- 1.
Zhang, Z.; Yang, J.; Wang, H.; Wang, C.; Gu, Y.; Xu, Y.; Lee, S.; Yokota, T.; Haick, H.; Someya, T.; et al. A 10-micrometer-thick nanomesh-reinforced gas-permeable hydrogel skin sensor for long-term electrophysiological monitoring. Sci. Adv. 2024, 10, eadj5389.
- 2.
Li, Y.; Liu, C.; Zou, H.; Che, L.; Sun, P.; Yan, J.; Liu, W.; Xu, Z.; Yang, W.; Dong, L.; et al. Integrated wearable smart sensor system for real-time multi-parameter respiration health monitoring. Cell Rep. Phys. Sci. 2023, 4, 101191.
- 3.
Xia, S.; Zhang, Q.; Song, S.; Duan, L.; Gao, G., Bioinspired dynamic cross-linking hydrogel sensors with skin-like strain and pressure sensing behaviors. Chem. Mater. 2019, 31, 9522–9531.
- 4.
Gong, J., Double-network hudrogels with extremely high mechanical strength. Adv. Mater. 2003, 15, 1155–1158.
- 5.
Wang, X.; Li, Z.; Wang, S.; Sano, K.; Sun, Z.; Shao, Z.; Takeishi, A.; Matsubara, S.; Okumura, D.; Sakai, N; et al. Mechanical nonreciprocity in a uniform composite material. Science 2023, 380, 192–198.
- 6.
Hu, L.; Chee, P.L.; Sugiarto, S.; Yu, Y.; Shi, C.; Yan, R.; Yao, Z.; Shi, X.; Zhi, J.; Kai, D.; et al. Hydrogel-based flexible electronics. Adv. Mater. 2023, 35, e2205326.
- 7.
Gao, Q.; Sun, F.; Li, Y.; Li, L.; Liu, M.; Wang, S.; Wang, Y.; Li, T.; Liu, L.; Feng, S.; et al. Biological tissue-inspired ultrasoft, ultrathin, and mechanically enhanced microfiber composite hydrogel for flexible bioelectronics. Nanomicro Lett. 2023, 15, 139.
- 8.
Bai, M.; Chen, Y.; Zhu, L.; Li, Y.; Ma, T.; Li, Y.; Qin, M.; Wang, W.; Cao, Y.; Xue, B., Bioinspired adaptive lipid-integrated bilayer coating for enhancing dynamic water retention in hydrogel-based flexible sensors. Nat. Commun. 2024, 15, 10569.
- 9.
Park, B.; Shin, J.H.; Ok, J.; Park, S.; Jung, W.; Jeong, C.; Choy, S.; Jo, Y.J.; Kim, T.-i., Cuticular pad–inspired selective frequency damper for nearly dynamic noise–free bioelectronics. Science 2022, 376, 624–629.
- 10.
Zhao, Z.; Liu, J.; Wu, M.; Yao, X.; Wang, H.; Liu, X.; He, Z.; Song, X., A soft, adhesive self-healing naked-eye strain/stress visualization patch. Adv. Mater. 2024, 36, e2307582.
- 11.
Li, W.; Zheng, S.; Zou, X.; Ren, Y.; Liu, Z.; Peng, W.; Wang, X.; Liu, D.; Shen, Z.; Hu, Y.; et al. Tough hydrogels with isotropic and unprecedented crack propagation resistance. Adv. Funct. Mater. 2022, 32, 2207348.
- 12.
Xie, Y.; Shi, X.; Gao, S.; Lai, C.; Lu, C.; Huang, Y.; Zhang, D.; Nie, S.; Xu, F.; Chu, F., Biomimicking natural wood to fabricate isotropically super-strong, tough, and transparent hydrogels for strain sensor and triboelectric nanogenerator applications. J. Mater. Chem. A 2024, 12, 5124–5132.
- 13.
Liu, M.; Ishida, Y.; Ebina, Y.; Sasaki, T.; Hikima, T.; Takata, M.; Aida, T., An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets. Nature 2015, 517, 68–72.
- 14.
Mredha, M.T.I.; Guo, Y.Z.; Nonoyama, T.; Nakajima, T.; Kurokawa, T.; Gong, J.P., A facile method to fabricate anisotropic hydrogels with perfectly aligned hierarchical fibrous structures. Adv. Mater. 2018, 30, 1704937.
- 15.
Hiratani, T.; Kose, O.; Hamad, W.Y.; MacLachlan, M.J. Stable and sensitive stimuli-responsive anisotropic hydrogels for sensing ionic strength and pressure. Materals Horiz. 2018, 5, 1076–1081.
- 16.
Zhu, Q.L.; Du, C.; Dai, Y.; Daab, M.; Matejdes, M.; Breu, J.; Hong, W.; Zheng, Q.; Wu, Z.L. Light-steered locomotion of muscle-like hydrogel by self-coordinated shape change and friction modulation. Nat. Commun. 2020, 11, 5166.
- 17.
