- 1.
Shi, Y.; Zhang, B. Recent Advances in Transition Metal Phosphide Nanomaterials: Synthesis and Applications in Hydrogen Evolution Reaction. Chem. Soc. Rev. 2016, 45, 1529–1541.
- 2.
Pei, Y.; Cheng, Y.; Chen, J.; Smith, W.; Dong, P.; Ajayan, P.M.; Ye, M.; Shen, J. Recent Developments of Transition Metal Phosphides as Catalysts in the Energy Conversion Field. J. Mater. Chem. A 2018, 6, 23220–23243.
- 3.
Wu, W.; Luo, S.; Huang, Y.; He, H.; Shen, P.K.; Zhu, J. Recent Advances in Transition Metal Phosphide-Based Heterostructure Electrocatalysts for the Oxygen Evolution Reaction. Mater. Chem. Front. 2024, 8, 1064–1083.
- 4.
Li, Y.; Xin, T.; Cao, Z.; Zheng, W.; He, P.; Yoon Suk Lee, L. Optimized Transition Metal Phosphides for Direct Seawater Electrolysis: Current Trends. ChemSusChem 2024, 17, e202301926.
- 5.
Ray, A.; Sultana, S.; Paramanik, L.; Parida, K.M. Recent Advances in Phase, Size, and Morphology-Oriented Nanostructured Nickel Phosphide for Overall Water Splitting. J. Mater. Chem. A 2020, 8, 19196–19245.
- 6.
Lu, X.; Yan, K.; Yu, Z.; Wang, J.; Liu, R.; Zhang, R.; Qiao, Y.; Xiong, J. Transition Metal Phosphides: Synthesis Nanoarchitectonics, Catalytic Properties, and Biomass Conversion Applications. ChemSusChem 2024, 17, e202301687.
- 7.
Sun, M.; Liu, H.; Qu, J.; Li, J. Earth-Rich Transition Metal Phosphide for Energy Conversion and Storage. Adv. Energy Mater. 2016, 6, 1600087.
- 8.
Li, G.; Feng, Y.; Yang, Y.; Wu, X.; Song, X.; Tan, L. Recent Advances in Transition Metal Phosphide Materials: Synthesis and Applications in Supercapacitors. Nano Mater. Sci. 2024, 6, 174–192.
- 9.
Popczun, E.J.; McKone, J.R.; Read, C.G.; Biacchi, A.J.; Wiltrout, A.M.; Lewis, N.S.; Schaak, R.E. Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2013, 135, 9267–9270.
- 10.
Hansen, M.H.; Stern, L.-A.; Feng, L.; Rossmeisl, J.; Hu, X. Widely Available Active Sites on Ni2p for Electrochemical Hydrogen Evolution—Insights from First Principles Calculations. Phys. Chem. Chem. Phys. 2015, 17, 10823–10829.
- 11.
Chung, Y.-H.; Gupta, K.; Jang, J.-H.; Park, H.S.; Jang, I.; Jang, J.H.; Lee, Y.-K.; Lee, S.-C.; Yoo, S.J. Rationalization of Electrocatalysis of Nickel Phosphide Nanowires for Efficient Hydrogen Production. Nano Energy 2016, 26, 496–503.
- 12.
Xiao, J.; Lv, Q.; Zhang, Y.; Zhang, Z.; Wang, S. One-Step Synthesis of Nickel Phosphide Nanowire Array Supported on Nickel Foam with Enhanced Electrocatalytic Water Splitting Performance. RSC Adv. 2016, 6, 107859–107864.
- 13.
Wang, Y.; Liu, L.; Zhang, X.; Yan, F.; Zhu, C.; Chen, Y. Self-Supported Tripod-Like Nickel Phosphide Nanowire Arrays for Hydrogen Evolution. J. Mater. Chem. A 2019, 7, 22412–22419.
- 14.
