- 1.
Hoffman, A.S. Stimuli-Responsive Polymers: Biomedical Applications and Challenges for Clinical Translation. Adv. Drug Deliv. Rev. 2013, 65, 10–16. https://doi.org/10.1016/j.addr.2012.11.004.
- 2.
Wei, M.; Gao, Y.; Li, X.; Serpe, M.J. Stimuli-Responsive Polymers and Their Applications. Polym. Chem. 2017, 8, 127–143. https://doi.org/10.1039/C6PY01585A.
- 3.
Zhao, Y.; Hua, M.; Yan, Y.; Wu, S.; Alsaid, Y.; He, X. Stimuli-Responsive Polymers for Soft Robotics. Annu. Rev. Control Robot. Auton. Syst. 2022, 5, 515–545. https://doi.org/10.1146/annurev-control-042920-014327.
- 4.
McCormick, M.E.; Bhattacharyya, R. Drag Reduction of a Submersible Hull by Electrolysis. Nav. Eng. J. 1973, 85, 11–16. https://doi.org/10.1111/j.1559-3584.1973.tb04788.x.
- 5.
Murai, Y. Frictional Drag Reduction by Bubble Injection. Exp. Fluids 2014, 55, 1773. https://doi.org/10.1007/s00348-014-1773-x.
- 6.
Kim, H.; Chang, J.H. Increased Light Penetration Due to Ultrasound-Induced Air Bubbles in Optical Scattering Media. Sci. Rep. 2017, 7, 16105. https://doi.org/10.1038/s41598-017-16444-9.
- 7.
Bhanawat, A.; Zhu, K.; Pilon, L. How Do Bubbles Affect Light Absorption in Photoelectrodes for Solar Water Splitting? Sustain. Energy Fuels 2022, 6, 910–924. https://doi.org/10.1039/D1SE01730F.
- 8.
Domenico, S.N. Acoustic Wave Propagation in Air-bubble Curtains in Water—Part I: History and Theory. Geophysics 1982, 47, 345–353. https://doi.org/10.1190/1.1441340.
- 9.
Leroy, V.; Strybulevych, A.; Lanoy, M.; Lemoult, F.; Tourin, A.; Page, J.H. Superabsorption of Acoustic Waves with Bubble Metascreens. Phys. Rev. B 2015, 91, 020301. https://doi.org/10.1103/PhysRevB.91.020301.
- 10.
Sharma, G.S.; Skvortsov, A.; MacGillivray, I.; Kessissoglou, N. Sound Scattering by a Bubble Metasurface. Phys. Rev. B 2020, 102, 214308. https://doi.org/10.1103/PhysRevB.102.214308.
- 11.
Huang, Z.; Zhao, S.; Su, M.; Yang, Q.; Li, Z.; Cai, Z.; Zhao, H.; Hu, X.; Zhou, H.; Li, F.; et al. Bioinspired Patterned Bubbles for Broad and Low-Frequency Acoustic Blocking. ACS Appl. Mater. Interfaces 2020, 12, 1757–1764. https://doi.org/10.1021/acsami.9b15683.
- 12.
Gong, X.-T.; Zhou, H.-T.; Zhang, S.-C.; Wang, Y.-F.; Wang, Y.-S. Tunable Sound Transmission through Water–Air Interface by Membrane-Sealed Bubble Metasurface. Appl. Phys. Lett. 2023, 123, 231703. https://doi.org/10.1063/5.0171461.
- 13.
Goyal, R.; Athanassiadis, A.G.; Ma, Z.; Fischer, P. Amplification of Acoustic Forces Using Microbubble Arrays Enables Manipulation of Centimeter-Scale Objects. Phys. Rev. Lett. 2022, 128, 254502. https://doi.org/10.1103/PhysRevLett.128.254502.
- 14.
Liang, X.; Kumar, V.; Ahmadi, F.; Zhu, Y. Manipulation of Droplets and Bubbles for Thermal Applications. Droplet 2022, 1, 80–91. https://doi.org/10.1002/dro2.21.
