- 1.
Lu, J.; Wu, W.; Colombari, F.M.; Jawaid, A.; Seymour, B.; Whisnant, K.; Zhong, X.; Choi, W.; Chalmpes, N.; Lahann, J.; et al. Nano-Achiral Complex Composites for Extreme Polarization Optics. Nature 2024, 630, 860–865.
- 2.
Boles, M.A.; Ling, D.; Hyeon, T.; Talapin, D.V. The Surface Science of Nanocrystals. Nat. Mater. 2016, 15, 141–153.
- 3.
Yang, X.; Yang, M.; Pang, B.; Vara, M.; Xia, Y. Gold Nanomaterials at Work in Biomedicine. Chem. Rev. 2015, 115, 10410–10488.
- 4.
Murphy, C.J.; Vartanian, A.M.; Geiger, F.M.; Hamers, R.J.; Pedersen, J.; Cui, Q.; Haynes, C.L.; Carlson, E.E.; Hernandez, R.; Klaper, R.D.; et al. Biological Responses to Engineered Nanomaterials: Needs for the Next Decade. ACS Cent. Sci. 2015, 1, 117–123.
- 5.
Wu, J.; Yang, H. Platinum-Based Oxygen Reduction Electrocatalysts. Acc. Chem. Res. 2013, 46, 1848–1857.
- 6.
Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. Adv. Mater. 2003, 15, 353–389.
- 7.
Zhou, L.; Huang, Q.; Xia, Y. Plasmon-Induced Hot Electrons in Nanostructured Materials: Generation, Collection, and Application to Photochemistry. Chem. Rev. 2024, 124, 8597–8619.
- 8.
Yu, S.; Yang, H. Design Principles for the Synthesis of Platinum–Cobalt Intermetallic Nanoparticles for Electrocatalytic Applications. Chem. Commun. 2023, 59, 4852–4871.
- 9.
Peng, Z.; You, H.; Yang, H. Composition-Dependent Formation of Platinum Silver Nanowires. ACS Nano 2010, 4, 1501–1510.
- 10.
Park, J.; Joo, J.; Kwon, S.G.; Jang, Y.; Hyeon, T. Synthesis of Monodisperse Spherical Nanocrystals. Angew. Chem., Int. Ed. 2007, 46, 4630–4660.
- 11.
Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S.E. Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? Angew. Chem. Int. Ed. 2009, 48, 60–103.
- 12.
Yin, X.; Shi, M.; Wu, J.; Pan, Y.-T.; Gray, D.L.; Bertke, J.A.; Yang, H. Quantitative Analysis of Different Formation Modes of Pt Nanocrystals Controlled by Ligand Chemistry. Nano Lett. 2017, 17, 6146–6150.
- 13.
Yu, S.; Zhang, C.; Yang, H. Two-Dimensional Metal Nanostructures: From Theoretical Understanding to Experiment. Chem. Rev. 2023, 123, 3443–3492.
- 14.
Drake, G.A.; Keating, L.P.; Shim, M. Design Principles of Colloidal Nanorod Heterostructures. Chem. Rev. 2023, 123, 3761–3789.
- 15.
Grogan, J.M.; Rotkina, L.; Bau, H.H. In-Situ Liquid-Cell Electron Microscopy of Colloid Aggregation and Growth Dynamics. Phys. Rev. E 2011, 83, 061405.
- 16.
Liao, H.G.; Cui, L.; Whitelam, S.; Zheng, H. Real-Time Imaging of Pt3Fe Nanorod Growth in Solution. Science 2012, 336, 1011–1014.
- 17.
Wu, J.; Gao, W.; Yang, H.; Zuo, J.-M. Dissolution Kinetics of Oxidative Etching of Cubic and Icosahedral Platinum Nanoparticles Revealed by in situ Liquid Transmission Electron Microscope. ACS Nano 2017, 11, 1696–1703.
- 18.
Lyu, Z.; Yao, L.; Chen, W.; Kalutantirige, F.C.; Chen, Q. Electron Microscopy Studies of Soft Nanomaterials. Chem. Rev. 2023, 123, 4051–4145.