Kibsgaard, J.; Tsai, C.; Chan, K.; Benck, J.D.; Nørskov, J.K.; Abild-Pedersen, F.; Jaramillo, T.F. Designing an Improved Transition Metal Phosphide Catalyst for Hydrogen Evolution Using Experimental and Theoretical Trends. Energy Environ. Sci. 2015, 8, 3022–3029.
- 15.
Downes, C.A.; Van Allsburg, K.M.; Tacey, S.A.; Unocic, K.A.; Baddour, F.G.; Ruddy, D.A.; LiBretto, N.J.; O’Connor, M.M.; Farberow, C.A.; Schaidle, J.A.; et al. Controlled Synthesis of Transition Metal Phosphide Nanoparticles to Establish Composition-Dependent Trends in Electrocatalytic Activity. Chem. Mater. 2022, 34, 6255–6267.
- 16.
Liu, J.; Wang, Z.; David, J.; Llorca, J.; Li, J.; Yu, X.; Shavel, A.; Arbiol, J.; Meyns, M.; Cabot, A. Colloidal Ni2-Xcoxp Nanocrystals for the Hydrogen Evolution Reaction. J. Mater. Chem. A 2018, 6, 11453–11462.
- 17.
Qian, C.; Kim, F.; Ma, L.; Tsui, F.; Yang, P.; Liu, J. Solution-Phase Synthesis of Single-Crystalline Iron Phosphide Nanorods/Nanowires. J. Am. Chem. Soc. 2004, 126, 1195–1198.
- 18.
Park, J.; Koo, B.; Yoon, K.Y.; Hwang, Y.; Kang, M.; Park, J.-G.; Hyeon, T. Generalized Synthesis of Metal Phosphide Nanorods Via Thermal Decomposition of Continuously Delivered Metal-Phosphine Complexes Using a Syringe Pump. J. Am. Chem. Soc. 2005, 127, 8433–8440.
- 19.
Brock, S.L.; Senevirathne, K. Recent Developments in Synthetic Approaches to Transition Metal Phosphide Nanoparticles for Magnetic and Catalytic Applications. J. Solid State Chem. 2008, 181, 1552–1559.
- 20.
Zhang, Y.; Li, N.; Zhang, Z.; Li, S.; Cui, M.; Ma, L.; Zhou, H.; Su, D.; Zhang, S. Programmable Synthesis of Multimetallic Phosphide Nanorods Mediated by Core/Shell Structure Formation and Conversion. J. Am. Chem. Soc. 2020, 142, 8490–8497.
- 21.
Thompson, D.; Hoffman, A.S.; Mansley, Z.R.; York, S.; Wang, F.; Zhu, Y.; Bare, S.R.; Chen, J. Synthesis of Amorphous and Various Phase-Pure Nanoparticles of Nickel Phosphide with Uniform Sizes via a Trioctylphosphine-Mediated Pathway. Inorg. Chem. 2024, 63, 18981–18991.
- 22.
DeRight, R.E. The Decomposition of Formic Acid by Sulfuric Acid. J. Am. Chem. Soc. 1933, 55, 4761–4764.
- 23.
Crystallography Open Database: Information Card for Entry 1008056. Available online: https://www.crystallogra phy.net/cod/1008056.html (access on 11 April 2025).
- 24.
Sénateur, J.; Rouault, A.; L’Héritier, P.; Krumbügel-Nylund, M.A.; Fruchart, R.; Fruchart, D.; Convert, P.; Roudaut, E. La Selectivite Des Substitutions Dans Les Phases Mm’p Etude De L’ordre Par Diffraction Neutronique Dans Nicop. Mater. Res. Bull. 1973, 8, 229–238.
- 25.
American Mineralogist Crystal Structure Database: Conip. Available online: https://rruff.geo.arizona.edu/AMS/res ult.php?key=_database_code_amcsd+0015998&viewing=html (access on 11 April 2025).
- 26.