- 15.
Metwally, K.; Mensah, S.; Baffou, G. Fluence Threshold for Photothermal Bubble Generation Using Plasmonic Nanoparticles. J. Phys. Chem. C 2015, 119, 28586–28596. https://doi.org/10.1021/acs.jpcc.5b09903.
- 16.
Baffou, G.; Polleux, J.; Rigneault, H.; Monneret, S. Super-Heating and Micro-Bubble Generation around Plasmonic Nanoparticles under Cw Illumination. J. Phys. Chem. C 2014, 118, 4890–4898. https://doi.org/10.1021/jp411519k.
- 17.
Li, J.; Zhao, F.; Deng, Y.; Liu, D.; Chen, C.-H.; Shih, W.-C. Photothermal Generation of Programmable Microbubble Array on Nanoporous Gold Disks. Opt. Express 2018, 26, 16893. https://doi.org/10.1364/OE.26.016893.
- 18.
Ohannesian, N.; Li, J.; Misbah, I.; Zhao, F.; Shih, W.-C. Directed Concentrating of Micro-/Nanoparticles via Near-Infrared Laser Generated Plasmonic Microbubbles. ACS Omega 2020, 5, 32481–32489. https://doi.org/10.1021/acsomega.0c04610.
- 19.
Hu, M.; Wang, F.; Chen, L.; Huo, P.; Li, Y.; Gu, X.; Chong, K.L.; Deng, D. Near-Infrared-Laser-Navigated Dancing Bubble within Water via a Thermally Conductive Interface. Nat. Commun. 2022, 13, 5749. https://doi.org/10.1038/s41467-022-33424-4.
- 20.
Prosperetti, A. Vapor Bubbles. Annu. Rev. Fluid Mech. 2017, 49, 221–248. https://doi.org/10.1146/annurev-fluid-010816-060221.
- 21.
Shields, D.J.; Karothu, D.P.; Sambath, K.; Ranaweera, R.A.A.U.; Schramm, S.; Duncan, A.; Duncan, B.; Krause, J.A.; Gudmundsdottir, A.D.; Naumov, P. Cracking under Internal Pressure: Photodynamic Behavior of Vinyl Azide Crystals through N2 Release. J. Am. Chem. Soc. 2020, 142, 18565–18575. https://doi.org/10.1021/jacs.0c07830.
- 22.
Ghate, P.P.; Hanson, K.M.; Lam, K.; Al-Kaysi, R.O.; Bardeen, C.J. Generating Stable Nitrogen Bubble Layers on Poly(Methyl Methacrylate) Films by Photolysis of 2-Azidoanthracene. Langmuir 2024, 40, 4054–4062. https://doi.org/10.1021/acs.langmuir.3c02869.
- 23.
Biswas, B.; Venkateswarulu, M.; Gaur, P.; Sharma, Y.; Sinha, S.; Ghosh, S. Triggered Emission for Rapid Detection of Hydrogen Sulfide Chaperoned by Large Stokes Shift. J. Photochem. Photobiol. A Chem. 2019, 371, 264–270. https://doi.org/10.1016/j.jphotochem.2018.11.011.
- 24.
Pinchasik, B.-E.; Schönfeld, F.; Kappl, M.; Butt, H.-J. Bubbles Nucleating on Superhydrophobic Micropillar Arrays under Flow. Soft Matter 2019, 15, 8175–8183. https://doi.org/10.1039/C9SM01224A.
- 25.
Deng, X.; Shan, Y.; Meng, X.; Yu, Z.; Lu, X.; Ma, Y.; Zhao, J.; Qiu, D.; Zhang, X.; Liu, Y.; et al. Direct Measuring of Single–Heterogeneous Bubble Nucleation Mediated by Surface Topology. Proc. Natl. Acad. Sci. USA 2022, 119, e2205827119. https://doi.org/10.1073/pnas.2205827119.
- 26.
Beechem, J.M.; Ameloot, M.; Brand, L. Global and Target Analysis of Complex Decay Phenomena. Instrum. Sci. Technol. 1985, 14, 379–402. https://doi.org/10.1080/10739148508543585.