- 19.
Kim, B.H.; Yang, J.; Lee, D.; Choi, B.K.; Hyeon, T.; Park, J. Liquid-Phase Transmission Electron Microscopy for Studying Colloidal Inorganic Nanoparticles. Adv. Mater. 2018, 30, 1703316.
- 20.
Kim, B.H.; Heo, J.; Kim, S.; Reboul, C.F.; Chun, H.; Kang, D.; Bae, H.; Hyun, H.; Lim, J.; Lee, H.; et al. Critical Differences in 3D Atomic Structure of Individual Ligand-Protected Nanocrystals in Solution. Science 2020, 368, 60–67.
- 21.
Ngo, T.; Yang, H. Toward Ending the Guessing Game: Study of the Formation of Nanostructures Using In Situ Liquid Transmission Electron Microscopy. J. Phys. Chem. Lett. 2015, 6, 5051–5061.
- 22.
Hodnik, N.; Dehm, G.; Mayrhofer, K.J.J. Importance and Challenges of Electrochemical in Situ Liquid Cell Electron Microscopy for Energy Conversion Research. Acc. Chem. Res. 2016, 49, 2015–2022.
- 23.
Ross, F.M. Opportunities and Challenges in Liquid Cell Electron Microscopy. Science 2015, 350, aaa9886.
- 24.
Peng, X.; Shangguan, J.; Zhang, Q.; Hauwiller, M.; Yu, H.; Nie, Y.; Bustillo, K.C.; Alivisatos, A.P.; Asta, M.; Zheng, H. Unveiling Corrosion Pathways of Sn Nanocrystals through High-Resolution Liquid Cell Electron Microscopy. Nano Lett. 2024, 24, 1168–1175.
- 25.
Zheng, H.; Smith, R.K.; Jun, Y.W.; Kisielowski, C.; Dahmen, U.; Alivisatos, A.P. Observation of Single Colloidal Platinum Nanocrystal Growth Trajectories. Science 2009, 324, 1309–1312.
- 26.
Zhang, Q.; Peng, X.; Nie, Y.; Zheng, Q.; Shangguan, J.; Zhu, C.; Bustillo, K.C.; Ercius, P.; Wang, L.; Limmer, D.T.; et al. Defect-Mediated Ripening of Core-Shell Nanostructures. Nat. Commun. 2022, 13, 2211.
- 27.
Zheng, L.; Zhang, X.; Bustillo, K.C.; Yao, Y.; Zhao, L.; Zhu, M.; Li, W.; Zheng, H. Growth Mechanism of Core–Shell PtNi–Ni Nanoparticles Using in Situ Transmission Electron Microscopy. Nanoscale 2018, 10, 11281–11286.
- 28.
Wu, J.; Gao, W.; Wen, J.; Miller, D.J.; Lu, P.; Zuo, J.-M.; Yang, H. Growth of Au on Pt Icosahedral Nanoparticles Revealed by Low-Dose In Situ TEM. Nano Lett. 2015, 15, 2711–2715.
- 29.
Zheng, L.; Zhao, L.; Zhao, S.; Zhang, X.; Bustillo, K.C.; Yao, Y.; Yi, X.; Zhu, M.; Li, W.; Zheng, H. A Unique Pathway of PtNi Nanoparticle Formation Observed with Liquid Cell Transmission Electron Microscopy. Nanoscale 2020, 12, 1414–1418.
- 30.
Li, D.; Nielsen, M.H.; Lee, J.R.I.; Frandsen, C.; Banfield, J.F.; De Yoreo, J.J. Direction-Specific Interactions Control Crystal Growth by Oriented Attachment. Science 2012, 336, 1014–1018.
- 31.
Welch, D.A.; Woehl, T.J.; Park, C.; Faller, R.; Evans, J.E.; Browning, N.D. Understanding the Role of Solvation Forces on the Preferential Attachment of Nanoparticles in Liquid. ACS Nano 2015, 10, 181–187.
- 32.
