y.; Zhu, J.; Ding, F.S.; Liu, Z.M.; Guo, X.W.; Song, C.S. CO2 hydrogenation on unpromoted and M-promoted Co/TiO2 catalysts (M = Zr, K, Cs): Effects of crystal phase of supports and metal-support interaction on tuning product distribution. ACS Catal. 2019, 9, 2739–2751. https://doi.org/10.1021/acscatal.8b04720.
- Deng, K.X.; Lin, L.L.; Rui, N.; Vovchok, D.; Zhang, F.; Zhang, S.H.; Senanayake, S.D.; Kim, T.; Rodriguez, J.A. Studies of CO2 hydrogenation over cobalt/ceria catalysts with in situ characterization: The effect of cobalt loading and metal-support interactions on the catalytic activity. Catal. Sci. Technol. 2020, 10, 6468–6482. https://doi.org/10.1039/d0cy00962h.
- Wei, X.; Johnson, G.; Ye, Y.; Cui, M.; Yu, S.-W.; Ran, Y.; Cai, J.; Liu, Z.; Chen, X.; Gao, W.; et al. Surfactants used in colloidal synthesis modulate Ni nanoparticle surface evolution for selective CO2 hydrogenation. J. Am. Chem. Soc. 2023, 145, 14298–14306. https://doi.org/10.1021/jacs.3c02739.
- Li, X.Y.; Lin, J.; Li, L.; Huang, Y.K.; Pan, X.L.; Collins, S.E.; Ren, Y.J.; Su, Y.; Kang, L.L.; Liu, X.Y.; et al. Controlling CO2 hydrogenation selectivity by metal-supported electron transfer. Angew. Chem.-Int. Ed. 2020, 8, 19983–19989. https://doi.org/10.1002/anie.202003847.
- Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537–541