- 27.
Reiser, A.; Bowes, G.; Horne, R.J. Photolysis of Aromatic Azides. Part 1—Electronic Spectra of Aromatic Nitrenes and Their Parent Azides. Trans. Faraday Soc. 1966, 62, 3162–3169. https://doi.org/10.1039/TF9666203162.
- 28.
Alvarado, R.; Grivet, J.-P.; Igier, C.; Barcelo, J.; Rigaudy, J. Spectroscopic Studies of Azides and Nitrenes Derived from Anthracene. J. Chem. Soc., Faraday Trans. 1977, 73, 844. https://doi.org/10.1039/f29777300844.
- 29.
Wentrup, C. Nitrenes, Carbenes, Diradicals, and Ylides. Interconversions of Reactive Intermediates. Acc. Chem. Res. 2011, 44, 393–404. https://doi.org/10.1021/ar700198z.
- 30.
Sankaranarayanan, J.; Rajam, S.; Hadad, C.M.; Gudmundsdottir, A.D. The Ability of Triplet Nitrenes to Abstract Hydrogen Atoms. J Phys. Org. Chem. 2010, 23, 370–375. https://doi.org/10.1002/poc.1654.
- 31.
Reiser, A.; Marley, R. Photolysis of Aromatic Azides. Part 3—Quantum Yield and Mechanism. Trans. Faraday Soc. 1968, 64, 1806–1815. https://doi.org/10.1039/TF9686401806.
- 32.
Gritsan, N.P.; Pritchina, E.A. The Mechanism of Photolysis of Aromatic Azides. Russ. Chem. Rev. 1992, 61, 500–516. https://doi.org/10.1070/RC1992v061n05ABEH000959.
- 33.
Soto, J.; Otero, J.C. Conservation of El-Sayed’s Rules in the Photolysis of Phenyl Azide: Two Independent Decomposition Doorways for Alternate Direct Formation of Triplet and Singlet Phenylnitrene. J. Phys. Chem. A 2019, 123, 9053–9060. https://doi.org/10.1021/acs.jpca.9b06915.
- 34.
Rubin, M.B.; Noyes, R.M. Thresholds for Nucleation of Bubbles of Nitrogen in Various Solvents. J. Phys. Chem. 1992, 96, 993–1000. https://doi.org/10.1021/j100181a082.
- 35.
Maloth, R.K.N.; Khayat, R.E.; DeGroot, C.T. Bubble Growth in Supersaturated Liquids. Fluids 2022, 7, 365. https://doi.org/10.3390/fluids7120365.
- 36.
Huber, C.; Su, Y.; Nguyen, C.T.; Parmigiani, A.; Gonnermann, H.M.; Dufek, J. A New Bubble Dynamics Model to Study Bubble Growth, Deformation, and Coalescence. JGR Solid Earth 2014, 119, 216–239. https://doi.org/10.1002/2013JB010419.
- 37.
Moreno Soto, Á.; Prosperetti, A.; Lohse, D.; Van Der Meer, D. Gas Depletion through Single Gas Bubble Diffusive Growth and Its Effect on Subsequent Bubbles. J. Fluid Mech. 2017, 831, 474–490. https://doi.org/10.1017/jfm.2017.623.
- 38.
Sun, I.-C.; Emelianov, S. Gas-Generating Nanoparticles for Contrast-Enhanced Ultrasound Imaging. Nanoscale 2019, 11, 16235–16240. https://doi.org/10.1039/C9NR04471J.
- 39.
Sun, I.-C.; Dumani, D.S.; Emelianov, S.Y. Applications of the Photocatalytic and Photoacoustic Properties of Gold Nanorods in Contrast-Enhanced Ultrasound and Photoacoustic Imaging. ACS Nano 2024, 18, 3575–3582. https://doi.org/10.1021/acsnano.3c11223.
- 40.