Wang, Y.; Peng, X.; Abelson, A.; Zhang, B.-K.; Qian, C.; Ercius, P.; Wang, L.-W.; Law, M.; Zheng, H. In Situ TEM Observation of Neck Formation During Oriented Attachment of PbSe Nanocrystals. Nano Res. 2019, 12, 2549–2553.
- 33.
Zhu, C.; Liang, S.; Song, E.; Zhou, Y.; Wang, W.; Shan, F.; Shi, Y.; Hao, C.; Yin, K.; Zhang, T.; et al. In-Situ Liquid Cell Transmission Electron Microscopy Investigation on Oriented Attachment of Gold Nanoparticles. Nat. Commun. 2018, 9, 421.
- 34.
Luo, B.; Smith, J.W.; Ou, Z.; Chen, Q. Quantifying the Self-Assembly Behavior of Anisotropic Nanoparticles Using Liquid-Phase Transmission Electron Microscopy. Acc. Chem. Res. 2017, 50, 1125–1133.
- 35.
Kim, A.; Akkunuri, K.; Qian, C.; Yao, L.; Sun, K.; Chen, Z.; Vo, T.; Chen, Q. Direct Imaging of “Patch-Clasping” and Relaxation in Robust and Flexible Nanoparticle Assemblies. ACS Nano 2024, 18, 939–950.
- 36.
Park, J.; Zheng, H.; Lee, W.C.; Geissler, P.L.; Rabani, E.; Alivisatos, A.P. Direct Observation of Nanoparticle Superlattice Formation by Using Liquid Cell Transmission Electron Microscopy. ACS Nano 2012, 6, 2078–2085.
- 37.
Ou, Z.; Yao, L.; An, H.; Shen, B.; Chen, Q. Imaging How Thermal Capillary Waves and Anisotropic Interfacial Stiffness Shape Nanoparticle Supracrystals. Nat. Commun. 2020, 11, 4555.
- 38.
Chen, Q.; Yuk, J.M.; Hauwiller, M.R.; Park, J.; Dae, K.S.; Kim, J.S.; Alivisatos, A.P. Nucleation, Growth, and Superlattice Formation of Nanocrystals Observed in Liquid Cell Transmission Electron Microscopy. MRS Bull. 2020, 45, 713–726.
- 39.
Son, Y.; Kim, B.H.; Choi, B.K.; Luo, Z.; Kim, J.; Kim, G.-H.; Park, S.-J.; Hyeon, T.; Mehraeen, S.; Park, J. In Situ Liquid Phase TEM of Nanoparticle Formation and Diffusion in a Phase-Separated Medium. ACS Appl. Mater. Interfaces 2022, 14, 22810–22817.
- 40.
Hong, J.; Bae, J.-H.; Jo, H.; Park, H.-Y.; Lee, S.; Hong, S.J.; Chun, H.; Cho, M.K.; Kim, J.; Kim, J.; et al. Metastable Hexagonal Close-Packed Palladium Hydride in Liquid Cell TEM. Nature 2022, 603, 631–636.
- 41.
Crook, M.F.; Laube, C.; Moreno-Hernandez, I.A.; Kahnt, A.; Zahn, S.; Ondry, J.C.; Liu, A.; Alivisatos, A.P. Elucidating the Role of Halides and Iron during Radiolysis-Driven Oxidative Etching of Gold Nanocrystals Using Liquid Cell Transmission Electron Microscopy and Pulse Radiolysis. J. Am. Chem. Soc. 2021, 143, 11703–11713.
- 42.
Hauwiller, M.R.; Ye, X.; Jones, M.R.; Chan, C.M.; Calvin, J.J.; Crook, M.F.; Zheng, H.; Alivisatos, A.P. Tracking the Effects of Ligands on Oxidative Etching of Gold Nanorods in Graphene Liquid Cell Electron Microscopy. ACS Nano 2020, 14, 10239–10250.
- 43.
Woehl, T.J.; Park, C.; Evans, J.E.; Arslan, I.; Ristenpart, W.D.; Browning, N.D. Direct Observation of Aggregative Nanoparticle Growth: Kinetic Modeling of the Size Distribution and Growth Rate. Nano Lett. 2014, 14, 373–378.