Liang, X.; Chen, G.; Lin, S.; Zhang, J.; Wang, L.; Zhang, P.; Wang, Z.; Wang, Z.; Lan, Y.; Ge, Q.; et al. Anisotropically fatigue-resistant hydrogels. Adv. Mater. 2021, 33, e2102011.
- 18.
Xue, P.; Bisoyi, H.K.; Chen, Y.; Zeng, H.; Yang, J.; Yang, X.; Lv, P.; Zhang, X.; Priimagi, A.; Wang, L.; et al. Near-infrared light-driven shape-morphing of programmable anisotropic hydrogels enabled by MXene nanosheets. Angew. Chem. Int. Eddition 2021, 60, 3390–3396.
- 19.
Sano, K.; Ishida, Y.; Aida, T., Synthesis of anisotropic hydrogels and their applications. Angew. Chem. Int. Ed. 2018, 57, 2532–2543.
- 20.
Uchida, N.; Ishida, Y., Macroscopically oriented polymeric soft materials: Synthesis and functions. 2019, 51, 709–719.
- 21.
Xiong, J.; Wu, W.; Hu, Y.; Guo, Z.; Wang, S., An anisotropic conductive hydrogel for strain sensing and breath detection. Appl. Mater. Today 2023, 34, 101909.
- 22.
Zhang, Y.; Fu, Z.; Wu, T.; Ren, B.; Chen, J.; Xie, F.; Leng, W.; Shi, J.; Lu, Y., Skin-inspired ultra-tough, self-healing anisotropic wood-based electronic skin for multidimensional sensing. Chem. Eng. J. 2024, 496, 154000.
- 23.
Teng, Y.; Zhang, Z.; Cui, Y.; Su, Z.; Godwin, M.; Chung, T.; Zhou, Y.; Leontowich, A.F.G.; Islam, M.S.; Tam, K.C.; et al. High-sensitivity and flexible motion sensing enabled by robust, self-healing wood-based anisotropic hydrogel composites. Small 2025, 21, 2500944.
- 24.
Geng, L.; Liu, W.; Fan, B.; Wu, J.; Shi, S.; Huang, A.; Hu, J.; Peng, X., Anisotropic double-network hydrogels integrated superior performance of strength, toughness and conductivity for flexible multi-functional sensors. Chem. Eng. J. 2023, 462, 142226.
- 25.
Chen, L.; Chang, X.; Chen, J.; Zhu, Y., Ultrastretchable, antifreezing, and high-performance strain sensor based on a muscle-inspired anisotropic conductive hydrogel for human motion monitoring and wireless transmission. ACS Appl. Mater. Interfaces 2022, 14, 43833–43843.
- 26.
Zhang, Y.; Jing, X.; Zou, J.; Feng, P.; Wang, G.; Zeng, J.; Lin, L.; Liu, Y.; Mi, H.; Nie, S., Mechanically robust and anti-swelling anisotropic conductive hydrogel with fluorescence for multifunctional sensing, Adv. Funct. Mater. 2024, 34, 2410698.
- 27.
Hang, C.; Guo, Z.; Li, K.; Yao, J.; Shi, H.; Ge, R.; Liang, J.; Quan, F.; Zhang, K.; Tian, X.; et al. Anisotropic hydrogel sensors with muscle-like structures based on high-absorbent alginate fibers. Carbohydr. Polym. 2025, 349, 123015.
- 28.
Wang, W.; Deng, X.; Luo, C., Anisotropic hydrogels with high-sensitivity and self-adhesion for wearable sensors. J. Mater. Chem. C 2023, 11, 196–203.
- 29.
Lin, H.; Wang, R.; Xu, S.; Li, X.; Song, S., Tendon-inspired anisotropic hydrogels with excellent mechanical properties for strain sensors. Langmuir 2023, 39, 6069–6077.
- 30.
Ghosh, A.; Pandit, S.; Kumar, S.; Pradhan, D.; Das, R.K., Human muscle inspired anisotropic and dynamic metal ion-coordinated mechanically robust, stretchable and swelling- resistant hydrogels for underwater motion sensing and flexible supercapacitor application. ACS Appl. Mater. Interfaces 2024, 16, 62743–62761.
- 31.
Huang, S.; Xiao, R.; Lin, S.; Wu, Z.; Lin, C.; Jang, G.; Hong, E.; Gupta, S.; Lu, F.; Chen, B.; et al. Anisotropic hydrogel microelectrodes for intraspinal neural recordings in vivo. Nat. Commun. 2025, 16, 1127.
- 32.
Lin, H.; Yuan, W.; Zhang, W.; Dai, R.; Zhang, T.; Li, Y.; Ma, S.; Song, S., Strong and tough anisotropic short-chain chitosan-based hydrogels with optimized sensing properties for flexible strain sensors. Carbohydr. Polym. 2025, 348, 122781.
- 33.
Fu, X.; Tong, H.; Zhang, X.; Zhang, K.; Douadji, L.; Kang, S.; Luo, J.; Pan, Z.; Lu, W., Anisotropic hydrogels with multiscale hierarchy based on ionic conductivity for flexible sensors. ACS Appl. Polym. Mater. 2023, 5, 9876–9887.
