- 1.
Pozzi, M.; Jonak Dutta, S.; Kuntze, M.; Bading, J.; Rüßbült, J.S.; Fabig, C.; Langfeldt, M.; Schulz, F.; Horcajada, P.; Parak, W.J. Visualization of the High Surface-to-Volume Ratio of Nanomaterials and Its Consequences. J. Chem. Educ. 2024, 101, 3146–3155.
- 2.
Liu, P.; Qin, R.; Fu, G.; Zheng, N. Surface Coordination Chemistry of Metal Nanomaterials. J. Am. Chem. Soc. 2017, 139, 2122–2131.
- 3.
Singh, R.; Srinivas, S.P.; Kumawat, M.; Daima, H.K. Ligand-based surface engineering of nanomaterials: Trends, challenges, and biomedical perspectives. OpenNano 2024, 15, 100194.
- 4.
Nam, J.-M.; Owen, J.S.; Talapin, D.V. The Ligand–Surface Interface and Its Influence on Nanoparticle Properties. Acc. Chem. Res. 2023, 56, 2265–2266.
- 5.
Cetin, A.; Ilk Capar, M. Functional-Group Effect of Ligand Molecules on the Aggregation of Gold Nanoparticles: A Molecular Dynamics Simulation Study. J. Phys. Chem. B 2022, 126, 5534–5543.
- 6.
Shrestha, S.; Wang, B.; Dutta, P. Nanoparticle processing: Understanding and controlling aggregation. Adv. Colloid Interface Sci. 2020, 279, 102162.
- 7.
Thanh, N.T.K.; Maclean, N.; Mahiddine, S. Mechanisms of Nucleation and Growth of Nanoparticles in Solution. Chem. Rev. 2014, 114, 7610–7630.
- 8.
An, K.; Somorjai, G.A. Size and Shape Control of Metal Nanoparticles for Reaction Selectivity in Catalysis. ChemCatChem 2012, 4, 1512–1524.
- 9.
Shi, Y.; Lyu, Z.; Zhao, M.; Chen, R.; Nguyen, Q.N.; Xia, Y. Noble-Metal Nanocrystals with Controlled Shapes for Catalytic and Electrocatalytic Applications. Chem. Rev. 2021, 121, 649–735.
- 10.
Kumar, S.; Saha, D.; Kohlbrecher, J.; Aswal, V.K. Interplay of interactions for different pathways of the fractal aggregation of nanoparticles. Chem. Phys. Lett. 2022, 803, 139808.
- 11.
Heuer-Jungemann, A.; Feliu, N.; Bakaimi, I.; Hamaly, M.; Alkilany, A.; Chakraborty, I.; Masood, A.; Casula, M.F.; Kostopoulou, A.; Oh, E.; et al. The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem. Rev. 2019, 119, 4819–4880.
- 12.
Bhattacharjee, K.; Prasad, B.L.V. Surface functionalization of inorganic nanoparticles with ligands: A necessary step for their utility. Chem. Soc. Rev. 2023, 52, 2573–2595.
- 13.
Sperling, R.A.; Parak, W.J. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos. Trans. A Math. Phys. Eng. Sci. 2010, 368, 1333–1383.
- 14.
Mishra, R.K.; Verma, K.; Singh, D.S. Defect engineering in nanomaterials: Impact, challenges, and applications. Smart Mater. Manuf. 2024, 2, 100052.
- 15.
Baumler, K.J.; Schaak, R.E. Tutorial on Describing, Classifying, and Visualizing Common Crystal Structures in Nanoscale Materials Systems. ACS Nanosci. Au 2024, 4, 290–316.
- 16.
Xi, Z.; Zhang, R.; Kiessling, F.; Lammers, T.; Pallares, R.M. Role of Surface Curvature in Gold Nanostar Properties and Applications. ACS Biomater. Sci. Eng. 2024, 10, 38–50.
- 17.
Walker, D.A.; Leitsch, E.K.; Nap, R.J.; Szleifer, I.; Grzybowski, B.A. Geometric curvature controls the chemical patchiness and self-assembly of nanoparticles. Nat. Nanotechnol. 2013, 8, 676–681.
- 18.
