- 1.
Cai, Z.; Li, Z.; Ravaine, S.; He, M.; Song, Y.; Yin, Y.; Zheng, H.; Teng, J.; Zhang, A. From colloidal particles to photonic crystals: Advances in self-assembly and their emerging applications. Soc. Rev. 2021, 50, 5898–5951. https://doi.org/10.1039/D0CS00706D.
- 2.
Foelen, Y.; Schenning, A.P.H.J. Optical indicators based on structural colored polymers. Sci. 2022, 9, 2200399. https://doi.org/10.1002/advs.202200399.
- 3.
Yang, J.; Zhang, X.; Zhang, X.; Wang, L.; Feng, W.; Li, Q. Beyond the visible: Bioinspired infrared adaptive materials. Mater. 2021, 33, 2004754. https://doi.org/10.1002/adma.202004754.
- 4.
Li, Z.; Fan, Q.; Yin, Y. Colloidal Self-Assembly Approaches to Smart Nanostructured Materials. Rev. 2022, 122, 4976–5067. https://doi.org/10.1021/acs.chemrev.1c00482.
- 5.
Xuan, Z.; Li, J.; Liu, Q.; Yi, F.; Wang, S.; Lu, W. Artificial Structural Colors and Applications. Innovation2021, 2, 100081. https://doi.org/10.1016/j.xinn.2021.100081.
- 6.
Lopez-Garcia, M.; Masters, N.; O’Brien, H.E.; Lennon, J.; Atkinson, G.; Cryan, M.J.; Oulton, R.; Whitney, H.M. Light-induced dynamic structural color by intracellular 3D photonic crystals in brown algae. Adv. 2018, 4, eaan8917. https://doi.org/10.1126/sciadv.aan8917.
- 7.
Whitney, H.M.; Kolle, M.; Andrew, P.; Chittka, L.; Steiner, U.; Glover, B.J. Floral Iridescence, Produced by Diffractive Optics, Acts as a Cue for Animal Pollinators. Science2009, 323, 130–133. https://doi.org/10.1126/science.1166256.
- 8.
Parker, A.R.; Welch, V.L.; Driver, D.; Martini, N. Opal analogue discovered in a weevil. Nature2003, 426, 786–787. https://doi.org/10.1038/426786a.
- 9.
Teyssier, J.; Saenko, S.V.; van der Marel, D.; Milinkovitch, M.C. Photonic crystals cause active colour change in chameleons. Commun. 2015, 6, 6368. https://doi.org/10.1038/ncomms7368.
- 10.
Yoshioka, S.; Fujita, H.; Kinoshita, S.; Matsuhana, B. Alignment of crystal orientations of the multi-domain photonic crystals in Parides sesostris wing scales. R. Soc. Interface 2014, 11, 20131029. https://doi.org/10.1098/rsif.2013.1029.
- 11.
Saranathan, V.; Osuji, C.O.; Mochrie, S.; Noh, H.; Narayanan, S.; Sandy, A.; Dufresne, E.R.; Prum, R.O. Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales. Natl. Acad. Sci. USA 2010, 107, 11676–11681. https://doi.org/10.1073/pnas.0909616107.
- 12.
Marlow, F.; Sharifi, P.; Brinkmann, R.; Mendive, C. Opals: Status and Prospects. Chem. Int. Ed. 2009, 48, 6212–6233. https://doi.org/10.1002/anie.200900210.
- 13.
Welch, V.; Lousse, V.; Deparis, O.; Parker, A.; Vigneron, J.P. Orange reflection from a three-dimensional photonic crystal in the scales of the weevil Pachyrrhynchuscongestus pavonius (Curculionidae). Rev. E 2007, 75, 041919. https://doi.org/10.1103/PhysRevE.75.041919.
- 14.
Sharma, V.; Crne, M.; Park, J.O.; Srinivasarao, M. Structural Origin of Circularly Polarized Iridescence in Jeweled Beetles. Science2009, 325, 449–451. https://doi.org/10.1126/science.1172051.
- 15.
Zhang, X.; Li, L.; Chen, Y.; Valenzuela, C.; Liu, Y.; Yang, Y.; Feng, Y.; Wang, L.; Feng, W. Mechanically Tunable Circularly Polarized Luminescence of Liquid Crystal-Templated Chiral Perovskite Quantum Dots. Chem. Int. Ed. 2024, 63, e202404202. https://doi.org/10.1002/ange.202404202.
- 16.
Lin, X.; Shi, D.; Yi, G.; Yu, D. Structural color-based physical unclonable function. Responsive 2024, 2, e20230031. https://doi.org/10.1002/rpm.20230031.
- 17.
Wang, F.; Lyu, R.; Xu, H.; Gong, R.; Ding, B. Tunable colors from responsive 2D materials. Responsive 2024, 2, e20240007. https://doi.org/10.1002/rpm.20240007.
- 18.
Lyu, Q.; Li, M.; Zhang, L.; Zhu, J. Structurally-colored adhesives for sensitive, high-resolution, and non-invasive adhesion self-monitoring. Commun. 2024, 15, 8419. https://doi.org/10.1038/s41467-024-52794-5.
- 19.
Li, H.; Zhao, G.; Zhu, M.; Guo, J.; Wang, C. Robust Large-Sized Photochromic Photonic Crystal Film for Smart Decoration and Anti-Counterfeiting. ACS Mater. Interfaces 2022, 14, 14618–14629. https://doi.org/10.1021/acsami.2c01211.
- 20.
Fu, F.; Shang, L.; Chen, Z.; Yu, Y.; Zhao, Y. Bioinspired living structural color hydrogels. Robot. 2018, 3, eaar8580. https://doi.org/10.1126/scirobotics.aar8580.
- 21.
