2505000641
  • Open Access
  • Article
Sn-TiO2/PTA Nanocomposite Films for High-Contrast Rewritable Media with Visible-Light-Driven Black Coloration
  • Yao Dou,   
  • Dongliang Wei,   
  • Yongli Qin,   
  • Zhen Zhang,   
  • Yun Zhang *,   
  • Wenshou Wang *

Received: 19 Mar 2025 | Revised: 21 Apr 2025 | Accepted: 23 Apr 2025 | Published: 15 May 2025

Abstract

Photochromic materials are pivotal for rewritable smart media, yet conventional systems suffer from sluggish kinetics, UV dependency, and low optical contrast. Herein, we present a visible-light-responsive Sn-TiO2/phosphotungstic acid (PTA) nanocomposite film mediated by polyvinylpyrrolidone (PVP) that addresses these challenges through interfacial engineering and bandgap modulation. Sn-doped TiO2 nanoparticles, synthesized hydrothermally, are covalently linked to phosphotungstic acid (PTA) clusters via PVP-assisted dispersion, enabling efficient charge separation under 450 nm illumination. The Sn-TiO2/PTA/PVP nanocomposite film achieves ultrafast coloration within 10 s, attributed to the reduction of W6⁺ to W5⁺ in PTA. The colored state exhibits remarkable air stability (48 h) and rapid recovery (<30 min) via H2O2 vapor, sustaining >80 reversible cycles without degradation. With a narrowed bandgap (2.23 eV) and broadband intervalence charge transfer (IVCT) absorption (600–800 nm), the film demonstrates high-contrast black-state coloration and 2-day legibility as a rewritable medium. This work overcomes the limitations of organic dyes and UV-dependent systems, offering an inorganic, eco-friendly platform for smart displays, anti-counterfeiting labels, and energy-efficient photochromic technologies.

Graphical Abstract

References 

  • 1.
    Ke, Y.; Chen, J.; Lin, G.; Wang, S.; Zhou, Y.; Yin, J.; Lee, P.S.; Long, Y. Smart Windows: Electro-, Thermo-, Mechano-, Photochromics, and Beyond. Energy Mater.2019, 9, 1902066.
  • 2.
    Chun, S.Y.; Park, S.; Lee, S.I.; Nguyen, H.D.; Lee, K.-K.; Hong, S.; Han, C.-H.; Cho, M.; Choi, H.-K.; Kwak, K. Operando Raman and UV-Vis spectrosscopic investigation of the coloring and bleaching mechanism of self-powered photochromic devices for smart windows. Nano Energy2021, 82, 105721.
  • 3.
    Pang, Q.; Bian, L.; Xu, J.; Jia, Y.; Wang, C.; Zhang, Y.; Ju, Q.; Wu, Q.; Fang, Z. Sunlight-Sensitizing Switchable Photochromic Transparent Aesthetic Wood for Smart Windows. ACS Sustain. Chem. Eng.2024, 12, 10506–10516.
  • 4.
    Meng, W.; Kragt, A.J.J.; Gao, Y.; Brembilla, E.; Hu, X.; van der Burgt, J.S.; Schenning, A.; Klein, T.; Zhou, G.; van den Ham, E.R.; et al.Scalable Photochromic Film for Solar Heat and Daylight Management. Mater. 2024, 36, e2304910.
  • 5.
    Ma, T.; Li, B.; Zhu, Y.; Wu, S.; Zhao, X.; Chu, X.; Tian, S. Enhanced photochromic performance of Zn-doped W18O49-based films for smart windows. Mater. Chem. C2024, 12, 10218–10225.
  • 6.
    Sheng, L.; Li, M.; Zhu, S.; Li, H.; Xi, G.; Li, Y.G.; Wang, Y.; Li, Q.; Liang, S.; Zhong, K.; et al.Hydrochromic molecular switches for water-jet rewritable paper. Commun. 2014, 5, 3044.
  • 7.