Pedrazo-Tardajos, A.; Claes, N.; Wang, D.; Sánchez-Iglesias, A.; Nandi, P.; Jenkinson, K.; De Meyer, R.; Liz-Marzán, L.M.; Bals, S. Direct visualization of ligands on gold nanoparticles in a liquid environment. Nat. Chem. 2024, 16, 1278–1285.
- 19.
Sen, S.; Thaker, A.; Sirajudeen, L.; Williams, D.; Nannenga, B.L. Protein–Nanoparticle Complex Structure Determination by Cryo-Electron Microscopy. ACS Appl. Bio Mater. 2022, 5, 4696–4700.
- 20.
Shevchenko, E.V.; Talapin, D.V.; Kotov, N.A.; O'Brien, S.; Murray, C.B. Structural diversity in binary nanoparticle superlattices. Nature 2006, 439, 55–59.
- 21.
Zhou, W.; Li, Y.; Partridge, B.E.; Mirkin, C.A. Engineering Anisotropy into Organized Nanoscale Matter. Chem. Rev. 2024, 124, 11063–11107.
- 22.
Jadzinsky, P.D.; Calero, G.; Ackerson, C.J.; Bushnell, D.A.; Kornberg, R.D. Structure of a Thiol Monolayer-Protected Gold Nanoparticle at 1.1 Å Resolution. Science 2007, 318, 430–433.
- 23.
Li, Y.; Jin, R. Seeing Ligands on Nanoclusters and in Their Assemblies by X-ray Crystallography: Atomically Precise Nanochemistry and Beyond. J. Am. Chem. Soc. 2020, 142, 13627–13644.
- 24.
Marbella, L.E.; Millstone, J.E. NMR Techniques for Noble Metal Nanoparticles. Chem. Mater. 2015, 27, 2721–2739.
- 25.
Jayawardena, H.S.N.; Liyanage, S.H.; Rathnayake, K.; Patel, U.; Yan, M. Analytical Methods for Characterization of Nanomaterial Surfaces. Anal. Chem. 2021, 93, 1889–1911.
- 26.
Wu, M.; Vartanian, A.M.; Chong, G.; Pandiakumar, A.K.; Hamers, R.J.; Hernandez, R.; Murphy, C.J. Solution NMR Analysis of Ligand Environment in Quaternary Ammonium-Terminated Self-Assembled Monolayers on Gold Nanoparticles: The Effect of Surface Curvature and Ligand Structure. J. Am. Chem. Soc. 2019, 141, 4316–4327.
- 27.
Novotný, J.; Vícha, J.; Bora, P.L.; Repisky, M.; Straka, M.; Komorovsky, S.; Marek, R. Linking the Character of the Metal–Ligand Bond to the Ligand NMR Shielding in Transition-Metal Complexes: NMR Contributions from Spin–Orbit Coupling. J. Chem. Theory Comput. 2017, 13, 3586–3601.
- 28.
Vı́cha, J.; Novotný, J.; Komorovsky, S.; Straka, M.; Kaupp, M.; Marek, R. Relativistic Heavy-Neighbor-Atom Effects on NMR Shifts: Concepts and Trends Across the Periodic Table. Chem. Rev. 2020, 120, 7065–7103.
- 29.
Ndugire, W.; Liyanage, S.H.; Yan, M. Carbohydrate-Presenting Metal Nanoparticles: Synthesis, Characterization and Applications. In Comprehensive Glycoscience, 2nd ed.; Barchi, J.J., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 380–405.
- 30.
Wu, Z.; Jin, R. Stability of the Two Au−S Binding Modes in Au25(SG)18 Nanoclusters Probed by NMR and Optical Spectroscopy. ACS Nano 2009, 3, 2036–2042.
- 31.
Ghosh, J.; Cooks, R.G. Mass spectrometry in materials synthesis. Trends Anal. Chem. 2023, 161, 117010.
- 32.
Comby-Zerbino, C.; Dagany, X.; Chirot, F.; Dugourd, P.; Antoine, R. The emergence of mass spectrometry for characterizing nanomaterials. Atomically precise nanoclusters and beyond. Mater. Adv. 2021, 2, 4896–4913.
- 33.