Liu, C.; Fan, Z.; Tan, Y.; Fan, F.; Xu, H. Tunable Structural Color Patterns Based on the Visible-Light-Responsive Dynamic Diselenide Metathesis. Mater. 2020, 32, 1907569. https://doi.org/10.1002/adma.201907569.
- 22.
Hong, W.; Yuan, Z.; Chen, X. Structural Color Materials for Optical Anticounterfeiting. Small2020, 16, 1907626. https://doi.org/10.1002/smll.201907626.
- 23.
Kim, I.; Jang, J.; Kim, G.; Lee, J.; Badloe, T.; Mun, J.; Rho, J. Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform. Commun. 2021, 12, 3614. https://doi.org/10.1038/s41467-021-23814-5.
- 24.
Zhu, C.; Jin, J.; Wang, Z.; Xu, Z.; Folgueras, M.C.; Jiang, Y.; Uzundal, C.B.; Le, H.K.D.; Wang, F.; Zheng, X.; et al. Supramolecular assembly of blue and green halide perovskites with near-unity photoluminescence. Science2024, 383, 86–93. https://doi.org/10.1126/science.adi4196.
- 25.
Yang, W.; Zheng, C.; Sun, L.; Bie, Z.; Yue, Y.; Li, X.; Sun, W.; Ikeda, T.; Wang, J.; Jiang, L. Spatiotemporal Programmability of 3D Chiral Color Units Driven by Ink Spontaneous Diffusion toward Customized Printing. Mater. 2024, 36, 2411988. https://doi.org/10.1002/adma.202411988.
- 26.
Fang, Y.; Ni, Y.; Leo, S.-Y.; Taylor, C.; Basile, V.; Jiang, P. Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers. Commun. 2015, 6, 7416. https://doi.org/10.1038/ncomms8416.
- 27.
Lee, J.-S.; Je, K.; Kim, S.-H. Designing Multicolored Photonic Micropatterns through the Regioselective Thermal Compression of Inverse Opals. Funct. Mater. 2016, 26, 4587–4594. https://doi.org/10.1002/adfm.201601095.
- 28.
Qin, L.; Gu, W.; Wei, J.; Yu, Y. Piecewise Phototuning of Self-Organized Helical Superstructures. Mater. 2018, 30, 1704941. https://doi.org/10.1002/adma.201704941.
- 29.
Wang, Y.; Aurelio, D.; Li, W.; Tseng, P.; Zheng, Z.; Li, M.; Kaplan, D.L.; Liscidini, M.; Omenetto, F.G. Modulation of Multiscale 3D Lattices through Conformational Control: Painting Silk Inverse Opals with Water and Light. Mater. 2017, 29, 1702769. https://doi.org/10.1002/adma.201702769.
- 30.
Truby, R.L.; Lewis, J.A. Printing soft matter in three dimensions. Nature2016, 540, 371–378. https://doi.org/10.1038/nature21003.
- 31.
del Pozo, M.; Sol, J.A.H.P.; Schenning, A.P.H.J.; Debije, M.G. 4D Printing of Liquid Crystals: What’s Right for Me? Mater. 2021, 33, 2104390. https://doi.org/10.1002/adma.202104390.
- 32.
Zhao, S.; Siqueira, G.; Drdova, S.; Norris, D.; Ubert, C.; Bonnin, A.; Galmarini, S.; Ganobjak, M.; Pan, Z.; Brunner, S.; et al. Additive manufacturing of silica aerogels. Nature2020, 584, 387–392. https://doi.org/10.1038/s41586-020-2594-0.
- 33.
Walker, D.A.; Hedrick, J.L.; Mirkin, C.A. Rapid, large-volume, thermally controlled 3D printing using a mobile liquid interface. Science2019, 366, 360–364. https://doi.org/10.1126/science.aax1562.
- 34.
Wang, L.; Dong, H.; Li, Y.; Liu, R.; Wang, Y.; Bisoyi, H.K.; Sun, L.; Yan, C.; Li, Q. Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer. Mater. 2015, 27, 2065–2069. https://doi.org/10.1002/adma.201405690.
- 35.
Wang, L.; Dong, H.; Li, Y.; Xue, C.; Sun, L.; Yan, C.; Li, Q. Reversible Near-Infrared Light Directed Reflection in a Self-Organized Helical Superstructure Loaded with Upconversion Nanoparticles. Am. Chem. Soc. 2014, 136, 4480–4483. https://doi.org/10.1021/ja500933h.
- 36.
Zeng, M.; King, D.; Huang, D.; Do, C.; Wang, L.; Chen, M.; Lei, S.; Lin, P.; Chen, Y.; Cheng, Z. Iridescence in nematics: Photonic liquid crystals of nanoplates in absence of long-range periodicity. Natl. Acad. Sci. USA 2019, 116, 18322–18327. https://doi.org/10.1073/pnas.1906511116.
- 37.
Bauer, J.; Crook, C.; Baldacchini, T. A sinterless, low-temperature route to 3D print nanoscale optical-grade glass. Science2023, 380, 960–966. https://doi.org/10.1126/science.abq3037.
- 38.
Kuang, X.; Wu, J.; Chen, K.; Zhao, Z.; Ding, Z.; Hu, F.; Fang, D.; Qi, H.J. Grayscale digital light processing 3D printing for highly functionally graded materials. Adv. 2019, 5, eaav5790. https://doi.org/10.1126/sciadv.aav5790.
- 39.
Hinton, T.J.; Jallerat, Q.; Palchesko, R.N.; Park, J.H.; Grodzicki, M.S.; Shue, H.-J.; Ramadan, M.H.; Hudson, A.R.; Feinberg, A.W. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Adv. 2015, 1, e1500758. https://doi.org/10.1126/sciadv.1500758.
- 40.
Yuk, H.; Lu, B.; Lin, S.; Qu, K.; Xu, J.; Luo, J.; Zhao, X. 3D printing of conducting polymers. Commun. 2020, 11, 1604. https://doi.org/10.1038/s41467-020-15316-7.
