- 1.
Schrohl, A.S.; Würtz, S.; Kohn, E.; Banks, R.E.; Nielsen, H.J.; Sweep, F.C.; Brünner, N. Banking of biological fluids for studies of disease-associated protein biomarkers. Mol. Cell. Proteom. 2008, 7, 2061–2066.
https://doi.org/10.1074/mcp.R800010-MCP200.
- 2.
Chaigneau, C.; Cabioch, T.; Beaumont, K.; Betsou, F. Serum biobank certification and the establishment of quality controls for biological fluids: Examples of serum biomarker stability after temperature variation. Clin. Chem. Lab. Med. 2007, 45, 1390–1395.
https://doi.org/10.1515/cclm.2007.160.
- 3.
Luan, J.; Seth, A.; Gupta, R.; Wang, Z.; Rathi, P.; Cao, S.; Gholami Derami, H.; Tang, R.; Xu, B.; Achilefu, S.; et al. Ultrabright fluorescent nanoscale labels for the femtomolar detection of analytes with standard bioassays. Nat. Biomed. Eng. 2020, 4, 518–530.
https://doi.org/10.1038/s41551-020-0547-4.
- 4.
Livesey, J.H.; Ellis, M.J.; Evans, M.J. Pre-analytical requirements. Clin. Biochem. Rev. 2008, 29, S11–S15.
- 5.
Evans, M.J.; Livesey, J.H.; Ellis, M.J.; Yandle, T.G. Effect of anticoagulants and storage temperatures on stability of plasma and serum hormones. Clin. Biochem. 2001, 34, 107–112.
https://doi.org/10.1016/s0009-9120(01)00196-5.
- 6.
Zhang, J.; Pritchard, E.; Hu, X.; Valentin, T.; Panilaitis, B.; Omenetto, F.G.; Kaplan, D.L. Stabilization of vaccines and antibiotics in silk and eliminating the cold chain. 2012, 109, 11981–11986, doi:doi:10.1073/pnas.1206210109.
- 7.
Liang, K.; Ricco, R.; Doherty, C.M.; Styles, M.J.; Bell, S.; Kirby, N.; Mudie, S.; Haylock, D.; Hill, A.J.; Doonan, C.J. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat. Commun. 2015, 6, 1–8.
- 8.
Wijesundara, Y.H.; Herbert, F.C.; Trashi, O.; Trashi, I.; Brohlin, O.R.; Kumari, S.; Howlett, T.; Benjamin, C.E.; Shahrivarkevishahi, A.; Diwakara, S.D.; et al. Carrier gas triggered controlled biolistic delivery of DNA and protein therapeutics from metal–organic frameworks. Chem. Sci. 2022, 13, 13803–13814.
https://doi.org/10.1039/d2sc04982a.
- 9.
Wang, C.; Sun, H.; Luan, J.; Jiang, Q.; Tadepalli, S.; Morrissey, J.J.; Kharasch, E.D.; Singamaneni, S. Metal–Organic Framework Encapsulation for Biospecimen Preservation. Chem. Mater. 2018, 30, 1291–1300.
https://doi.org/10.1021/acs.chemmater.7b04713.
- 10.
Wang, Y.; Morrissey, J.J.; Gupta, P.; Chauhan, P.; Pachynski, R.K.; Harris, P.K.; Chaudhuri, A.; Singamaneni, S. Preservation of Proteins in Human Plasma through Metal-Organic Framework Encapsulation. ACS Appl. Mater. Interfaces 2023, 15, 18598–18607.
https://doi.org/10.1021/acsami.2c21192.
- 11.
Liang, W.; Wied, P.; Carraro, F.; Sumby, C.J.; Nidetzky, B.; Tsung, C.K.; Falcaro, P.; Doonan, C.J. Metal-Organic Framework-Based Enzyme Biocomposites. Chem. Rev. 2021, 121, 1077–1129.
https://doi.org/10.1021/acs.chemrev.0c01029.
- 12.
Wang, A.; Walden, M.; Ettlinger, R.; Kiessling, F.; Gassensmith, J.J.; Lammers, T.; Wuttke, S.; Peña, Q. Biomedical Metal–Organic Framework Materials: Perspectives and Challenges. Adv. Funct. Mater. 2023, 34, 2308589.
https://doi.org/10.1002/adfm.202308589.
- 13.
Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.
- 14.