    Smith, A.T.; Ding, H.; Gorski, A.; Zhang, M.; Gitman, P.A.; Park, C.; Hao, Z.; Jiang, Y.; Williams, B.L.; Zeng, S.; et al.Multi-color Reversible Photochromisms via Tunable Light-Dependent Responses. Matter 2020, 2, 680–696.
  • 8.
    Sarker, S.; Macharia, D.K.; Zhang, Y.; Zhu, Y.; Li, X.; Wen, M.; Meng, R.; Yu, N.; Chen, Z.; Zhu, M. Synthesis of MnO2-Ag Nanojunctions with Plasmon-Enhanced Photocatalytic and Photothermal Effects for Constructing Rewritable Mono-/Multi-Color Fabrics. ACS Appl. Mater. Interfaces2022, 14, 5545–5557.
  • 9.
    Wang, W.; Yi, L.; Zheng, Y.; Lu, J.; Jiang, A.; Wang, D. Photochromic and mechanochromic cotton fabric for flexible rewritable media based on acrylate latex with spiropyran cross-linker. Commun.2023, 37, 101455.
  • 10.
    Cui, B.; Guo, C.; Zhang, Z.; Fu, G. Core–shell ZnCo-PBA@WO72heterojunctions with enhanced photo-responsive color switching ability for highly efficient rewritable media and information encryption. Chem. Eng. J. 2023, 477, 147037.
  • 11.
    Zhang, J.; Guo, M.; Su, Y.; Wu, W.; Wang, S.; Yang, R.; Xu, C.; Yin, H.; Xu, J.; Wang, X. Photochromic ionogel with a wide temperature range and fatigue resistance for high-resolution rewritable information record. Eng. J.2024, 495, 153263.
  • 12.
    Chen, T.; Xu, B.; Han, J.; Zhu, M.; Zhang, J.; Li, Z. Chelating Coordination Regulated Photochromic Electrospun Nanofibers for Waterproof and Long-Color-Retention Rewritable Wearables. ACS Appl. Mater. Interfaces2024, 16, 13305–13315.
  • 13.
    Li, P.; Zhang, Z.; Gao, X.; Sun, H.; Peng, D.; Zou, H.; Zhang, Q.; Hao, X. Fast self-bleaching Nb2O5-based photochromics for high security dynamic anti-counterfeiting and optical storage applications. Eng. J.2022, 435, 134801.
  • 14.
    Li, X.; Lin, H.; Lin, S.; Li, P.; Wang, P.; Xu, J.; Cheng, Y.; Zhang, Q.; Wang, Y. Rare-Earth-Ion Doped Bi5ZnNb1.5O7Photochromics: A Fast Self-Recoverable Optical Storage Medium for Dynamic Anti-Counterfeiting with High Security. Laser Photonics Rev. 2023, 17, 2200734.
  • 15.
    Wan, J.; Xu, J.; Zhu, S.; Li, J.; Chen, K. Multicolor photochromic material with dual protection of anti-counterfeiting and waterproofing. Eng. J.2023, 473, 145500.
  • 16.
    Sun, L.; Wang, B.; Xing, G.; Liang, C.; Ma, W.; Yang, S. Bi-induced photochromism and photo-stimulated luminescence with fast photochromic response for multi-mode dynamic anti-counterfeiting and optical information storage. Eng. J.2023, 455, 140752.
  • 17.
    Hu, L.; Gao, Y.; Cai, Q.; Wei, Y.; Zhu, J.; Wu, W.; Yang, Y. Cholesterol-substituted spiropyran: Photochromism, thermochromism, mechanochromism and its application in time-resolved information encryption. Colloid Interface Sci.2024, 665, 545–553.
  • 18.
    Wang, L.; Zhong, W.; Gao, W.; Liu, W.; Shang, L. Dynamic multicolor luminescent anti-counterfeiting based on spiropyran-engineered gold nanoclusters. Eng. J.2024, 479, 147490.
  • 19.
