- 1.
Huang, L.; Zheng, X.; Gao, G.; Zhang, H.; Rong, K.; Chen, J.; Liu, Y.; Zhu, X.; Wu, W.; Wang, Y.; et al. Interfacial electron engineering of palladium and molybdenum carbide for highly efficient oxygen reduction. J. Am. Chem. Soc. 2021, 143, 6933–6941.
- 2.
Ge, R.; Huo, J.; Sun, M.; Zhu, M.; Li, Y.; Chou, S.; Li, W. Surface and interface engineering: Molybdenum carbide–based nanomaterials for electrochemical energy conversion. Small 2021, 17, 1903380.
- 3.
Wu, J.; Yang, H. Platinum-based oxygen reduction electrocatalysts. Acc. Chem. Res. 2013, 46, 1848–1857.
- 4.
Yu, S.; Yang, H. Design principles for the synthesis of platinum–cobalt intermetallic nanoparticles for electrocatalytic applications. Chem. Comm. 2023, 59, 4852–4871.
- 5.
Tong, Y.; Zhang, Z.; Hou, Y.; Yan, L.; Chen, X.; Zhang, H.; Wang, X.; Li, Y. Recent progress of molybdenum carbide based electrocatalysts for electrocatalytic hydrogen evolution reaction. Nanoscale 2023, 15, 14717–14736.
- 6.
Zhang, X.; Shi, C.; Chen, B.; Kuhn, A.N.; Ma, D.; Yang, H. Progress in hydrogen production over transition metal carbide catalysts: challenges and opportunities. Curr. Opin. Chem. Eng. 2018, 20, 68–77.
- 7.
Liu, S.; Lin, Z.; Wan, R.; Liu, Y.; Liu, Z.; Zhang, S.; Zhang, X.; Tang, Z.; Lu, X.; Tian, Y. Cobalt phosphide supported by two-dimensional molybdenum carbide (MXene) for the hydrogen evolution reaction, oxygen evolution reaction, and overall water splitting. J. Mater. Chem. A 2021, 9, 21259–21269.
- 8.
Zhang, B.; Zhou, J.; Elliott, S.R.; Sun, Z. Two-dimensional molybdenum carbides: Active electrocatalysts for the nitrogen reduction reaction. J. Mater. Chem. A 2020, 8, 23947–23954.
- 9.
Li, Z.; Attanayake, N.H.; Blackburn, J.L.; Miller, E.M. Carbon dioxide and nitrogen reduction reactions using 2D transition metal dichalcogenide (TMDC) and carbide/nitride (MXene) catalysts. Energy Environ. Sci. 2021, 14, 6242–6286.
- 10.
Wan, J.; Liu, Q.; Wang, T.; Yuan, H.; Zhang, P.; Gu, X. Theoretical investigation of platinum-like catalysts of molybdenum carbides for hydrogen evolution reaction. Solid State Commun. 2018, 284–286, 25–30.
- 11.
Yu, G.-Q.; Huang, B.-Y.; Chen, X.; Wang, D.; Zheng, F.; Li, X.-B. Uncovering the surface and phase effect of molybdenum carbides on hydrogen evolution: A first-principles study. J. Phys. Chem. C 2019, 123, 21878–21887.
- 12.
Wang, W.; Geng, W.; Zhang, L.; Zhao, Z.; Zhang, Z.; Ma, T.; Cheng, C.; Liu, X.; Zhang, Y.; Li, S. Molybdenum oxycarbide supported Rh-clusters with modulated interstitial C–O microenvironments for promoting hydrogen evolution. Small 2023, 19, 2206808.
- 13.
Deng, B.; Wang, Z.; Chen, W.; Li, J.T.; Luong, D.X.; Carter, R.A.; Gao, G.; Yakobson, B.I.; Zhao, Y.; Tour, J.M. Phase controlled synthesis of transition metal carbide nanocrystals by ultrafast flash Joule heating. Nat. Comm. 2022, 13, 262.
- 14.
Shrestha, A.; Gao, X.; Hicks, J.C.; Paolucci, C. Nanoparticle size effects on phase stability for molybdenum and tungsten carbides. Chem. Mater. 2021, 33, 4606–4620.