Morris, W.; Doonan, C.J.; Furukawa, H.; Banerjee, R.; Yaghi, O.M. Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic Imidazolate Frameworks. J. Am. Chem. Soc. 2008, 130, 12626–12627.
https://doi.org/10.1021/ja805222x.
- 15.
Gao, S.; Hou, J.; Deng, Z.; Wang, T.; Beyer, S.; Buzanich, A.G.; Richardson, J.J.; Rawal, A.; Seidel, R.; Zulkifli, M.Y.; et al. Improving the Acidic Stability of Zeolitic Imidazolate Frameworks by Biofunctional Molecules. Chem 2019, 5, 1597–1608.
https://doi.org/10.1016/j.chempr.2019.03.025.
- 16.
Wang, C.; Sudlow, G.; Wang, Z.; Cao, S.; Jiang, Q.; Neiner, A.; Morrissey, J.J.; Kharasch, E.D.; Achilefu, S.; Singamaneni, S. Metal-Organic Framework Encapsulation Preserves the Bioactivity of Protein Therapeutics. Adv. Healthc. Mater. 2018, 7, e1800950.
https://doi.org/10.1002/adhm.201800950.
- 17.
Kang, L.; Smith, S.; Wang, C. Metal–Organic Framework Preserves the Biorecognition of Antibodies on Nanoscale Surfaces Validated by Single-Molecule Force Spectroscopy. ACS Appl. Mater. Interfaces 2020, 12, 3011–3020.
https://doi.org/10.1021/acsami.9b19551.
- 18.
Liang, K.; Coghlan, C.J.; Bell, S.G.; Doonan, C.; Falcaro, P. Enzyme encapsulation in zeolitic imidazolate frameworks: A comparison between controlled co-precipitation and biomimetic mineralisation. Chem. Commun. 2016, 52, 473–476.
- 19.
Liang, W.; Xu, H.; Carraro, F.; Maddigan, N.K.; Li, Q.; Bell, S.G.; Huang, D.M.; Tarzia, A.; Solomon, M.B.; Amenitsch, H.; et al. Enhanced Activity of Enzymes Encapsulated in Hydrophilic Metal–Organic Frameworks. J. Am. Chem. Soc. 2019, 141, 2348–2355.
https://doi.org/10.1021/jacs.8b10302.
- 20.
Luzuriaga, M.A.; Herbert, F.C.; Brohlin, O.R.; Gadhvi, J.; Howlett, T.; Shahrivarkevishahi, A.; Wijesundara, Y.H.; Venkitapathi, S.; Veera, K.; Ehrman, R. Metal–Organic Framework Encapsulated Whole-Cell Vaccines Enhance Humoral Immunity against Bacterial Infection. ACS Nano 2021, 15, 17426–17438.
- 21.
Luzuriaga, M.A.; Welch, R.P.; Dharmarwardana, M.; Benjamin, C.E.; Li, S.; Shahrivarkevishahi, A.; Popal, S.; Tuong, L.H.; Creswell, C.T.; Gassensmith, J.J. Enhanced stability and controlled delivery of MOF-encapsulated vaccines and their immunogenic response in vivo. ACS Appl. Mater. Interfaces 2019, 11, 9740–9746.
- 22.
Ehrman, R.N.; Brohlin, O.R.; Wijesundara, Y.H.; Kumari, S.; Trashi, O.; Howlett, T.S.; Trashi, I.; Herbert, F.C.; Raja, A.; Koirala, S.; et al. A scalable synthesis of adjuvanting antigen depots based on metal–organic frameworks. Chem. Sci. 2024, 15, 2731–2744.
https://doi.org/10.1039/d3sc06734c.
- 23.
Liang, K.; Richardson, J.J.; Cui, J.; Caruso, F.; Doonan, C.J.; Falcaro, P. Metal–organic framework coatings as cytoprotective exoskeletons for living cells. Adv. Mater. 2016, 28, 7910–7914.
- 24.
Wang, C.; Tadepalli, S.; Luan, J.; Liu, K.K.; Morrissey, J.J.; Kharasch, E.D.; Naik, R.R.; Singamaneni, S. Metal-Organic Framework as a Protective Coating for Biodiagnostic Chips. Adv. Mater. 2017, 29, 1604433.
https://doi.org/10.1002/adma.201604433.
- 25.