Nicolardi, S.; van der Burgt, Y.E.M.; Codée, J.D.C.; Wuhrer, M.; Hokke, C.H.; Chiodo, F. Structural Characterization of Biofunctionalized Gold Nanoparticles by Ultrahigh-Resolution Mass Spectrometry. ACS Nano 2017, 11, 8257–8264.
- 34.
Smith, A.M.; Johnston, K.A.; Crawford, S.E.; Marbella, L.E.; Millstone, J.E. Ligand density quantification on colloidal inorganic nanoparticles. Analyst 2017, 142, 11–29.
- 35.
Mansfield, E.; Tyner, K.M.; Poling, C.M.; Blacklock, J.L. Determination of Nanoparticle Surface Coatings and Nanoparticle Purity Using Microscale Thermogravimetric Analysis. Anal. Chem. 2014, 86, 1478–1484.
- 36.
Choi, K.; Myoung, S.; Seo, Y.; Ahn, S. Quantitative NMR as a Versatile Tool for the Reference Material Preparation. Magnetochemistry 2021, 7, 15.
- 37.
Kong, N.; Zhou, J.; Park, J.; Xie, S.; Ramström, O.; Yan, M. Quantitative Fluorine NMR To Determine Carbohydrate Density on Glyconanomaterials Synthesized from Perfluorophenyl Azide-Functionalized Silica Nanoparticles by Click Reaction. Anal. Chem. 2015, 87, 9451–9458.
- 38.
Potts, J.C.; Jain, A.; Amabilino, D.B.; Rawson, F.J.; Pérez-García, L. Molecular Surface Quantification of Multifunctionalized Gold Nanoparticles Using UV–Visible Absorption Spectroscopy Deconvolution. Anal. Chem. 2023, 95, 12998–13002.
- 39.
Senoner, M.; Unger, W.E.S. SIMS imaging of the nanoworld: Applications in science and technology. J. Anal. At. Spectrom. 2012, 27, 1050–1068.
- 40.
Eller, M.J.; Chandra, K.; Coughlin, E.E.; Odom, T.W.; Schweikert, E.A. Label Free Particle-by-Particle Quantification of DNA Loading on Sorted Gold Nanostars. Anal. Chem. 2019, 91, 5566–5572.
- 41.
Masuko, T.; Minami, A.; Iwasaki, N.; Majima, T.; Nishimura, S.-I.; Lee, Y.C. Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Anal. Biochem. 2005, 339, 69–72.
- 42.
Wang, X.; Ramström, O.; Yan, M. A photochemically initiated chemistry for coupling underivatized carbohydrates to gold nanoparticles. J. Mater. Chem. 2009, 19, 8944–8949.
- 43.
Janicek, B.E.; Hinman, J.G.; Hinman, J.J.; Bae, S.H.; Wu, M.; Turner, J.; Chang, H.-H.; Park, E.; Lawless, R.; Suslick, K.S.; et al. Quantitative Imaging of Organic Ligand Density on Anisotropic Inorganic Nanocrystals. Nano Lett. 2019, 19, 6308–6314.
- 44.
Chen, C.; Zhou, Y.; Chen, C.; Zhu, S.; Yan, X. Quantification of Available Ligand Density on the Surface of Targeted Liposomal Nanomedicines at the Single-Particle Level. ACS Nano 2022, 16, 6886–6897.
- 45.
Geißler, D.; Nirmalananthan-Budau, N.; Scholtz, L.; Tavernaro, I.; Resch-Genger, U. Analyzing the surface of functional nanomaterials—How to quantify the total and derivatizable number of functional groups and ligands. Microchim. Acta 2021, 188, 321.
- 46.
Kunc, F.; Balhara, V.; Brinkmann, A.; Sun, Y.; Leek, D.M.; Johnston, L.J. Quantification and Stability Determination of Surface Amine Groups on Silica Nanoparticles Using Solution NMR. Anal. Chem. 2018, 90, 13322–13330.
- 47.
Kunc, F.; Balhara, V.; Sun, Y.; Daroszewska, M.; Jakubek, Z.J.; Hill, M.; Brinkmann, A.; Johnston, L.J. Quantification of surface functional groups on silica nanoparticles: Comparison of thermogravimetric analysis and quantitative NMR. Analyst 2019, 144, 5589–5599.
- 48.