- 15.
Hu, Z.; Zhang, L.; Huang, J.; Feng, Z.; Xiong, Q.; Ye, Z.; Chen, Z.; Li, X.; Yu, Z. Self-supported nickel-doped molybdenum carbide nanoflower clusters on carbon fiber paper for an efficient hydrogen evolution reaction. Nanoscale 2021, 13, 8264–8274.
- 16.
Kuhn, A.N.; Park, R.C.; Yu, S.; Gao, D.; Zhang, C.; Zhang, Y.; Yang, H. Valorization of carbon dioxide into C1 product via reverse water gas shift reaction using oxide-supported molybdenum carbides. Carbon Future 2024, 1, 9200011.
- 17.
Li, J.-S.; Wang, Y.; Liu, C.-H.; Li, S.-L.; Wang, Y.-G.; Dong, L.-Z.; Dai, Z.-H.; Li, Y.-F.; Lan, Y.-Q. Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Nat. Commun. 2016, 7, 11204.
- 18.
Zhao, T.; Lan, D.; Jia, Z.; Gao, Z.; Wu, G. Hierarchical porous molybdenum carbide synergic morphological engineering towards broad multi-band tunable microwave absorption. Nano Res. 2024, 17, 9845–9856.
- 19.
Baek, D.S.; Lee, J.; Kim, J.; Joo, S.H. Metastable phase-controlled synthesis of mesoporous molybdenum carbides for efficient alkaline hydrogen evolution. ACS Catal. 2022, 12, 7415–7426.
- 20.
Wang, H.; Diao, Y.; Gao, Z.; Smith, K.J.; Guo, X.; Ma, D.; Shi, C. H2 production from methane reforming over molybdenum carbide catalysts: From surface properties and reaction mechanism to catalyst development. ACS Catal. 2022, 12, 15501–15528.
- 21.
Upadhyay, S.; Pandey, O.P. Synthesis and electrochemical applications of molybdenum carbide: Recent progress and perspectives. J. Electrochem. Soc. 2022, 169, 016511.
- 22.
Guardia-Valenzuela, J.; Bertarelli, A.; Carra, F.; Mariani, N.; Bizzaro, S.; Arenal, R. Development and properties of high thermal conductivity molybdenum carbide–graphite composites. Carbon 2018, 135, 72–84.
- 23.
Yu, S.; Gautam, A.K.; Gao, D.; Kuhn, A.N.; He, H.; Mironenko, A.V.; Yang, H. Implication of surface oxidation of nanoscale molybdenum carbide on electrocatalytic activity. J. Mater. Chem. A 2024, 12, 15163–15176.
- 24.
Yang, Q.; Sun, K.; Xu, Y.; Ding, Z.; Hou, R. Tuning crystal phase of molybdenum carbide catalyst to induce the different selective hydrogenation performance. Appl. Catal. A 2022, 630, 118455.
- 25.
Xiao, T.-c.; York, A.P.E.; Williams, V.C.; Al-Megren, H.; Hanif, A.; Zhou, X.-y.; Green, M.L.H. Preparation of molybdenum carbides using butane and their catalytic performance. Chem. Mater. 2000, 12, 3896–3905.
- 26.
Tacey, S.A.; Jankousky, M.; Farberow, C.A. Assessing the role of surface carbon on the surface stability and reactivity of β-Mo2C catalysts. Appl. Surf. Sci. 2022, 593, 153415.
- 27.
Wyvratt, B.M.; Gaudet, J.R.; Thompson, L.T. Effects of passivation on synthesis, structure and composition of molybdenum carbide supported platinum water–gas shift catalysts. J. Catal. 2015, 330, 280–287.
- 28.
Likith, S.R.J.; Farberow, C.A.; Manna, S.; Abdulslam, A.; Stevanović, V.; Ruddy, D.A.; Schaidle, J.A.; Robichaud, D.J.; Ciobanu, C.V. Thermodynamic stability of molybdenum oxycarbides formed from orthorhombic Mo2C in oxygen-rich environments. J. Phys. Chem. C 2018, 122, 1223–1233.
- 29.