    Song, Y.; Zhao, Y.; Huang, Z.; Zhao, J. Aqueous synthesis of molybdenum trioxide (h-MoO3, α-MoO3H2O and h-/α-MoO3composites) and their photochromic properties study. J. Alloys Compd. 2017, 693, 1290–1296.
  • 20.
    Wang, W.; Ye, Y.; Feng, J.; Chi, M.; Guo, J.; Yin, Y. Enhanced photoreversible color switching of redox dyes catalyzed by barium-doped TiO2 Angew. Chem. Int. Ed.2015, 54, 1321–1326.
  • 21.
    Kozlov, D.A.; Shcherbakov, A.B.; Kozlova, T.O.; Angelov, B.; Kopitsa, G.P.; Garshev, A.V.; Baranchikov, A.E.; Ivanova, O.S.; Ivanov, V.K. Photochromic and Photocatalytic Properties of Ultra-Small PVP-Stabilized WO3 Molecules2019, 25, 154.
  • 22.
    Yan, X.; Zhong, W.; Qu, S.; Li, Z.; Shang, L. Photochromic Tungsten Oxide Quantum Dots-based Fluorescent Photoswitches towards Dual-mode Anti-counterfeiting Application. Colloid Interface Sci.2023, 646, 855–862.
  • 23.
    Wang, F.; Song, Y.; Xie, R.; Li, J.; Zhang, X.; Xie, H.; Zou, H. TiO2/PVA Based Composites: Visible Light Activated Rapid Dual-Mode optical Response. Eng. J.2023, 475, 146306.
  • 24.
    Li, L.; Yu, Y.-T.; Zhang, N.-N.; Li, S.-H.; Zeng, J.-G.; Hua, Y.; Zhang, H. Polyoxometalate (POM)-based crystalline hybrid photochromic materials. Chem. Rev.2024, 500, 215526.
  • 25.
    Zhang, J.; Chen, T.; Zhu, M.; Lu, J.; Liu, X.; Sun, W.; So, M.Y.; Xu, B. Scalable, Fast Light-Responsive, and Excellent Color-Retention Fiber-Based Photochromic Wearables for Sustainable Photo-Patterning and Information Security Encryption. Funct. Mater.2024, 35, 2415622.
  • 26.
    Pope, T.R.; Lassig, M.N.; Neher, G.; Weimar Iii, R.D.; Salguero, T.T. Chromism of Bi2WO6in single crystal and nanosheet forms. Mater. Chem. C 2014, 2, 3223–3230.
  • 27.
    Kayani, A.B.A.; Kuriakose, S.; Monshipouri, M.; Khalid, F.A.; Walia, S.; Sriram, S.; Bhaskaran, M. UV Photochromism in Transition Metal Oxides and Hybrid Materials. Small2021, 17, e2100621.
  • 28.
    Yang, Y.; Li, J.; Li, X.; Guan, L.; Gao, Z.; Duan, L.; Jia, F.; Gao, G. Easily Prepared and Reusable Films for Fast-Response Rewritable Light Printing. ACS Appl. Mater. Interfaces2019, 11, 14322–14328.
  • 29.
    Wu, W.; Ni, M.; Feng, Q.; Zhou, Y.; Cui, Y.; Zhang, Y.; Xu, S.; Lin, L.; Zhou, M.; Li, Z. A wet bacterial cellulose film self-anchored by phosphotungstic acid: Flexible, quick-response and stable cycling performance for photochromic application. Des.2024, 238, 112613.
  • 30.
    Hussain, M.; Ahmad, Z.; Ejeromedoghene, O.; Shehzad, K.; Akhtar, M.; Fu, G. Hybrid polysaccharide film infused with polyoxometalates for inkless printing and solar ultraviolet sensing. J. Biol. Macromol.2025, 293, 139308.
  • 31.
    Zhang, Y.; Gao, Z.; Liu, F.; Liu, L.; Yan, M.; Wang, W. Electrostatic Assembly of Photochromic TiO2/Phosphomolybdic Acid Composite Nanoparticles for Light-Responsive Rewritable Papers. ACS Appl. Nano Mater.2022, 5, 13218–13226.
