- 1.
Zhang, Q.; Lima, D.Q.; Lee, I.; Zaera, F.; Chi, M.; Yin, Y. A highly active titanium dioxide based visible-light photocatalyst with nonmetal doping and plasmonic metal decoration. Angew. Chem. Int. Ed. Engl. 2011, 50, 7088–7092.
- 2.
Joo, J.B.; Zhang, Q.; Dahl, M.; Lee, I.; Goebl, J.; Zaera, F.; Yin, Y. Control of the nanoscale crystallinity in mesoporous TiO2shells for enhanced photocatalytic activity. Energy Environ. Sci. 2012, 5, 6321–6327.
- 3.
Liu, H.; Joo, J.B.; Dahl, M.; Fu, L.; Zeng, Z.; Yin, Y. Crystallinity control of TiO2 hollow shells through resin-protected calcination for enhanced photocatalytic activity. Energy Environ. Sci. 2015, 8, 286–296.
- 4.
Berenguer, R.; Sieben, J.M.; Quijada, C.; Morallón, E. Electrocatalytic degradation of phenol on Pt- and Ru-doped Ti/SnO2-Sb anodes in an alkaline medium. Appl. Catal. B Environ. 2016, 199, 394–404.
- 5.
Du, X.; Oturan, M.A.; Zhou, M.; Belkessa, N.; Su, P.; Cai, J.; Trellu, C.; Mousset, E. Nanostructured electrodes for electrocatalytic advanced oxidation processes: From materials preparation to mechanisms understanding and wastewater treatment applications. Appl. Catal. B Environ. 2021, 296, 120332.
- 6.
Yan, Q.; Zhang, J.; Xing, M. Cocatalytic Fenton Reaction for Pollutant Control. Cell Rep. Phys. Sci. 2020, 1, 100149.
- 7.
Wang, Z.; Yin, Y. Upcycling sludge into high-performance catalysts. Nat. Water 2024, 2, 620–621.
- 8.
Yan, Q.; Lian, C.; Huang, K.; Liang, L.; Yu, H.; Yin, P.; Zhang, J.; Xing, M. Constructing an Acidic Microenvironment by MoS(2) in Heterogeneous Fenton Reaction for Pollutant Control. Angew. Chem. Int. Ed. Engl. 2021, 60, 17155–17163.
- 9.
Wu, J.M.; Chang, W.E.; Chang, Y.T.; Chang, C.K. Piezo-Catalytic Effect on the Enhancement of the Ultra-High Degradation Activity in the Dark by Single- and Few-Layers MoS2 Nanoflowers. Adv. Mater. 2016, 28, 3718–3725.
- 10.
Wu, J.; Xu, Q.; Lin, E.; Yuan, B.; Qin, N.; Thatikonda, S.K.; Bao, D. Insights into the Role of Ferroelectric Polarization in Piezocatalysis of Nanocrystalline BaTiO(3). ACS Appl. Mater. Interfaces 2018, 10, 17842–17849.
- 11.
Tu, S.; Guo, Y.; Zhang, Y.; Hu, C.; Zhang, T.; Ma, T.; Huang, H. Piezocatalysis and Piezo-Photocatalysis: Catalysts Classification and Modification Strategy, Reaction Mechanism, and Practical Application. Adv. Funct. Mater. 2020, 30, 2005158.
- 12.
Meng, N.; Liu, W.; Jiang, R.; Zhang, Y.; Dunn, S.; Wu, J.; Yan, H. Fundamentals, advances and perspectives of piezocatalysis: A marriage of solid-state physics and catalytic chemistry. Progress. Mater. Sci. 2023, 138, 101161.
- 13.
Shi, H.; Liu, Y.; Bai, Y.; Lv, H.; Zhou, W.; Liu, Y.; Yu, D.-G. Progress in defect engineering strategies to enhance piezoelectric catalysis for efficient water treatment and energy regeneration. Sep. Purif. Technol. 2024, 330, 125247.
- 14.
Tian, W.; Han, J.; Wan, L.; Li, N.; Chen, D.; Xu, Q.; Li, H.; Lu, J. Enhanced piezocatalytic activity in ion-doped SnS2 via lattice distortion engineering for BPA degradation and hydrogen production. Nano Energy 2023, 107, 108165.
- 15.