Yu, W.; Salciccioli, M.; Xiong, K.; Barteau, M.A.; Vlachos, D.G.; Chen, J.G. Theoretical and experimental studies of C–C versus C–O bond scission of ethylene glycol reaction pathways via metal-modified molybdenum carbides. ACS Catal. 2014, 4, 1409–1418.
- 30.
Murugappan, K.; Anderson, E.M.; Teschner, D.; Jones, T.E.; Skorupska, K.; Román-Leshkov, Y. Operando NAP-XPS unveils differences in MoO3 and Mo2C during hydrodeoxygenation. Nat. Catal. 2018, 1, 960–967.
- 31.
Kumar, A.; Bhan, A. Oxygen content as a variable to control product selectivity in hydrodeoxygenation reactions on molybdenum carbide catalysts. Chem. Eng. Sci. 2019, 197, 371–378.
- 32.
Ammal, S.C.; Heyden, A. Active site identification for glycerol hydrodeoxygenation over the oxygen modified molybdenum carbide surface. ACS Catal. 2023, 13, 7499–7513.
- 33.
Politi, J.R. d. S.; Viñes, F.; Rodriguez, J.A.; Illas, F. Atomic and electronic structure of molybdenum carbide phases: bulk and low Miller-index surfaces. Phys. Chem. Chem. Phys. 2013, 15, 12617–12625.
- 34.
Ma, Y.; Guan, G.; Hao, X.; Cao, J.; Abudula, A. Molybdenum carbide as alternative catalyst for hydrogen production–A review. Renewable Sustainable Energy Rev. 2017, 75, 1101–1129.
- 35.
Liu, X.; Salahub, D.R. Application of topological analysis of the electron localization function to the complexes of molybdenum carbide nanoparticles with unsaturated hydrocarbons. Can. J. Chem. 2016, 94, 282–292.
- 36.
Ren, J.; Huo, C.-F.; Wang, J.; Cao, Z.; Li, Y.-W.; Jiao, H. Density functional theory study into the adsorption of CO2, H and CHx (x = 0–3) as well as C2H4 on α-Mo2C(0001). Surf. Sci. 2006, 600, 2329–2337.
- 37.
Zhao, L.; Yuan, H.; Sun, D.; Jia, J.; Yu, J.; Zhang, X.; Liu, X.; Liu, H.; Zhou, W. Active facet regulation of highly aligned molybdenum carbide porous octahedrons via crystal engineering for hydrogen evolution reaction. Nano Energy 2020, 77, 105056.
- 38.
Wu, N.; Liu, J.; Zhao, W.; Du, J.; Zhong, W. Molybdenum carbide MXene embedded with nickel sulfide clusters as an efficient electrocatalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy 2023, 48, 17526–17535.
- 39.
Yang, C.; Zhao, R.; Xiang, H.; Wu, J.; Zhong, W.; Li, X.; Zhang, Q. Structural transformation of molybdenum carbide with extensive active centers for superior hydrogen evolution. Nano Energy 2022, 98, 107232.
- 40.
Sullivan, M.M.; Bhan, A. Acid site densities and reactivity of oxygen-modified transition metal carbide catalysts. J. Catal. 2016, 344, 53–58.
- 41.
Yao, S.; Yan, B.; Jiang, Z.; Liu, Z.; Wu, Q.; Lee, J.H.; Chen, J.G. Combining CO2 reduction with ethane oxidative dehydrogenation by oxygen-modification of molybdenum carbide. ACS Catal. 2018, 8, 5374–5381.
- 42.
Sullivan, M.M.; Held, J.T.; Bhan, A. Structure and site evolution of molybdenum carbide catalysts upon exposure to oxygen. J. Catal. 2015, 326, 82–91.
- 43.
Sullivan, M.M.; Bhan, A. Effects of oxygen coverage on rates and selectivity of propane-CO2 reactions on molybdenum carbide. J. Catal. 2018, 357, 195–205.
- 44.
- 45.
Park, J.H.; Lee, C.H.; Yu, S.; Kharel, P.; Choi, R.; Zhang, C.; Huang, P.Y.; Kwon, J.S.-I.; Yang, H. Effects of amine-based covalent organic framework on platinum electrocatalyst performance towards hydrogen evolution reaction. Nano Energy 2024, 128, 109947.