Frazer, R.Q.; Byron, R.T.; Osborne, P.B.; West, K.P. PMMA: An Essential Material in Medicine and Dentistry. J. Long Term Eff. Med. Implant. 2005, 15, 629–639. https://doi.org/10.1615/JLongTermEffMedImplants.v15.i6.60.
- 41.
Blomley, M.J.K. Science, Medicine, and the Future: Microbubble Contrast Agents: A New Era in Ultrasound. BMJ 2001, 322, 1222–1225. https://doi.org/10.1136/bmj.322.7296.1222.
- 42.
Lee, H.; Kim, H.; Han, H.; Lee, M.; Lee, S.; Yoo, H.; Chang, J.H.; Kim, H. Microbubbles Used for Contrast Enhanced Ultrasound and Theragnosis: A Review of Principles to Applications. Biomed. Eng. Lett. 2017, 7, 59–69. https://doi.org/10.1007/s13534-017-0016-5.
- 43.
Ferrara, K.; Pollard, R.; Borden, M. Ultrasound Microbubble Contrast Agents: Fundamentals and Application to Gene and Drug Delivery. Annu. Rev. Biomed. Eng. 2007, 9, 415–447. https://doi.org/10.1146/annurev.bioeng.8.061505.095852.
- 44.
Huang, J.; Triedman, J.K.; Vasilyev, N.V.; Suematsu, Y.; Cleveland, R.O.; Dupont, P.E. Imaging Artifacts of Medical Instruments in Ultrasound-Guided Interventions. J. Ultrasound Med. 2007, 26, 1303–1322. https://doi.org/10.7863/jum.2007.26.10.1303.
- 45.
Godin, O.A. Sound Transmission through Water–Air Interfaces: New Insights into an Old Problem. Contemp. Phys. 2008, 49, 105–123. https://doi.org/10.1080/00107510802090415.
- 46.
Patel, V.M.; Patel, C.K.; Patel, K.C.; Patel, R.D. Diffusion of Gases in Poly(Methyl Methacrylate). Makromol. Chem. 1972, 158, 65–79. https://doi.org/10.1002/macp.1972.021580107.
- 47.
Haraya, K.; Hwang, S.-T. Permeation of Oxygen, Argon and Nitrogen through Polymer Membranes. J. Membr. Sci. 1992, 71, 13–27. https://doi.org/10.1016/0376-7388(92)85002-Z.
- 48.
Kung, Y.-C.; Hsiao, S.-H. Fluorescent and Electrochromic Polyamides with Pyrenylamine Chromophore. J. Mater. Chem. 2010, 20, 5481.
- 49.
Bräse, S., Banert, K., Eds.; Organic Azides: Syntheses and Applications; John Wiley: Chichester, UK, 2010.
- 50.
Morales-Espinoza, E.G.; Lijanova, I.V.; Morales-Saavedra, O.G.; Torres-Zuñiga, V.; Hernandez-Ortega, S.; Martínez-García, M. Synthesis of Porphyrin-Dendrimers with a Pyrene in the Periphery and Their Cubic Nonlinear Optical Properties. Molecules 2011, 16, 6950–6968.
- 51.
Ingale, S.A.; Seela, F. A Ratiometric Fluorescent On–Off Zn2+ Chemosensor Based on a Tripropargylamine Pyrene Azide Click Adduct. J. Org. Chem. 2012, 77, 9352–9356.
- 52.
Jiang, J.; Lima, O.V.; Pei, Y.; Jiang, Z.; Chen, Z.; Yu, C.; Wang, J.; Zeng, X.C.; Forsythe, E.; Tan, L. Self-Assembled Nanolayers of Conjugated Silane with Π−π Interlocking. ACS Nano 2010, 4, 3773–3780.
- 53.
Okita, T.; Muto, K.; Yamaguchi, J. Decarbonylative Methylation of Aromatic Esters by a Nickel Catalyst. Org. Lett. 2018, 20, 3132–3135.
- 54.
Arjunan, P.; Berlin, K.D. An improved synthesis of 2-anthraldehyde. Org. Prep. Proced. Int. 1981, 13, 368–371.