Yuan, B.; Wu, J.; Qin, N.; Lin, E.; Bao, D. Enhanced Piezocatalytic Performance of (Ba,Sr)TiO3 Nanowires to Degrade Organic Pollutants. ACS Appl. Nano Mater. 2018, 1, 5119–5127.
- 16.
Chen, L.; Jia, Y.; Zhao, J.; Ma, J.; Wu, Z.; Yuan, G.; Cui, X. Strong piezocatalysis in barium titanate/carbon hybrid nanocomposites for dye wastewater decomposition. J. Colloid. Interface Sci. 2021, 586, 758–765.
- 17.
Kalhori, H.; Amaechi, I.C.; Youssef, A.H.; Ruediger, A.; Pignolet, A. Catalytic Activity of BaTiO3 Nanoparticles for Wastewater Treatment: Piezo- or Sono-Driven? ACS Appl. Nano Mater. 2023, 6, 1686–1695.
- 18.
Feng, W.; Yuan, J.; Zhang, L.; Hu, W.; Wu, Z.; Wang, X.; Huang, X.; Liu, P.; Zhang, S. Atomically thin ZnS nanosheets: Facile synthesis and superior piezocatalytic H2 production from pure H2O. Appl. Catal. B: Environ. 2020, 277, 119250.
- 19.
Liu, W.; Fu, P.; Zhang, Y.; Xu, H.; Wang, H.; Xing, M. Efficient hydrogen production from wastewater remediation by piezoelectricity coupling advanced oxidation processes. Proc. Natl. Acad. Sci. USA 2023, 120, e2218813120.
- 20.
Zhang, M.; Zhao, S.; Zhao, Z.; Li, S.; Wang, F. Piezocatalytic Effect Induced Hydrogen Production from Water over Non-noble Metal Ni Deposited Ultralong GaN Nanowires. ACS Appl. Mater. Interfaces 2021, 13, 10916–10924.
- 21.
Chen, S.; Zhu, P.; Mao, L.; Wu, W.; Lin, H.; Xu, D.; Lu, X.; Shi, J. Piezocatalytic Medicine: An Emerging Frontier using Piezoelectric Materials for Biomedical Applications. Adv. Mater. 2023, 35, e2208256.
- 22.
Wang, Y.; Wen, X.; Jia, Y.; Huang, M.; Wang, F.; Zhang, X.; Bai, Y.; Yuan, G.; Wang, Y. Piezo-catalysis for nondestructive tooth whitening. Nat. Commun. 2020, 11, 1328.
- 23.
Wang, Y.; Zang, P.; Yang, D.; Zhang, R.; Gai, S.; Yang, P. The fundamentals and applications of piezoelectric materials for tumor therapy: Recent advances and outlook. Mater. Horiz. 2023, 10, 1140–1184.
- 24.
Cafarelli, A.; Marino, A.; Vannozzi, L.; Puigmarti-Luis, J.; Pane, S.; Ciofani, G.; Ricotti, L. Piezoelectric Nanomaterials Activated by Ultrasound: The Pathway from Discovery to Future Clinical Adoption. ACS Nano 2021, 15, 11066–11086.
- 25.
Polonini, H.C.; Brandao, H.M.; Raposo, N.R.; Mouton, L.; Yepremian, C.; Coute, A.; Brayner, R. Ecotoxicological studies of micro- and nanosized barium titanate on aquatic photosynthetic microorganisms. Aquat. Toxicol. 2014, 154, 58–70.
- 26.
Ahamed, M.; Akhtar, M.J.; Khan, M.A.M.; Alhadlaq, H.A.; Alshamsan, A. Barium Titanate (BaTiO(3)) Nanoparticles Exert Cytotoxicity through Oxidative Stress in Human Lung Carcinoma (A549) Cells. Nanomater. 2020, 10, 2309.
- 27.
Wang, Z.; Tai, Y.; Nam, J.; Yin, Y. Calcination-Induced Transformation of ZnS:Mn2+ Nanorods to Microparticles for Enhanced Mechanoluminescence. Chem. Mater. 2023, 35, 6845–6852.
- 28.