- 41.
Kang, Y.; Zhao, J.; Zeng, Y.; Du, X.; Gu, Z. 3D Printing Photonic Crystals: A Review. Small2024, 20, 2403525. https://doi.org/10.1002/smll.202403525.
- 42.
Li, G.; Leng, M.; Wang, S.; Ke, Y.; Luo, W. Printable structural colors and their emerging applications. Today 2023, 69, 133–159. https://doi.org/10.1016/j.mattod.2023.08.022.
- 43.
Zhao, C.; Wang, J.; Zhang, Z.; Chi, C. Research Progress on the Design of Structural Color Materials Based on 3D Printing. Mater. Technol. 2023, 8, 2200257. https://doi.org/10.1002/admt.202200257.
- 44.
Withnall, R.; Silver, J.; Ireland, T.G.; Zhang, S.; Fern, G.R. Achieving structured colour in inorganic systems: Learning from the natural world. Laser Technol. 2011, 43, 401–409. https://doi.org/10.1016/j.optlastec.2009.06.016.
- 45.
Meng, Z.; Wu, S.; Tang, B.; Ma, W.; Zhang, S. Structurally colored polymer films with narrow stop band, high angle-dependence and good mechanical robustness for trademark anti-counterfeiting. Nanoscale2018, 10, 14755–14762. https://doi.org/10.1039/C8NR04058C.
- 46.
Vignolini, S.; Rudall, P.J.; Rowland, A.V.; Reed, A.; Moyroud, E.; Faden, R.B.; Baumberg, J.J.; Glover, B.J.; Steiner, U. Pointillist structural color in Pollia Proc.Natl. Acad. Sci. USA 2012, 109, 15712–15715. https://doi.org/10.1073/pnas.1210105109.
- 47.
Sharma, V.; Crne, V.; Park, J.O.; Srinivasarao, M. Bouligand Structures Underlie Circularly Polarized Iridescence of Scarab Beetles: A Closer View. Today Proc. 2014, 1, 161–171. https://doi.org/10.1016/j.matpr.2014.09.019.
- 48.
Ma, J.; Yang, Y.; Valenzuela, C.; Zhang, X.; Wang, L.; Feng, W. Mechanochromic, Shape-Programmable and Self-Healable Cholesteric Liquid Crystal Elastomers Enabled by Dynamic Covalent Boronic Ester Bonds. Chem. Int. Ed. 2022, 61, e202116219. https://doi.org/10.1002/anie.202116219.
- 49.
Liu, Y.; Ma, J.; Yang, Y.; Valenzuela, C.; Zhang, X.; Wang, L.; Feng, W. Smart chiral liquid crystal elastomers: Design, properties and application. Smart 2024, 2, e20230025. https://doi.org/10.1002/smo.20230025.
- 50.
Li, X.; Yang, Y.; Valenzuela, C.; Zhang, X.; Xue, P.; Liu, Y.; Liu, C.; Wang, L. Mechanochromic and Conductive Chiral Nematic Nanostructured Film for Bioinspired Ionic Skins. ACSNano 2023, 17, 12829–12841. https://doi.org/10.1021/acsnano.3c04199.
- 51.
Yang, J.; Zhao, W.; He, W.; Yang, Z.; Wang, D.; Cao, H. Liquid crystalline blue phase materials with three-dimensional nanostructures. Mater. Chem. C 2019, 7, 13352–13366. https://doi.org/10.1039/C9TC04380B.
- 52.
Yang, Y.; Wang, L.; Yang, H.; Li, Q. 3D Chiral Photonic Nanostructures Based on Blue-Phase Liquid Crystals. SmallSci. 2021, 1, 2100007. https://doi.org/10.1002/smsc.202100007.
- 53.
Yang, J.; Zhao, W.; Yang, Z.; He, W.; Wang, J.; Ikeda, T.; Jiang, L. Photonic Shape Memory Polymer Based on Liquid Crystalline Blue Phase Films. ACS Mater. Interfaces 2019, 11, 46124–46131. https://doi.org/10.1021/acsami.9b14202.
- 54.
Valenzuela, C.; Ma, S.; Yang, Y.; Chen, Y.; Zhang, X.; Wang, L.; Feng, W. Direct Ink Writing of 3D Chiral Soft Photonic Crystals. Funct. Mater. 2025, 2421280. https://doi.org/10.1002/adfm.202421280.
- 55.
Sun, C.; Zhu, D.; Jia, H.; Yang, C.; Zheng, Z.; Wang, X. Bio-based visual optical pressure-responsive sensor. Polym. 2021, 260, 117823. https://doi.org/10.1016/j.carbpol.2021.117823.
- 56.
Chung, K.; Yu, S.; Heo, C.-J.; Shim, J.W.; Yang, S.-M.; Han, M.G.; Lee, H.-S.; Jin, Y.; Lee, S.Y.; Park, N.; et al. Flexible, Angle-Independent, Structural Color Reflectors Inspired by Morpho Butterfly Wings. Mater. 2012, 24, 2375–2379. https://doi.org/10.1002/adma.201200521.
- 57.
Sveinbjörnsson, B.R.; Weitekamp, R.A.; Miyake, G.M.; Xia, Y.; Atwater, H.A.; Grubbs, R.H. Rapid self-assembly of brush block copolymers to photonic crystals. Natl. Acad. Sci. USA 2012, 109, 14332–14336. https://doi.org/10.1073/pnas.1213055109.
- 58.
Guo, T.; Yu, X.; Zhao, Y.; Yuan, X.; Li, J.; Ren, L. Structure Memory Photonic Crystals Prepared by Hierarchical Self-Assembly of Semicrystalline Bottlebrush Block Copolymers. Macromolecules2020, 53, 3602– https://doi.org/10.1021/acs.macromol.0c00274.
- 59.