  • 32.
    Tian, Y.; Liu, W.; Hu, J.; Li, Z.; Xin, X.; Fu, G. Synthesis of highly transparent and fast-responding photochromic coating by template method with space-limited domains. Eng. J.2024, 500, 156961.
  • 33.
    Hutomo, F.A.; Pramata, A.D.; Saputra, F.; Pratama, P.R.; De Yonarosa, T.G.; Rasyida, A.; Widyastuti; Sutarsis; Hamidah, N.L. Visible light-driven Synergetic antimicrobial activity of Cu2O quantum dots and electrospun PAN/PCL nanofiber matrix. Sci.:Adv. Mater. Devices2024, 9, 100779.
  • 34.
    Nazari, S.; Asgari, E.; Sheikhmohammadi, A.; Mokhtari, S.A.; Alamgholiloo, H. Visible-light-driven photocatalytic activity of WO3/ZIF-67 S-scheme heterojunction for upgrading degradation of oxytetracycline. Environ. Chem. Eng.2023, 11, 110393.
  • 35.
    Jia, L.; Ma, N.; Shao, P.; Ge, Y.; Liu, J.; Dong, W.; Song, H.; Lu, C.; Zhou, Y.; Xu, X. Incorporating ReS2Nanosheet into ZnIn2S4 Nanoflower as Synergistic Z-Scheme Photocatalyst for Highly Effective and Stable Visible-Light-Driven Photocatalytic Hydrogen Evolution and Degradation. Small 2024, 20, e2404622.
  • 36.
    Zhang, J.; Lei, Y.; Jiang, J.; Zhao, S.; Yi, H.; Tang, X.; Huang, X.; Zhou, Y.; Gao, F. ZnIn2S4/g-C3N4binary heterojunction nanostructure for enhancing visible light CO2 reduction at the reaction interface. Energy 2025, 242, 122380.
  • 37.
    Chen, P.; Wang, X.; Liu, B.; Yan, L.; Du, X.; Zhang, J.; Zhao, J. Cu-doped KTN crystal with controllable, reversible, and fast photochromic properties: A superior electro-optical material for improving beam deflection performance. Int.2024, 50, 32645–32654.
  • 38.
    Wang, B.; Guo, Y.; Li, Q.; Xin, C.; Tian, Y.; Zhang, W.; Yu, X. Design of porous ZrO2with well-tuned band structures and strong visible-light harvesting via Zn doping for enhanced visible-light photocatalysis. Eng. J. 2024, 481, 148489.
  • 39.
    Zhang, Y.; Dou, Y.; Ye, Z.; Xue, W.; Liu, F.; Yan, M.; Wang, W.; Yin, Y. Visible-Light-Responsive Photoreversible Multi-Color Switching for Rewritable Light-Printing and Information Display. Small2024, 20, e2310962.
  • 40.
    Ma, Y.; Li, A.; Wang, C.; Ge, X. Preparation of HPW@UiO-66 catalyst with defects and its application in oxidative desulfurization. Eng. J.2021, 404, 127062.
  • 41.
    Sun, A.; Nan, F.; Wei, Q.; Wang, L.; Yu, W.W. Color-tunable, multifunctional photochromic composites for wearable UV monitoring and biomechanical energy harvesting. Nano Energy2024, 126, 109679.
  • 42.
    Xiong, T.; Yong, W.; Chen, N.; Fu, G. Transparent insulating photochromic PU/PTA films for Wide-Spectrum modulated smart windows. Photochem. Photobiol.A 2024, 456, 115853.
  • 43.
    Gu, H.; Guo, C.; Zhang, S.; Bi, L.; Li, T.; Sun, T.; Liu, S. Highly Efficient, Near-Infrared and Visible Light Modulated Electrochromic Devices Based on Polyoxometalates and W18O49 ACS Nano2018, 12, 559–567.
  • 44.
    Chen, L.; Chen, W.L.; Wang, X.L.; Li, Y.G.; Su, Z.M.; Wang, E.B. Polyoxometalates in dye-sensitized solar cells. Soc. Rev.2019, 48, 260–284.