Velásquez-Hernández, M.d.J.; Linares-Moreau, M.; Astria, E.; Carraro, F.; Alyami, M.Z.; Khashab, N.M.; Sumby, C.J.; Doonan, C.J.; Falcaro, P. Towards applications of bioentities@MOFs in biomedicine. Coord. Chem. Rev. 2021, 429, 213651.
https://doi.org/10.1016/j.ccr.2020.213651.
- 26.
- 27.
Wang, Y.; Wang, Z.; Gupta, P.; Morrissey, J.J.; Naik, R.R.; Singamaneni, S. Enhancing the Stability of COVID-19 Serological Assay through Metal-Organic Framework Encapsulation. Adv. Healthc. Mater. 2021, 10, e2100410.
https://doi.org/10.1002/adhm.202100410.
- 28.
Ogata, A.F.; Rakowski, A.M.; Carpenter, B.P.; Fishman, D.A.; Merham, J.G.; Hurst, P.J.; Patterson, J.P. Direct Observation of Amorphous Precursor Phases in the Nucleation of Protein-Metal-Organic Frameworks. J. Am. Chem. Soc. 2020, 142, 1433–1442.
https://doi.org/10.1021/jacs.9b11371.
- 29.
Carraro, F.; Williams, J.D.; Linares-Moreau, M.; Parise, C.; Liang, W.; Amenitsch, H.; Doonan, C.; Kappe, C.O.; Falcaro, P. Continuous-Flow Synthesis of ZIF-8 Biocomposites with Tunable Particle Size. Angew. Chem. Int. Ed. Engl. 2020, 59, 8123–8127.
https://doi.org/10.1002/anie.202000678.
- 30.
Troyano, J.; Carne-Sanchez, A.; Avci, C.; Imaz, I.; Maspoch, D. Colloidal metal-organic framework particles: The pioneering case of ZIF-8. Chem. Soc. Rev. 2019, 48, 5534–5546.
https://doi.org/10.1039/c9cs00472f.
- 31.
Carraro, F.; Velásquez-Hernández, M.d.J.; Astria, E.; Liang, W.; Twight, L.; Parise, C.; Ge, M.; Huang, Z.; Ricco, R.; Zou, X.; et al. Phase dependent encapsulation and release profile of ZIF-based biocomposites. Chem. Sci. 2020, 11, 3397–3404.
https://doi.org/10.1039/C9SC05433B.
- 32.
Linares-Moreau, M.; Brandner, L.A.; Velasquez-Hernandez, M.J.; Fonseca, J.; Benseghir, Y.; Chin, J.M.; Maspoch, D.; Doonan, C.; Falcaro, P. Fabrication of Oriented Polycrystalline MOF Superstructures. Adv. Mater. 2024, 36, e2309645.
https://doi.org/10.1002/adma.202309645.
- 33.
Lo, Y.; Lam, C.H.; Chang, C.-W.; Yang, A.-C.; Kang, D.-Y. Polymorphism/pseudopolymorphism of metal–organic frameworks composed of zinc(ii) and 2-methylimidazole: Synthesis, stability, and application in gas storage. RSC Adv. 2016, 6, 89148–89156.
https://doi.org/10.1039/c6ra19437k.
- 34.
Herbert, F.C.; Abeyrathna, S.S.; Abeyrathna, N.S.; Wijesundara, Y.H.; Brohlin, O.R.; Carraro, F.; Amenitsch, H.; Falcaro, P.; Luzuriaga, M.A.; Durand-Silva, A.; et al. Stabilization of supramolecular membrane protein-lipid bilayer assemblies through immobilization in a crystalline exoskeleton. Nat. Commun. 2021, 12, 2202.
https://doi.org/10.1038/s41467-021-22285-y.
- 35.
Tocco, D.; Chelazzi, D.; Mastrangelo, R.; Casini, A.; Salis, A.; Fratini, E.; Baglioni, P. Conformational changes and location of BSA upon immobilization on zeolitic imidazolate frameworks. J. Colloid. Interface Sci. 2023, 641, 685–694.
https://doi.org/10.1016/j.jcis.2023.03.107.
- 36.
Bakhshandeh, A.; Ardestani, F.; Ghorbani, H.R.; Darvish Ganji, M. Structural and molecular properties of complexes of biomolecules and metal-organic frameworks: Dispersion-corrected DFT treatment. J. Mol. Model. 2022, 28, 32.
https://doi.org/10.1007/s00894-021-04947-2.