Verduzco, R.; Li, X.; Pesek, S.L.; Stein, G.E. Structure, function, self-assembly, and applications of bottlebrush copolymers. Soc. Rev. 2015, 44, 2405–2420. https://doi.org/10.1039/C4CS00329B.
- 60.
Dalsin, S.J.; Rions-Maehren, T.G.; Beam, M.D.; Bates, F.S.; Hillmyer, M.A.; Matsen, M.W. Bottlebrush Block Polymers: Quantitative Theory and Experiments. ACSNano 2015, 9, 12233–12245. https://doi.org/10.1021/acsnano.5b05473.
- 61.
Liu, H.; Wang, H.; Wang, H.; Deng, J.; Ruan, Q.; Zhang, W.; Abdelraouf, O.A.M.; Ang, N.S.S.; Dong, Z.; Yang, J.K.W.; et al. High-Order Photonic Cavity Modes Enabled 3D Structural Colors. ACSNano 2022, 16, 8244–8252. https://doi.org/10.1021/acsnano.2c01999.
- 62.
Yadav, A.; Yadav, N.; Agrawal, V.; Polyutov, S.P.; Tsipotan, A.S.; Karpov, S.V.; Slabko, V.V.; Yadav, V.S.; Wu, Y.; Zheng, H.; et al. State-of-art plasmonic photonic crystals based on self-assembled nanostructures. Mater. Chem. C 2021, 9, 3368–3383. https://doi.org/10.1039/D0TC05254J.
- 63.
Kim, J.B.; Lee, H.-Y.; Chae, C.; Lee, S.Y.; Kim, S.-H. Advanced Additive Manufacturing of Structurally-Colored Architectures. Mater. 2024, 36, 2307917. https://doi.org/10.1002/adma.202307917.
- 64.
Hou, X.; Li, F.; Song, Y.; Li, M. Recent Progress in Responsive Structural Color. Phys. Chem. Lett. 2022, 13, 2885–2900. https://doi.org/10.1021/acs.jpclett.1c04219.
- 65.
Xing, Y.; Fei, X.; Ma, J. Ultra-Fast Fabrication of Mechanical-Water-Responsive Color-Changing Photonic Crystals Elastomers and 3D Complex Devices. Small2024, 20, 2405426. https://doi.org/10.1002/smll.202405426.
- 66.
Bellis, I.D.; Martella, D.; Parmeggiani, C.; Wiersma, D.S.; Nocentini, S. Temperature Tunable 4D Polymeric Photonic Crystals. Funct. Mater. 2023, 33, 2213162. https://doi.org/10.1002/adfm.202213162.
- 67.
Wang, H.; Ruan, Q.; Wang, H.; Rezaei, S.D.; Lim, K.T.P.; Liu, H.; Zhang, W.; Trisno, J.; Chan, J.Y.E.; Yang, J.K.W. Full Color and Grayscale Painting with 3D Printed Low-Index Nanopillars. Nano 2021, 21, 4721–4729. https://doi.org/10.1021/acs.nanolett.1c00979.
- 68.
Kim, J.B.; Nam, S.K.; Park, S.; Amstad, E.; Kim, S.-H. Void-Free Photonic Surfaces Created by Adaptive Dense Packing of Emulsion Droplets. Mater. 2023, 35, 261–270. https://doi.org/10.1021/acs.chemmater.2c03124.
- 69.
Zhu, Y.; Tang, T.; Zhao, S.; Joralmon, D.; Poit, Z.; Ahire, B.; Keshav, S.; Raje, A.R.; Blair, J.; Zhang, Z.; et al. Recent advancements and applications in 3D printing of functional optics. Manuf. 2022, 25, 102682. https://doi.org/10.1016/j.addma.2022.102682.
- 70.
Tan, A.T.L.; Beroz, J.; Kolle, M.; Hart, A.J. Direct-Write Freeform Colloidal Assembly. Mater. 2018, 30, 1803620. https://doi.org/10.1002/adma.201803620.
- 71.
Kim, J.B.; Chae, C.; Han, S.H.; Lee, S.Y.; Kim, S.-H. Direct writing of customized structural-color graphics with colloidal photonic inks. Adv. 2021, 7, eabj8780. https://doi.org/10.1126/sciadv.abj8780.
- 72.
Kim, J.H.; Kim, J.B.; Kim, S.-H. Structural Color Inks Containing Photonic Microbeads for Direct Writing. ACS Mater. Interfaces 2024, 16, 21098–21108. https://doi.org/10.1021/acsami.4c01224.
- 73.
Geng, Y.; Kizhakidathazhath, R.; Lagerwall, J.P.F. Robust cholesteric liquid crystal elastomer fibres for mechanochromic textiles. Mater. 2022, 21, 1441–1447. https://doi.org/10.1038/s41563-022-01355-6.
- 74.
Li, X.; Chen, Y.; Du, C.; Liao, X.; Yang, Y.; Feng, W. Direct Ink Writing of Cephalopod Skin-Like Core-Shell Fibers from Cholesteric Liquid Crystal Elastomers and Dyed Solutions. Funct. Mater. 2024, 34, 2413965. https://doi.org/10.1002/adfm.202413965.
- 75.
Bi, R.; Li, X.; Ou, X.; Huang, J.; Huang, D.; Chen, G.; Sheng, Y.; Hong, W.; Wang, Y.; Hu, W.; et al. 3D-Printed Biomimetic Structural Colors. Small2024, 19, 2306646. https://doi.org/10.1002/smll.202306646.
- 76.
Sol, J.A.H.P.; Sentjens, H.; Yang, L.; Grossiord, N.; Schenning, A.P.H.J.; Debije, M.G. Anisotropic Iridescence and Polarization Patterns in a Direct Ink Written Chiral Photonic Polymer. Mater. 2021, 33, 2103309. https://doi.org/10.1002/adma.202103309.
- 77.