Wang, Z.; Tai, Y.; Ye, Z.; Nam, J.; Yin, Y. Integration of ZnS:Mn²⁺ Microparticles into Electrospun PVDF-Based Nanofibers for Enhanced Mechanoluminescence. Adv. Funct. Mater. 2024, 2410358.
https://doi.org/10.1002/adfm.202410358.
- 29.
Kumara, C.; Armstrong, B.; Lyo, I.; Lee, H.W.; Qu, J. Organic-modified ZnS nanoparticles as a high-performance lubricant additive. RSC Adv. 2023, 13, 7009–7019.
- 30.
Joo, J.; Na, H.B.; Yu, T.; Yu, J.H.; Kim, Y.W.; Wu, F.; Zhang, J.Z.; Hyeon, T. Generalized and Facile Synthesis of Semiconducting Metal Sulfide Nanocrystals. J. Am. Chem. Soc. 2003, 125, 11100–11105.
- 31.
Bai, F.; Wang, D.; Huo, Z.; Chen, W.; Liu, L.; Liang, X.; Chen, C.; Wang, X.; Peng, Q.; Li, Y. A Versatile Bottom-up Assembly Approach to Colloidal Spheres from Nanocrystals. Angew. Chem. Int. Ed. 2007, 119, 6770–6773.
- 32.
Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid. Interface Sci. 1968, 26, 62–69.
- 33.
Ma, L.; Amador, E.; Belev, G.S.; Gautam, C.; Zhou, W.; Liu, J.P.; Sammynaiken, R.; Chen, W. Tuning Ag+ and Mn2+ doping in ZnS:Ag,Mn embedded polymers for flexible white light emitting films. Soft Sci. 2024, 4, 10.
- 34.
Mukhina, M.V.; Tresback, J.; Ondry, J.C.; Akey, A.; Alivisatos, A.P.; Kleckner, N. Single-Particle Studies Reveal a Nanoscale Mechanism for Elastic, Bright, and Repeatable ZnS:Mn Mechanoluminescence in a Low-Pressure Regime. ACS Nano 2021, 15, 4115–4133.
- 35.
Wu, X.; Zhu, X.; Chong, P.; Liu, J.; Andre, L.N.; Ong, K.S.; Brinson, K. Jr.; Mahdi, A.I.; Li, J.; Fenno, L.E.; et al. Sono-optogenetics facilitated by a circulation-delivered rechargeable light source for minimally invasive optogenetics. Proc. Natl. Acad. Sci. USA 2019, 116, 26332–26342.
- 36.
Zhang, Y.; Zhang, N.; Tang, Z.-R.; Xu, Y.-J. Transforming CdS into an efficient visible light photocatalyst for selective oxidation of saturated primary C–H bonds under ambient conditions. Chem. Sci. 2012, 3, 2812.
- 37.
Zhao, D.; Sheng, G.; Chen, C.; Wang, X. Enhanced photocatalytic degradation of methylene blue under visible irradiation on graphene@TiO2 dyade structure. Appl. Catal. B Environ. 2012, 111–112, 303–308.
- 38.
Clément, J.-L.; Ferré, N.; Siri, D.; Karoui, H.; Rockenbauer, A.; Tordo, P. Assignment of the EPR Spectrum of 5,5-Dimethyl-1-pyrroline N-Oxide (DMPO) Superoxide Spin Adduct. J. Org. Chem. 2005, 70, 1198–1203.
- 39.
Asgar, H.; Semeykina, V.; Hunt, M.; Mohammed, S.; Kuzmenko, I.; Zharov, I.; Gadikota, G. Thermally-Induced morphological evolution of spherical silica nanoparticles using in-operando X-ray scattering measurements. Colloids Surf. A Physicochem. Eng. Asp. 2020, 586, 124260.
- 40.
Sharma, S.; Khare, N. Hierarchical Bi2S3 nanoflowers: A novel photocatalyst for enhanced photocatalytic degradation of binary mixture of Rhodamine B and Methylene blue dyes and degradation of mixture of p-nitrophenol and p-chlorophenol. Adv. Powder Technol. 2018, 29, 3336–3347.
- 41.
Wu, J.; Qin, N.; Bao, D. Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration. Nano Energy 2018, 45, 44–51.
- 42.
Alshehri, A.A.; Malik, M.A. Biogenic fabrication of ZnO nanoparticles using Trigonella foenum-graecum (Fenugreek) for proficient photocatalytic degradation of methylene blue under UV irradiation. J. Mater. Sci. Mater. Electron. 2019, 30, 16156–16173.