- 37.
Mittal, A.; Gandhi, S.; Roy, I. Mechanistic interaction studies of synthesized ZIF-8 nanoparticles with bovine serum albumin using spectroscopic and molecular docking approaches. Sci. Rep. 2022, 12, 10331.
https://doi.org/10.1038/s41598-022-14630-y.
- 38.
Xu, Z.; Zhang, J.; Pan, T.; Li, H.; Huo, F.; Zheng, B.; Zhang, W. Encapsulation of Hydrophobic Guests within Metal–Organic Framework Capsules for Regulating Host–Guest Interaction. Chem. Mater. 2020, 32, 3553–3560.
https://doi.org/10.1021/acs.chemmater.0c00684.
- 39.
Marsh, C.; Shearer, G.C.; Knight, B.T.; Paul-Taylor, J.; Burrows, A.D. Supramolecular aspects of biomolecule interactions in metal–organic frameworks. Coord. Chem. Rev. 2021, 439, 213928.
https://doi.org/10.1016/j.ccr.2021.213928.
- 40.
Chen, G.; Huang, S.; Kou, X.; Zhu, F.; Ouyang, G. Embedding Functional Biomacromolecules within Peptide-Directed Metal-Organic Framework (MOF) Nanoarchitectures Enables Activity Enhancement. Angew. Chem. Int. Ed. Engl. 2020, 59, 13947–13954.
https://doi.org/10.1002/anie.202005529.
- 41.
Akhundzadeh Tezerjani, A.; Halladj, R.; Askari, S. Different view of solvent effect on the synthesis methods of zeolitic imidazolate framework-8 to tuning the crystal structure and properties. RSC Adv. 2021, 11, 19914–19923.
https://doi.org/10.1039/d1ra02856a.
- 42.
Schmidt, M.P.; Martinez, C.E. Kinetic and Conformational Insights of Protein Adsorption onto Montmorillonite Revealed Using in Situ ATR-FTIR/2D-COS. Langmuir 2016, 32, 7719–7729.
https://doi.org/10.1021/acs.langmuir.6b00786.
- 43.
Barreto, M.S.C.; Elzinga, E.J.; Alleoni, L.R.F. The molecular insights into protein adsorption on hematite surface disclosed by in-situ ATR-FTIR/2D-COS study. Sci. Rep. 2020, 10, 13441.
https://doi.org/10.1038/s41598-020-70201-z.
- 44.
Carpenter, B.P.; Talosig, A.R.; Mulvey, J.T.; Merham, J.G.; Esquivel, J.; Rose, B.; Ogata, A.F.; Fishman, D.A.; Patterson, J.P. Role of Molecular Modification and Protein Folding in the Nucleation and Growth of Protein-Metal-Organic Frameworks. Chem. Mater. 2022, 34, 8336–8344.
https://doi.org/10.1021/acs.chemmater.2c01903.
- 45.
Murty, R.; Bera, M.K.; Walton, I.M.; Whetzel, C.; Prausnitz, M.R.; Walton, K.S. Interrogating Encapsulated Protein Structure within Metal-Organic Frameworks at Elevated Temperature. J. Am. Chem. Soc. 2023, 145, 7323–7330.
https://doi.org/10.1021/jacs.2c13525.
- 46.
Lu, R.; Li, W.W.; Katzir, A.; Raichlin, Y.; Yu, H.Q.; Mizaikoff, B. Probing the secondary structure of bovine serum albumin during heat-induced denaturation using mid-infrared fiberoptic sensors. Analyst 2015, 140, 765–770.
https://doi.org/10.1039/c4an01495b.
- 47.
Ranjan, S.; Dasgupta, N.; Srivastava, P.; Ramalingam, C. A spectroscopic study on interaction between bovine serum albumin and titanium dioxide nanoparticle synthesized from microwave-assisted hybrid chemical approach. J. Photochem. Photobiol. B 2016, 161, 472–481.
https://doi.org/10.1016/j.jphotobiol.2016.06.015.
- 48.
- 49.
Ketrat, S.; Japrung, D.; Pongprayoon, P. Exploring how structural and dynamic properties of bovine and canine serum albumins differ from human serum albumin. J. Mol. Graph. Model. 2020, 98, 107601.
https://doi.org/10.1016/j.jmgm.2020.107601.