Sol, J.A.H.P.; Smits, L.G.; Schenning, A.P.H.J.; Debije, M.G. Direct Ink Writing of 4D Structural Colors. Funct. Mater. 2022, 32, 2201766. https://doi.org/10.1002/adfm.202201766.
- 78.
Choi, J.; Choi, Y.; Lee, J.-H.; Kim, M.C.; Park, S.; Hyun, K.; Lee, K.M.; Yoon, T.-H.; Ahn, S.-k. Direct-Ink-Written Cholesteric Liquid Crystal Elastomer with Programmable Mechanochromic Response. Funct. Mater. 2024, 33, 2310658. https://doi.org/10.1002/adfm.202310658.
- 79.
Chen, Y.; Valenzuela, C.; Liu, Y.; Yang, X.; Yang, Y.; Zhang, X.; Ma, S.; Bi, R.; Wang, L.; Feng, W. Biomimetic artificial neuromuscular fiber bundles with built-in adaptive feedback. Matter2025, 8, 101904. https://doi.org/10.1016/j.matt.2024.10.022.
- 80.
Yang, X.; Valenzuela, C.; Zhang, X.; Chen, Y.; Yang, Y.; Wang, L.; Feng, W. Robust integration of polymerizable perovskite quantum dots with responsive polymers enables 4D-printed self-deployable information display. Matter2023, 6, 1278–1294. https://doi.org/10.1016/j.matt.2023.02.003.
- 81.
Xue, P.; Chen, Y.; Xu, Y.; Valenzuela, C.; Zhang, X.; Bisoyi, H.K.; Yang, X.; Wang, L.; Xu, X.; Li, Q. Bioinspired MXene-Based Soft Actuators Exhibiting Angle-Independent Structural Color. Nano-MicroLetters 2023, 15, 1. https://doi.org/10.1007/s40820-022-00977-4.
- 82.
Guan, Z.; Wang, L.; Bae, J. Advances in 4D printing of liquid crystalline elastomers: Materials, techniques, and applications. Horiz. 2022, 9, 1825–1849. https://doi.org/10.1039/D2MH00232A.
- 83.
Ma, S.; Xue, P.; Tang, Y.; Bi, R.; Xu, X.; Wang, L.; Li, Q. Responsive soft actuators with MXene nanomaterials. Responsive 2024, 2, e20230026. https://doi.org/10.1002/rpm.20230026.
- 84.
Lu, W.; Wang, R.; Si, M.; Zhang, Y.; Wu, S.; Zhu, N.; Wang, W.; Chen, T. Synergistic fluorescent hydrogel actuators with selective spatial shape/color-changing behaviors via interfacial supramolecular assembly. SmartMat2024, 5, e1190. https://doi.org/10.1002/smm2.1190.
- 85.
Ma, J.; Yang, Y.; Zhang, X.; Xue, P.; Valenzuela, C.; Liu, Y.; Wang, L.; Feng, W. Mechanochromic and ionic conductive cholesteric liquid crystal elastomers for biomechanical monitoring and human–machine interaction. Horiz. 2024, 11, 217–226. https://doi.org/10.1039/D3MH01386C.
- 86.
Lv, P.; Lu, X.; Wang, L.; Feng, W. Nanocellulose-Based Functional Materials: From Chiral Photonics to Soft Actuator and Energy Storage. Funct. Mater. 2021, 31, 2104991. https://doi.org/10.1002/adfm.202104991.
- 87.
Yang, Y.; Zhang, X.; Valenzuela, C.; Bi, R.; Chen, Y.; Liu, Y.; Zhang, C.; Li, W.; Wang, L.; Feng, W. High-throughput printing of customized structural-color graphics with circularly polarized reflection and mechanochromic response. Matter2024, 7, 2091–2107. https://doi.org/10.1016/j.matt.2024.03.011.
- 88.
Zhang, Z.; Wang, C.; Wang, Q.; Zhao, Y.; Shang, L. Cholesteric cellulose liquid crystal ink for three-dimensional structural coloration. Natl. Acad. Sci. USA 2022, 119, e2204113119. https://doi.org/10.1073/pnas.2204113119.
- 89.
Georgea, K.; Esmaeilia, M.; Wang, J.; Taheri-Qazvini, N.; Abbaspourrad, A.; Sadatia, M. 3D printing of responsive chiral photonic nanostructures. Natl. Acad. Sci. USA 2023, 120, e2220032120. https://doi.org/10.1073/pnas.2220032120.
- 90.
Patel, B.B.; Walsh, D.J.; Kim, D.H.; Kwok, J.; Lee, B.; Guironnet, D.; Diao, Y. Tunable structural color of bottlebrush block copolymers through direct-write 3D printing from solution. Adv. 2020, 6, eaaz7202. https://doi.org/10.1126/sciadv.aaz7202.
- 91.
Jeona, S.; Kamble, Y.L.; Kang, H.; Shi, J.; Wade, M.A.; Patel, B.B.; Pan, T.; Rogers, S.A.; Sing, C.E.; Guironnet, D.; et al. Direct-ink-write cross-linkable bottlebrush block copolymers for on-the-fly control of structural color. Natl. Acad. Sci. USA 2024, 121, e2313617121. https://doi.org/10.1073/pnas.2313617121.
- 92.
Shanker, R.; Sardar, S.; Chen, S.; Gamage, S.; Rossi, S.; Jonsson, M.P. Noniridescent Biomimetic Photonic Microdomes by Inkjet Printing. Nano 2020, 20, 7243–7250. https://doi.org/10.1021/acs.nanolett.0c02604.
- 93.
Hu, Z.; Bradshaw, N.P.; Vanthournout, B.; Forman, C.; Gnanasekaran, K.; Thompson, M.P.; Smeets, P.; Dhinojwala, A.; Shawkey, M.D.; Hersam, M.C.; et al. Non-Iridescent Structural Color Control via Inkjet Printing of Self-Assembled Synthetic Melanin Nanoparticles. Mater. 2021, 33, 6433–6442. https://doi.org/10.1021/acs.chemmater.1c01719.