- 34.
Chen, S.; Guo, B.; Yu, J.; Yan, Z.; Liu, R.; Yu, C.; Zhaoa, Z.; Zhang, H.; Yao, F.; Li, J., A polypyrrole-dopamine/poly(vinyl alcohol) anisotropic hydrogel for strain sensor and bioelectrodes. Chem. Eng. J. 2024, 486, 150182.
- 35.
Shang, M.; Ma, S.; Ma, J.; Guo, L.; Liu, C.; Xu, X., Somatosensory actuators based on light-responsive anisotropic hydrogel for storage encryption of information systems. Chem. Eng. J. 2024, 496, 153895.
- 36.
Zhanga, X.; Langb, B.; Yu, W.; Jia, L.; Zhu, F.; Xue, Y.; Wu, X.; Qin, Y.; Chen, W.; Wang, Y.; et al. Magnetically induced anisotropic conductive hydrogels for multidimensional strain sensing and magnetothermal physiotherapy. Chem. Eng. J. 2023, 474, 145832.
- 37.
Chen, Z.; Wang, H.; Cao, Y.; Chen, Y.; Akkus, O.; Liu, H.; Cao, C., Bio-inspired anisotropic hydrogels and their applications in soft actuators and robots. Matter 2023, 6, 3803–3837.
- 38.
Sasaki, T.; Watanabe, M.; Hashizume, H.; Yamada, H.; Nakazawa, H. Macromolecule-like aspects for a colloidal suspension of an exfoliated titanate. Pairwise association of nanosheets and dynamic reassembling process initiated from it. J. Am. Chem. Soc. 1996, 118, 8329–8335.
- 39.
Tanaka, T.; Ebina, Y.; Takada, K.; Kurashima, K.; Sasaki, T., Oversized titania nanosheet crystallites derived from flux-grown layered titanate single crystals. Chem. Mater. 2003, 15, 3564–3568.
- 40.
Kim, Y.S.; Liu, M.; Ishida, Y.; Ebina, Y.; Osada, M.; Sasaki, T.; Hikima, T.; Takata, M.; Aida, T., Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel. Nat. Mater. 2015, 14, 1002–1007.
- 41.
Sano, K.; Kim, Y.S.; Ishida, Y.; Ebina, Y.; Sasaki, T.; Hikima, H.; Aida, T. Photonic water dynamically responsive to external stimuli. Nat. Commun. 2016, 7, 12559.
- 42.
Sano, K.; Arazoe, Y.; Ishida, Y.; Ebina, Y.; Osada, M.; Sasaki, T.; Hikima, T.; Aida, T., Extra-large mechanical anisotropy of a hydrogel with maximized electrostatic repulsion. Angew. Chem. Int. Ed. 2018, 57, 12508–12513.
- 43.
Sun, Z.; Yamauchi, Y.; Araoka, F.; Kim, Y.S.; Bergueiro,J.; Ishida, Y.; Ebina, Y.; Sasaki, T.; Hikima, T.; Aida, T., An Anisotropic hydrogel actuator enabling earthworm-like directed peristaltic crawling. Angew. Chem. Int. Ed. 2018, 57, 15772–15776.
- 44.
Zhan, Y.; Ogawa, D.; Sano, K.; Wang, X.; Araoka, F.; Sakai, N.; Sasaki, T.; Ishida, Y., Reconfigurable photonic crystal reversibly exhibiting single and double structural colors. Angew. Chem. Int. Ed. 2023, 62, e202311451.
- 45.
Gabriel, J.-C. P.; Camerel, F.; Lemaire, B.J.; Desvaux, H.; Davidson, P.; Batail, P. Swollen liquid-crystalline lamellar phase based on extended solid-like sheets. Nature 2001, 413, 504–508.
- 46.
Hu, H.; Gopinadhan, M.; Osuji, C.O., Directed self-assembly of block copolymers: A tutorial review of strategies for enabling nanotechnology with soft matter. Soft Matter 2014, 10, 3867–3889.
- 47.
Osada, M.; Ebina, Y.; Fukuda, K.; Ono, K.; Takada, K.; Yamaura, K.; Takayama-Muromachi, E.; Sasaki, T., Ferromagnetism in two-dimensional Ti0.8Co0.2O2 nanosheets. Phys. Rev. B 2006, 73, 153301.
- 48.
Qu, M.; Xie, Z.; Liu, S.; Zhang, J.; Peng, S.; Li, Z.; Lin, C.; Nilsson, F., Electric resistance of elastic strain sensors—Fundamental mechanisms and experimental validation. Nanomaterials 2023, 13, 1813.
- 49.
Vázquez-Torres, N.A.; Benítez-Martínez, J.A.; Vélez-Cordero, J.R.; Sánchez-Arévalo, F.M., Experimental and numerical characterization of a flexible strain sensor based on polydimethylsiloxane polymeric network and MWCNT’s. J. Polym. Res. 2024, 31, 211.