- 43.
Li, S.; Zhao, Z.; Yu, D.; Zhao, J.-Z.; Su, Y.; Liu, Y.; Lin, Y.; Liu, W.; Xu, H.; Zhang, Z. Few-layer transition metal dichalcogenides (MoS2, WS2, and WSe2) for water splitting and degradation of organic pollutants: Understanding the piezocatalytic effect. Nano Energy 2019, 66, 104083.
- 44.
Mushtaq, F.; Chen, X.; Hoop, M.; Torlakcik, H.; Pellicer, E.; Sort, J.; Gattinoni, C.; Nelson, B.J.; Pane, S. Piezoelectrically Enhanced Photocatalysis with BiFeO(3) Nanostructures for Efficient Water Remediation. iScience 2018, 4, 236–246.
- 45.
Amdouni, W.; Fricaudet, M.; Otonicar, M.; Garcia, V.; Fusil, S.; Kreisel, J.; Maghraoui-Meherzi, H.; Dkhil, B. BiFeO(3) Nanoparticles: The “Holy-Grail” of Piezo-Photocatalysts? Adv. Mater. 2023, 35, e2301841.
- 46.
Corfdir, P.; Hauswald, C.; Zettler, J.K.; Flissikowski, T.; Lähnemann, J.; Fernández-Garrido, S.; Geelhaar, L.; Grahn, H.T.; Brandt, O. Stacking faults as quantum wells in nanowires: Density of states, oscillator strength, and radiative efficiency. Phys. Rev. B 2014, 90, 195309.
- 47.
Wang, Y.; Wang, T.; Arandiyan, H.; Song, G.; Sun, H.; Sabri, Y.; Zhao, C.; Shao, Z.; Kawi, S. Advancing Catalysts by Stacking Fault Defects for Enhanced Hydrogen Production: A Review. Adv. Mater. 2024, 36, e2313378.
- 48.
Sebti, E.; Evans, H.A.; Chen, H.; Richardson, P.M.; White, K.M.; Giovine, R.; Koirala, K.P.; Xu, Y.; Gonzalez-Correa, E.; Wang, C.; et al. Stacking Faults Assist Lithium-Ion Conduction in a Halide-Based Superionic Conductor. J. Am. Chem. Soc. 2022, 144, 5795–5811.
- 49.
Moreno, H.; Domingues, G.L.; Assis, M.; Ortega, P.P.; Mastelaro, V.R.; Ramirez, M.A.; Simoes, A.Z. The Relationship between Photoluminescence Emissions and Photocatalytic Activity of CeO(2) Nanocrystals. Inorg. Chem. 2023, 62, 4291–4303.
- 50.
Pinatti, I.M.; Tello, A.C.M.; Pereira, P.F.S.; Trench, A.B.; Teodoro, M.D.; Rosa, I.L.V.; da Silva, A.B.F.; Longo, E.; Andres, J.; Simoes, A.Z. Towards a relationship between photoluminescence emissions and photocatalytic activity of Ag(2)SeO(4): Combining experimental data and theoretical insights. Dalton Trans. 2022, 51, 11346–11362.
- 51.
Ang, E.H.; Zeng, J.; Subramanian, G.S.; Chellappan, V.; Sudhaharan, T.; Padmanabhan, P.; Gulyás, B.; Tamil Selvan, S. Silica-Coated Mn-Doped ZnS Nanocrystals for Cancer Theranostics. ACS Appl. Nano Mater. 2020, 3, 3088–3096.
- 52.
Dai, L.; Strelow, C.; Kipp, T.; Mews, A.; Benkenstein, I.; Eifler, D.; Vuong, T.H.; Rabeah, J.; McGettrick, J.; Lesyuk, R.; et al. Colloidal Manganese-Doped ZnS Nanoplatelets and Their Optical Properties. Chem. Mater. 2020, 33, 275–284.
- 53.
Liu, H.; Zheng, Y.; Liu, S.; Zhao, J.; Song, Z.; Peng, D.; Liu, Q. Realizing Red Mechanoluminescence of ZnS:Mn2+ Through Ferromagnetic Coupling. Adv. Funct. Mater. 2024, 34, 2314422.