- 94.
Bai, L.; Xie, Z.; Wang, W.; Yuan, C.; Zhao, Y.; Mu, Z.; Zhong, Q.; Gu, Z. Bio-Inspired Vapor-Responsive Colloidal Photonic Crystal Patterns by Inkjet Printing. ACSNano 2014, 8, 11094–11100. https://doi.org/10.1021/nn504659p.
- 95.
Li, W.; Wang, Y.; Li, M.; Garbarini, L.P.; Omenetto, F.G. Inkjet Printing of Patterned, Multispectral, and Biocompatible Photonic Crystals. Mater. 2019, 31, 1901036. https://doi.org/10.1002/adma.201901036.
- 96.
Moirangthem, M.; Schenning, A.P.H.J. Full Color Camouflage in a Printable Photonic Blue-Colored Polymer. ACS Mater. Interfaces 2018, 10, 4168–4172. https://doi.org/10.1021/acsami.7b17892.
- 97.
Kuang, M.; Wang, L.; Song, Y. Controllable Printing Droplets for High-Resolution Patterns. Mater. 2014, 26, 6950–6958. https://doi.org/10.1002/adma.201305416.
- 98.
Liu, M.; Wang, J.; He, M.; Wang, L.; Li, F.; Jiang, L.; Song, Y. Inkjet Printing Controllable Footprint Lines by Regulating the Dynamic Wettability of Coalescing Ink Droplets. ACS Mater. Interfaces 2014, 6, 13344–13348. https://doi.org/10.1021/am5042548.
- 99.
Wu, L.; Dong, Z.; Kuang, M.; Li, Y.; Li, F.; Jiang, L.; Song, Y. Printing Patterned Fine 3D Structures by Manipulating the Three Phase Contact Line. Funct. Mater. 2015, 25, 2237–2242. https://doi.org/10.1002/adfm.201404559.
- 100.
Kuang, M.; Wang, J.; Bao, B.; Li, F.; Wang, L.; Jiang, L.; Song, Y. Inkjet Printing Patterned Photonic Crystal Domes for Wide Viewing-Angle Displays by Controlling the Sliding Three Phase Contact Line. Opt. Mater. 2014, 2, 34–38. https://doi.org/10.1002/adom.201300369.
- 101.
Li, C.; Yu, Y.; Li, H.; Tian, J.; Guo, W.; Shen, Y.; Cui, H.; Pan, Y.; Song, Y.; Shum, H.C. One-Pot Self-Assembly of Dual-Color Domes Using Mono-Sized Silica Nanoparticles. Nano 2022, 22, 5236–5243. https://doi.org/10.1021/acs.nanolett.2c01090.
- 102.
Li, C.; Yu, Y.; Li, H.; Lin, H.; Cui, H.; Pan, Y.; Zhang, R.; Song, Y.; Shum, H.C. Heterogeneous Self-Assembly of a Single Type of Nanoparticle Modulated by Skin Formation. ACSNano 2023, 17, 11645–11654. https://doi.org/10.1021/acsnano.3c02082.
- 103.
Gao, Y.; Ge, K.; Zhang, Z.; Li, Z.; Hu, S.; Ji, H.; Li, M.; Feng, H. Fine Optimization of Colloidal Photonic Crystal Structural Color for Physically Unclonable Multiplex Encryption and Anti-Counterfeiting. Sci. 2024, 11, 2305876. https://doi.org/10.1002/advs.202305876.
- 104.
Williams, C.A.; Parker, R.M.; Kyriacou, A.; Murace, M.; Vignolini, S. Inkjet Printed Photonic Cellulose Nanocrystal Patterns. Mater. 2024, 36, 2307563. https://doi.org/10.1002/adma.202307563.
- 105.
Moirangthem, M.; Scheers, A.F.; Schenning, A.P.H.J. A full color photonic polymer, rewritable with a liquid crystal ink. Commun. 2018, 54, 4425–4428. https://doi.org/10.1039/C8CC02188K.
- 106.
Liu, X.; Cui, S.; Qin, L.; Yu, Y. Two-Chromatic Printing Creates Skin-Inspired Geminate Patterns Featuring Crosstalk-Free Chemical and Physical Colors. Opt. Mater. 2024, 12, 2302573. https://doi.org/10.1002/adom.202302573.
- 107.
Yang, J.; Zhao, W.; Yang, Z.; He, W.; Wang, J.; Ikeda, T.; Jiang, L. Printable photonic polymer coating based on a monodomain blue phase liquid crystal network. Mater. Chem. C 2019, 7, 13764–13769. https://doi.org/10.1039/C9TC05052C.
- 108.
Meng, F.; Zheng, C.; Yang, W.; Guan, B.; Wang, J.; Ikeda, T.; Jiang, L. High-Resolution Erasable “Live” Patterns Based on Controllable Ink Diffusion on the 3D Blue-Phase Liquid Crystal Networks. Funct. Mater. 2022, 32, 2110985. https://doi.org/10.1002/adfm.202110985.
- 109.
Yang, Y.; Zhang, X.; Chen, Y.; Yang, X.; Ma, J.; Wang, J.; Wang, L.; Feng, W. Bioinspired Color-Changing Photonic Polymer Coatings Based on Three-Dimensional Blue Phase Liquid Crystal Networks. ACS Mater. Interfaces 2021, 13, 41102–41111. https://doi.org/10.1021/acsami.1c11711.
- 110.
Goodling, A.E.; Nagelberg, S.; Kaehr, B.; Meredith, C.H.; Cheon, S.I.; Saunders, A.P.; Kolle, M.; Zarzar, L.D. Colouration by total internal reflection and interference at microscale concave interfaces. Nature2019, 566, 523–527. https://doi.org/10.1038/s41586-019-0946-4.