Chen, Y.; She, H.; Luo, X.; Yue, G.-H.; Peng, D.-L. Solution-Phase Synthesis of Nickel Phosphide Single-Crystalline Nanowires. J. Cryst. Growth 2009, 311, 1229–1233.
- 27.
She, H.; Chen, Y.; Luo, X.; Yue, G.-H.; Peng, D.-L. Preparation of Anisotropic Transition Metal Phosphide Nanocrystals: The Case of Nickel Phosphide Nanoplatelets, Nanorods, and Nanowires. J. Nanosci. Nanotechnol. 2010, 10, 5175–5182.
- 28.
Wu, J.; Gross, A.; Yang, H. Shape and Composition-Controlled Platinum Alloy Nanocrystals Using Carbon Monoxide as Reducing Agent. Nano Lett. 2011, 11, 798–802.
- 29.
You, H.; Yang, S.; Ding, B.; Yang, H. Synthesis of Colloidal Metal and Metal Alloy Nanoparticles for Electrochemical Energy Applications. Chem. Soc. Rev. 2013, 42, 2880–2904.
- 30.
Zhao, G.; Rui, K.; Dou, S.X.; Sun, W. Heterostructures for Electrochemical Hydrogen Evolution Reaction: A Review. Adv. Funct. Mater. 2018, 28, 1803291.
- 31.
Lasia, A. Mechanism and Kinetics ofthe Hydrogen Evolution Reaction. Int. J. Hydrog. Energy 2019, 44, 19484–19518.
- 32.
Strmcnik, D.; Lopes, P.P.; Genorio, B.; Stamenkovic, V.R.; Markovic, N.M. Design Principles for Hydrogen Evolution Reaction Catalyst Materials. Nano Energy 2016, 29, 29–36.
- 33.
Shinagawa, T.; Garcia-Esparza, A.T.; Takanabe, K. Insight on Tafel Slopes from a Microkinetic Analysis of Aqueous Electrocatalysis for Energy Conversion. Sci. Rep. 2015, 5, 13801.
- 34.
Trasatti, S.; Petrii, O. Real Surface Area Measurements in Electrochemistry. J. Electroanal. Chem. 1992, 327, 353–376.
- 35.
Morales, D.M.; Risch, M. Seven Steps to Reliable Cyclic Voltammetry Measurements for the Determination of Double Layer Capacitance. J. Phys. Energy 2021, 3, 034013.
- 36.
McCrory, C.C.L.; Jung, S.; Ferrer, I.M.; Chatman, S.M.; Peters, J.C.; Jaramillo, T.F. Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices. J. Am. Chem. Soc. 2015, 137, 4347–4357.
- 37.
Manso, R.H.; Hong, J.; Wang, W.; Acharya, P.; Hoffman, A.S.; Tong, X.; Wang, F.; Greenlee, L.F.; Zhu, Y.; Bare, S.R.; et al. Revealing Structural Evolution of Nickel Phosphide-Iron Oxide Core–Shell Nanocatalysts in Alkaline Medium for the Oxygen Evolution Reaction. Chem. Mater. 2024, 36, 6440–6453.
- 38.
Zhang, Y.; Gao, L.; Hensen, E.J.M.; Hofmann, J.P. Evaluating the Stability of Co2P Electrocatalysts in the Hydrogen Evolution Reaction for Both Acidic and Alkaline Electrolytes. ACS Energy Lett. 2018, 3, 1360–1365.
- 39.
Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA Quantum Chemistry Program Package. J. Chem. Phys. 2020, 152, 224108.
- 40.
Becke, A.D. ANew Mixing of Hartree-Fock and Local Density-Functional Theories. J. Chem. Phys. 1993, 98, 1372–1377.
- 41.
Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.
- 42.
Helmich-Paris, B.; de Souza, B.; Neese, F.; Izsák, R. An Improved Chain of Spheres for Exchange Algorithm. J. Chem. Phys. 2021, 155, 104109.