  • 45.
    Chen,X.; Zhang, G.; Li, B.; Wu, L. An integrated giant polyoxometalate complex for photothermally enhanced catalytic oxidation. Adv. 2021, 7, eabf8413.
  • 46.
    Ganeshraja, A.S.; Thirumurugan, S.; Rajkumar, K.; Zhu, K.; Wang, Y.; Anbalagan, K.; Wang, J. Effects of structural, optical and ferromagnetic states on the photocatalytic activities of Sn–TiO2 RSC Adv.2016, 6, 409–421.
  • 47.
    Xiang, H.; Luo, T.; Ji, Y.; Xiong, T.; Qian, L.; Yang, S.; Wang, H. Photocatalytic degradation of low-concentration gaseous benzene in air via bifunctional tin-doped titanium dioxide catalyst. Technol. Innov. 2024, 36, 103804.
  • 48.
    Cui, Y.; Xing, Z.; Guo, M.; Qiu, Y.; Fang, B.; Li, Z.; Wang, Y.; Chen, P.; Zhou, W. Core–shell carbon colloid sphere@phosphotungstic acid/CdS as a Z-scheme heterojunction with synergistic adsorption, photothermal and photocatalytic performance. Sci. Technol.2021, 11, 6080–6088.
  • 49.
    Cai, S.; Wu, H.; Gao, X.; Chen, X.; Cheng, C.; Yang, X.; Sun, R. Phosphotungstic acid decorated free-standing electrode accelerates polysulfides conversion for high-performance flexible Li-S batteries. Energy Storage2024, 89, 111663.
  • 50.
    Li, R.; Zhou, Y.; Shao, Z.; Zhao, S.; Chang, T.; Huang, A.; Li, N.; Ji, S.; Jin, P. Enhanced Coloration/Bleaching Photochromic Performance of WO3Based on PVP/PU Composite Matrix. Select 2019, 4, 9817–9821.
  • 51.
    Yang, Z.; Wang, D.; Zhang, Y.; Feng, Z.; Liu, L.; Wang, W. Photoreductive BiOCl ultrathin nanosheets for highly efficient photocatalytic color switching. ACS Appl. Mater. Interfaces2020, 12, 8604–8613.
  • 52.
    Gao, Z.; Zhou, Z.; Wang, M.; Shang, N.; Gao, W.; Cheng, X.; Gao, S.; Gao, Y.; Wang, C. Highly dispersed Pd anchored on heteropolyacid modified ZrO2for high efficient hydrodeoxygenation of lignin-derivatives. Fuel 2023, 334, 126768.
  • 53.
    Boga, B.; Székely, I.; Pap, Z.; Baia, L.; Baia, M. Detailed Spectroscopic and Structural Analysis of TiO2/WO3Composite Semiconductors. Spectro. 2018, 2018, 6260458.
  • 54.
    Khan, H.; Rigamonti, M.G.; Boffito, D.C. Enhanced photocatalytic activity of Pt-TiO2/WO3hybrid material with energy storage ability. Catal. B 2019, 252, 77–85.
  • 55.
    Wei, D.; Zhang, Y.; Xue, W.; Dou, Y.; Liu, F.; Yan, M.; Wang, W. Visible-Light-Responsive Photoreversible Color Switching of Oxygen-Deficient WO3–xHierarchical Nanostructures for Long-Legible Rewritable Paper. ACS Sustain. Chem. Eng. 2024, 12, 6310–6319.
  • 56.
    Hua, C.; Doheny, P.W.; Ding, B.; Chan, B.; Yu, M.; Kepert, C.J.; D’Alessandro, D.M. Through-space intervalence charge transfer as a mechanism for charge delocalization in metal–organic frameworks. Am. Chem. Soc.2018, 140, 6622–6630.
  • 57.
    Ramírez-Wierzbicki, I.; Cotic, A.; Cadranel, A. Photoinduced intervalence charge transfers: spectroscopic tools to study fundamental phenomena and applications. ChemPhysChem2022, 23, e202200384.