- 111.
Wang, L.; Urbas, A.M.; Li, Q. Nature-Inspired Emerging Chiral Liquid Crystal Nanostructures: From Molecular Self-Assembly to DNA Mesophase and Nanocolloids. Mater. 2020, 32, 1801335. https://doi.org/10.1002/adma.201801335.
- 112.
Zhang, X.; Xu, Y.; Valenzuela, C.; Zhang, X.; Wang, L.; Feng, W.; Li, Q. Liquid crystal-templated chiral nanomaterials: From chiral plasmonics to circularly polarized luminescence. Light Appl. 2022, 11, 223. https://doi.org/10.1038/s41377-022-00913-6.
- 113.
Yang, Y.; Liu, Y.; Chen, Y.; Wang, L.; Feng, W. Bioinspired Stretchable Polymers for Dynamic Optical and Thermal Regulation. Energy Sustain. Res. 2024, 5, 2300289. https://doi.org/10.1002/aesr.202300289.
- 114.
Li, K.; Li, T.; Zhang, T.; Li, H.; Li, A.; Li, Z.; Lai, X.; Hou, X.; Wang, Y.; Shi, L.; et al. Facile full-color printing with a single transparent ink. Adv. 2021, 7, eabh1992. https://doi.org/10.1126/sciadv.abh1992.
- 115.
Zhang, Y.; Dong, Z.; Li, C.; Du, H.; Fang, N.X.; Wu, L.; Song, Y. Continuous 3D printing from one single droplet. Commun. 2020, 11, 4685. https://doi.org/10.1038/s41467-020-18518-1.
- 116.
Llorens, J.S.; Barbera, L.; Demirörs, A.F.; Studar, A.R. Light-Based 3D Printing of Complex-Shaped Photonic Colloidal Glasses. Mater. 2023, 35, 2302868. https://doi.org/10.1002/adma.202302868.
- 117.
Liao, J.; Ye, C.; Guo, J.; Garciamendez-Mijares, C.E.; Agrawal, P.; Kuang, X.; Japo, J.O.; Wang, Z.; Mu, X.; Li, W.; et al. 3D-printable colloidal photonic crystals. Today 2022, 56, 29–41. https://doi.org/10.1016/j.mattod.2022.02.014.
- 118.
Zhang, Y.; Zhang, L.; Zhang, C.; Wang, J.; Liu, J.; Ye, C.; Dong, Z.; Wu, L.; Song, Y. Continuous resin refilling and hydrogen bond synergistically assisted 3D structural color printing. Commun. 2022, 13, 7095. https://doi.org/10.1038/s41467-022-34866-6.
- 119.
Zhang, X.; Yang, Y.; Xue, P.; Valenzuela, C.; Chen, Y.; Yang, X.; Wang, L.; Feng, W. Three-Dimensional Electrochromic Soft Photonic Crystals Based on MXene-Integrated Blue Phase Liquid Crystals for Bioinspired Visible and Infrared Camouflage. Chem. Int. Ed. 2022, 61, e202211030. https://doi.org/10.1002/anie.202211030.
- 120.
Yang, H.; Fang, H.; Wang, C.; Wang, Y.; Qi, C.; Zhang, Y.; Zhou, Q.; Huang, M.; Wang, M.; Wu, M. 3D printing of customized functional devices for smart biomedical systems. SmartMat2024, 5, e1244. https://doi.org/10.1002/smm2.1244.
- 121.
Hou, I.C.-Y.; Li, L.; Zhang, H.; Naumov, P. Smart molecular crystal switches. Smart 2024, 2, e20230031. https://doi.org/10.1002/smo.20230031.
- 122.
Qi, Y.; Zhang, S. Recent progress in low-swellable polymer-based smart photonic crystal sensors. Smart 2023, 1, e20230018. https://doi.org/10.1002/smo.20230018.
- 123.
Liu, Y.; Bi, R.; Zhang, X.; Chen, Y.; Valenzuela, C.; Yang, Y.; Liu, H.; Yang, L.; Wang, L.; Feng, W. Cephalopod-Inspired MXene-Integrated Mechanochromic Cholesteric Liquid Crystal Elastomers for Visible-Infrared-Radar Multispectral Camouflage. Chem. Int. Ed. 2024, 137, e202422636. https://doi.org/10.1002/ange.202422636.
- 124.
Wang, H.; Zhang, W.; Ladika, D.; Yu, H.; Gailevičius, D.; Wang, H.; Pan, C.-F.; Nair, P.N.S.; Ke, Y.; Mori, T.; et al. Two-Photon Polymerization Lithography for Optics and Photonics: Fundamentals, Materials, Technologies, and Applications. Funct. Mater. 2023, 33, 2214211. https://doi.org/10.1002/adfm.202214211.
- 125.
Liu, Y.; Wang, H.; Ho, J.; Ng, R.C.; Ng, R.J.H.; Hall-Chen, V.H.; Koay, E.H.H.; Dong, Z.; Liu, H.; Qiu, C.-W.; et al. Structural color three-dimensional printing by shrinking photonic crystals. Commun. 2019, 10, 4340. https://doi.org/10.1038/s41467-019-12360-w.
- 126.
Liu, K.; Ding, H.; Li, S.; Niu, Y.; Zeng, Y.; Zhang, J.; Du, X.; Gu, Z. 3D printing colloidal crystal microstructures via sacrificial-scaffold-mediated two-photon lithography. Commun. 2022, 13, 4563. https://doi.org/10.1038/s41467-022-32317-w.
- 127.
del Pozo, M.; Delaney, C.; Bastiaansen, C.W.M.; Diamond, D.; Schenning, A.P.H.J.; Florea, L. Direct Laser Writing of Four-Dimensional Structural Color Microactuators Using a Photonic Photoresist. ACSNano 2020, 14, 9832–9839. https://doi.org/10.1021/acsnano.0c02481.