Moser, M.; Nirmalananthan, N.; Behnke, T.; Geißler, D.; Resch-Genger, U. Multimodal Cleavable Reporters versus Conventional Labels for Optical Quantification of Accessible Amino and Carboxy Groups on Nano- and Microparticles. Anal. Chem. 2018, 90, 5887–5895.
- 49.
Roloff, A.; Nirmalananthan-Budau, N.; Rühle, B.; Borcherding, H.; Thiele, T.; Schedler, U.; Resch-Genger, U. Quantification of Aldehydes on Polymeric Microbead Surfaces via Catch and Release of Reporter Chromophores. Anal. Chem. 2019, 91, 8827–8834.
- 50.
Sun, Y.; Kunc, F.; Balhara, V.; Coleman, B.; Kodra, O.; Raza, M.; Chen, M.; Brinkmann, A.; Lopinski, G.P.; Johnston, L.J. Quantification of amine functional groups on silica nanoparticles: A multi-method approach. Nanoscale Adv. 2019, 1, 1598–1607.
- 51.
Konsolakis, M. Surface Chemistry and Catalysis. Catalysts 2016, 6, 102.
- 52.
Somorjai, G.A.; Li, Y. Introduction to Surface Chemistry and Catalysis; 2nd Ed., 2010, Wiley: NewYork, NY, USA.
- 53.
Sanità, G.; Carrese, B.; Lamberti, A. Nanoparticle surface functionalization: How to improve biocompatibility and cellular internalization. Front. Mol. Biosci. 2020, 7, 587012.
- 54.
Ndugire, W.; Yan, M. Synthesis and solution isomerization of water-soluble Au9 nanoclusters prepared by nuclearity conversion of [Au11(PPh3)8Cl2]Cl. Nanoscale 2021, 13, 16809–16817.
- 55.
Klein, K.; Loza, K.; Heggen, M.; Epple, M. An efficient method for covalent surface functionalization of ultrasmall metallic nanoparticles by surface azidation followed by copper‐catalyzed azide‐alkyne cycloaddition (click chemistry). ChemNanoMat 2021, 7, 1330–1339.
- 56.
Yang, X.; Chen, F.; Kim, M.A.; Liu, H.; Wolf, L.M.; Yan, M. Using metal substrates to enhance the reactivity of graphene towards Diels–Alder reactions. Phys. Chem. Chem. Phys. 2022, 24, 20082–20093.
- 57.
Tu, J.; Yan, M. Enhancing the chemical reactivity of graphene through substrate engineering. Small 2024, e2408116.
- 58.
Calvin, J.J.; Sedlak, A.B.; Brewer, A.S.; Kaufman, T.M.; Alivisatos, A.P. Evidence and Structural Insights into a Ligand-Mediated Phase Transition in the Solvated Ligand Shell of Quantum Dots. ACS Nano 2024, 18, 25257–25270.
- 59.
Lee, S.-J.; Jang, J.D.; Choi, S.-M. Interparticle Ligand Exchange Kinetics Revealed by Time-Resolved SANS. Nano Lett. 2025, 25, 981–986.
- 60.
Wang, X.; Ramström, O.; Yan, M. Quantitative Analysis of Multivalent Ligand Presentation on Gold Glyconanoparticles and the Impact on Lectin Binding. Anal. Chem. 2010, 82, 9082–9089.
- 61.
Wang, X.; Ramström, O.; Yan, M. Glyconanomaterials: Synthesis, Characterization, and Ligand Presentation. Adv. Mater. 2010, 22, 1946–1953.
- 62.
Rashid, U.; Bro-Jørgensen, W.; Harilal, K.B.; Sreelakshmi, P.A.; Mondal, R.R.; Chittari Pisharam, V.; Parida, K.N.; Geetharani, K.; Hamill, J.M.; Kaliginedi, V. Chemistry of the Au–Thiol Interface through the Lens of Single-Molecule Flicker Noise Measurements. J. Am. Chem. Soc. 2024, 146, 9063–9073.
- 63.
Inkpen, M.S.; Liu, Z.F.; Li, H.; Campos, L.M.; Neaton, J.B.; Venkataraman, L. Non-chemisorbed gold–sulfur binding prevails in self-assembled monolayers. Nat. Chem. 2019, 11, 351–358.