  • 58.
    Yang, C.; Guo, N.; Qu, S.; Ma, Q.; Liu, J.; Chen, S.; Ouyang, R. Design of anti-thermal quenching Pr3+-doped niobate phosphors based on a charge transfer and intervalence charge transfer band excitation-driven strategy. Chem. Front.2023, 10, 4808–4818.
  • 59.
    Kong, L.; Jing, Z.; Mamoor, M.; Jiang, Y.; Zhai, Y.; Qu, G.; Wang, L.; Wang, B.; Xu, L. Enhancing the Reversibility and Kinetics of Heterovalent Ion-Substituted Mn-Based Prussian Blue Analogue Cathodes via Intervalence Charge Transfer. Chem. Int. Ed.2025, e202500254.
  • 60.
    Chang, X.; Dong, X.; Liu, X.; Tong, Y.; Li, K.; Li, Z.; Lu, Y. Constructing a hexagonal/orthorhombic WO3phase junction for enhanced photochromism. Mater. 2023, 142, 114131.
  • 61.
    Wang, Q.; Zhang, W.; Hu, X.; Xu, L.; Chen, G.; Li, X. Hollow spherical WO3/TiO2heterojunction for enhancing photocatalytic performance in visible-light. Water Process Eng. 2021, 40, 101943.
  • 62.
    Zhao, J.; Liu, L.; Zhang, Y.; Feng, Z.; Zhao, F.; Wang, W. Light-responsive color switching of self-doped TiO2−x/WO30.33H2O hetero-nanoparticles for highly efficient rewritable paper. Nano Res.2020, 14, 165–171.
  • 63.
    Zhang, Y.; Cheng, C.; Zhou, Z.; Long, R.; Fang, W.H. Surface Hydroxylation during Water Splitting Promotes the Photoactivity of BiVO4(010) Surface by Suppressing Polaron-Mediated Charge Recombination. Phys. Chem. Lett.2023, 14, 9096–9102.
  • 64.
    Deng, H.; Qin, C.; Pei, K.; Wu, G.; Wang, M.; Ni, H.; Ye, P. TiO2/reduced hydroxylated graphene nanocomposite photocatalysts: Improved electron–hole separation and migration. Chem. Phys.2021, 270, 124796.
  • 65.
    Yang, Y.; Chen, Y.; Li, Y.; Wang, Z.; Zhao, H. Acid-, mechano- and photochromic molecular switches based on a spiropyran derivative for rewritable papers. Chem. Front.2022, 6, 916–923.
  • 66.
    Zhang, Y.; Wang, Q., Acceleration photochromic performance in tungsten oxide. Mater.2024, 157, 116365.
  • 67.
    Zhu, Y.; Li, B.; Li, C.; Tian, S., Transparent photochromic Fe-doped W18O49films with ultrahigh solar energy modulation for smart windows. Mater. Chem. C 2025, 13, 6115–6122.
  • 68.
    Oderinde, O.; Ejeromedoghene, O.; Fu, G., Synthesis and properties of low-cost, photochromic transparent hydrogel based on ethaline-assisted binary tungsten oxide‐molybdenum oxide nanocomposite for optical memory applications. Adv. Technol.2022, 33, 687–699.
  • 69.
    Liu, T.; Li, J. L.; Xie, Z.; Huang, C.; Wang, J.; Zhang, C.; Sha, C.; Wang, L., Naphthalene-embedded spiropyran derivative-A type of conjugated expanded material with solid-state photochromic properties and tunable color switching range. Mol. Struct.2024, 1318, 139404.
Share this article:
How to Cite
Dou, Y.; Wei, D.; Qin, Y.; Zhang, Z.; Zhang, Y.; Wang, W. Sn-TiO2/PTA Nanocomposite Films for High-Contrast Rewritable Media with Visible-Light-Driven Black Coloration. Materials and Interfaces 2025, 2 (2), 143–154. https://doi.org/10.53941/mi.2025.100012.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.