- 128.
Cano-Vicent, A.; Tambuwala, M.M.; Hassan, S.S.; Barh, D.; Aljabali, A.A.A.; Birkett, M.; Arjunan, A.; Serrano-Aroca, A. Fused deposition modelling: Current status, methodology, applications and future prospects. Manuf. 2021, 47, 102378. https://doi.org/10.1016/j.addma.2021.102378.
- 129.
Reiner, T.; Carr, N.; Měch, R.; Št’ava, O.; Dachsbacher, C.; Miller, G. Dual-color mixing for fused deposition modeling printers. Gra. For. 2014, 33, 479–486. https://doi.org/10.1111/cgf.12319.
- 130.
Korpela, J.; Kokkari, A.; Korhonen, H.; Malin, M.; Närhi, T.; Seppälä, J. Biodegradable and bioactive porous scaffold structures prepared using fused deposition modeling. J Mater. Res. Part B 2013, 101B, 610–619. https://doi.org/10.1002/jbm.b.32863.
- 131.
Wang, J.; Wang, Z.; Song, Z.; Ren, L.; Liu, Q.; Ren, L. Biomimetic Shape–Color Double-Responsive 4D Printing. Mater. Technol. 2019, 4, 1900293. https://doi.org/10.1002/admt.201900293.
- 132.
Boyle, B.M.; French, T.A.; Pearson, R.M.; McCarthy, B.G.; Miyake, G.M. Structural Color for Additive Manufacturing: 3D-Printed Photonic Crystals from Block Copolymers. ACSNano 2017, 11, 3052–3058. https://doi.org/10.1021/acsnano.7b00032.
- 133.
Zhang, W.; Wang, H.; Wang, H.; Chan, J.Y.E.; Liu, H.; Zhang, B.; Zhang, Y.-F.; Agarwal, K.; Yang, X.; Ranganath, A.S.; et al. Structural multi-colour invisible inks with submicron 4D printing of shape memory polymers. Commun. 2021, 12, 112. https://doi.org/10.1038/s41467-020-20300-2.
- 134.
Rorem, B.A.; Cho, T.H.; Farjam, N.; Lenef, J.D.; Barton, K.; Dasgupta, N.P.; Guo, L.J. Integrating Structural Colors with Additive Manufacturing Using Atomic Layer Deposition. ACS Mater. Interfaces 2022, 14, 31099–31108. https://doi.org/10.1021/acsami.2c05940.
- 135.
Xiao, X.; Chen, Z.-J.; Varley, R.J.; Li, C.-H. Smart bistable coordination complexes. Smart 2024, 2, e20230028. https://doi.org/10.1002/smo.20230028.
- 136.
Demirörs, A.F.; Poloni, E.; Chiesa, M.; Bargardi, F.L.; Binelli, M.R.; Woigk, W.; de Castro, L.D.C.; Kleger, N.; Coulter, F.B.; Sicher, A.; et al. Three-dimensional printing of photonic colloidal glasses into objects with isotropic structural color. Commun. 2022, 13, 4397. https://doi.org/10.1038/s41467-022-32060-2.
- 137.
Zeng, M.; Du, Y.; Jiang, Q.; Kempf, N.; Wei, C.; Bimrose, M.V.; Tanvir, A.N.M.; Xu, H.; Chen, J.; Kirsch, D.J.; et al. High-throughput printing of combinatorial materials from aerosols. Nature2023, 617, 292–298. https://doi.org/10.1038/s41586-023-05898-9.
- 138.
Bai, L.; Mai, V.C.; Lim, Y.; Hou, S.; Möhwald, H.; Duan, H. Large-Scale Noniridescent Structural Color Printing Enabled by Infiltration-Driven Nonequilibrium Colloidal Assembly. Mater. 2018, 30, 1705667. https://doi.org/10.1002/adma.201705667.
- 139.
Jiang, H.; Kaminska, B. Scalable Inkjet-Based Structural Color Printing by Molding Transparent Gratings on Multilayer Nanostructured Surfaces. ACSNano 2018, 12, 3112–3125. https://doi.org/10.1021/acsnano.7b08580.
- 140.
Zhang, X.; Zhou, K.; Zhao, Z.; Lin, Y. Printable Photonic Materials and Devices for Smart Healthcare. Mater. 2025, 2418729. https://doi.org/10.1002/adma.202418729.
- 141.
Chen, H.; Bian, F.; Luo, Z.; Zhao, Y. Biomimetic Anticoagulated Porous Particles with Self-Reporting Structural Colors. Sci.2024, 11, 2400189. https://doi.org/10.1002/advs.202400189.
- 142.
Middleton, R.; Tunstad, S.A..; Knapp, A.; Winters, S.; McCallum, S.; Whitney, H. Self-assembled, disordered structural color from fruit wax bloom. Adv. 2024, 10, eadk4219. https://doi.org/10.1126/sciadv.adk4219.
- 143.
Kang, X.; Du, Z.; Yang, S.; Liang, M.; Liu, Q.; Qi, J. Smart molecular probes with controllable photophysical property for smart medicine. Smart 2024, 2, e20240033. https://doi.org/10.1002/smo.20240033.
- 144.
Kim, T.; Park, T.H.; Lee, J.W.; Lee, D.; Mun, S.; Kim, G.; Kim, Y.; Kim, G.; Park, J.W.; Lee, K.; et al. Self-Powered Sweat-Responsive Structural Color Display. Funct. Mater. 2024, 34, 2314721. https://doi.org/10.1002/adfm.202314721.
- 145.
Liao, Z.-H.; Wang, F. Light-controlled smart materials: Supramolecular regulation and applications. SmartMol. 2024, 2, e20240036. https://doi.org/10.1002/smo.20240036.