- 44.
Qin, F.; Wang, Z.; Wang, Z.L. Anomalous Growth and Coalescence Dynamics of Hybrid Perovskite Nanoparticles Observed by Liquid-Cell Transmission Electron Microscopy. ACS Nano 2016, 10, 9787–9793.
- 45.
Talapin, D.V.; Rogach, A.L.; Haase, M.; Weller, H. Evolution of an Ensemble of Nanoparticles in a Colloidal Solution: Theoretical Study. J. Mater. Chem. B 2001, 105, 12278–12285.
- 46.
Kang, S.; Kim, J.-H.; Lee, M.; Yu, J.W.; Kim, J.; Kang, D.; Baek, H.; Bae, Y.; Kim, B.H.; Kang, S.; et al. Real-Space Imaging of Nanoparticle Transport and Interaction Dynamics by Graphene Liquid Cell TEM. Sci. Adv. 2021, 7, eabi5419.
- 47.
Kim, J.; Kang, D.; Kang, S.; Kim, B.H.; Park, J. Coalescence Dynamics of Platinum Group Metal Nanoparticles Revealed by Liquid-Phase Transmission Electron Microscopy. iScience 2022, 25, 104699.
- 48.
Ma, X.; Lin, F.; Chen, X.; Jin, C. Unveiling Growth Pathways of Multiply Twinned Gold Nanoparticles by In Situ Liquid Cell Transmission Electron Microscopy. ACS Nano 2020, 14, 9594–9604.
- 49.
Ma, X.; Lin, F.; Chen, X.; Jin, C. Synergy between Structure Characteristics and the Solution Chemistry in a Near/Non-Equilibrium Oxidative Etching of Penta-Twinned Palladium Nanorods. J. Phys. Chem. C 2021, 125, 4010–4020.
- 50.
Zhang, Y.; Keller, D.; Rossell, M.D.; Erni, R. Formation of Au Nanoparticles in Liquid Cell Transmission Electron Microscopy: From a Systematic Study to Engineered Nanostructures. Chem. Mater. 2017, 29, 10518–10525.
- 51.
Choi, B.K.; Kim, J.; Luo, Z.; Kim, J.; Kim, J.H.; Hyeon, T.; Mehraeen, S.; Park, S.; Park, J. Shape Transformation Mechanism of Gold Nanoplates. ACS Nano 2023, 17, 2007–2018.
- 52.
Schneider, N.M.; Norton, M.M.; Mendel, B.J.; Grogan, J.M.; Ross, F.M.; Bau, H.H. Electron–Water Interactions and Implications for Liquid Cell Electron Microscopy. J. Phys. Chem. C 2014, 118, 22373–22382.
- 53.
Woehl, T.J.; Moser, T.; Evans, J.E.; Ross, F.M. Electron-Beam-Driven Chemical Processes During Liquid Phase Transmission Electron Microscopy. MRS Bull. 2020, 45, 746–753.
- 54.
Lifshitz, I.M.; Slyozov, V.V. The Kinetics of Precipitation from Supersaturated Solid Solutions. J. Phys. Chem. Solids 1961, 19, 35–50.
- 55.
Viswanatha, R.; Sapra, S.; Satpati, B.; Satyam, P.V.; Dev, B.N.; Sarma, D.D. Understanding the Quantum Size Effects in ZnO Nanocrystals. J. Mater. Chem. 2004, 14, 661–668.
- 56.
Sholl, D.S.; Skodje, R.T. Late-Stage Coarsening of Adlayers by Dynamic Cluster Coalescence. Phys. A 1996, 231, 631–647.
- 57.
Meakin, P. Diffusion-Limited Droplet Coalescence. Phys. A 1990, 165, 1–18.
- 58.
Viswanatha, R.; Sarma, D. D. Growth of Nanocrystals in Solution. In Nanomaterials Chemistry: Recent Developments and New Directions; Rao, C.N.R., Müller, A., Cheetham, A.K., Eds.; Verlag GmbH & Co. KGaA: Weinheim, Germany, 2007; pp. 139–170.