- 1.
Cao, F.; Liu, L.; Li, L. Short-wave infrared photodetector. Mater. Today 2023, 62, 327–349. https://doi.org/10.1016/j.mattod.2022.11.003.
- 2.
Wu, Z.; Zhai, Y.; Kim, H.; Azoulay, J.D.; Ng, T.N. Emerging Design and Characterization Guidelines for Polymer-Based Infrared Photodetectors. Acc. Chem. Res. 2018, 51, 3144–3153. https://doi.org/10.1021/acs.accounts.8b00446.
- 3.
Saparbaev, A.; Zhang, M.; Kuvondikov, V.; Nurumbetova, L.; Raji, I.O.; Tajibaev, I.; Yang, R. High-performance CsPbI3 perovskite solar cells without additives in air condition. Sol. Energy 2021, 228, 405–412. https://doi.org/10.1016/j.solener.2021.09.059.
- 4.
Shimoni, M.; Haelterman, R.; Perneel, C. Hypersectral Imaging for Military and Security Applications: Combining Myriad Processing and Sensing Techniques. IEEE Geosci. Remote Sens. Mag. 2019, 7, 101–117. https://doi.org/10.1109/MGRS.2019.2902525.
- 5.
Liu, C.; Igci, C.; Yang, Y.; Syzgantseva, O.A.; Syzgantseva, M.A.; Rakstys, K.; Nazeeruddin, M.K. Dopant-Free Hole Transport Materials Afford Efficient and Stable Inorganic Perovskite Solar Cells and Modules. Angew. Chem. Int. Ed. 2021, 60, 20489–20497. https://doi.org/10.1002/anie.202107774.
- 6.
Jahid, A.; Alsharif, M.H.; Hall, T.J. A contemporary survey on free space optical communication: Potentials, technical challenges, recent advances and research direction. J. Netw. Comput. Appl. 2022, 200, 103311. https://doi.org/10.1016/j.jnca.2021.103311.
- 7.
Haddadi, A.; Suo, X.V.; Adhikary, S.; Dianat, P.; Chevallier, R.; Hoang, A.M.; Razeghi, M. High-performance short-wavelength infrared photodetectors based on type-II InAs/InAs1−xSbx/AlAs1−xSbx superlattices. Appl. Phys. Lett. 2015, 107, 141104. https://doi.org/10.1063/1.4932518.
- 8.
Richter, J.; Lorenz, S.; Kaas, A.; Fuchs, M.; Röder, C.; Peuker, U.A.; Gloaguen, R. Spectral Characterization of Battery Components from Li-Ion Battery Recycling Processes. Metals 2024, 14, 147.
- 9.
Ferreira, M.P.; Wagner, F.H.; Aragão, L.E.O.C.; Shimabukuro, Y.E.; de Souza Filho, C.R. Tree species classification in tropical forests using visible to shortwave infrared WorldView-3 images and texture analysis. ISPRS J. Photogramm. Remote Sens. 2019, 149, 119–131. https://doi.org/10.1016/j.isprsjprs.2019.01.019.
- 10.
Tan, C.L.; Mohseni, H. Emerging technologies for high performance infrared detectors. Nanophotonics 2018, 7, 169–197. https://doi.org/10.1515/nanoph-2017-0061.
- 11.
Liu, Z.; Luo, T.; Liang, B.; Chen, G.; Yu, G.; Xie, X.; Shen, G. High-detectivity InAs nanowire photodetectors with spectral response from ultraviolet to near-infrared. Nano Res. 2013, 6, 775–783. https://doi.org/10.1007/s12274-013-0356-0.
- 12.
Pokharel, R.; Ramaswamy, P.; Devkota, S.; Parakh, M.; Dawkins, K.; Penn, A.; Iyer, S. Epitaxial High-Yield Intrinsic and Te-Doped Dilute Nitride GaAsSbN Nanowire Heterostructure and Ensemble Photodetector Application. ACS Appl. Electron. Mater. 2020, 2, 2730–2738. https://doi.org/10.1021/acsaelm.0c00450.
- 13.
Zhang, F.; Zhang, X.; Li, Z.; Yi, R.; Li, Z.; Wang, N.; Fu, L. A New Strategy for Selective Area Growth of Highly Uniform InGaAs/InP Multiple Quantum Well Nanowire Arrays for Optoelectronic Device Applications. Adv. Funct. Mater. 2022, 32, 2103057. https://doi.org/10.1002/adfm.202103057.
- 14.
Ackerman, M.M. Bringing Colloidal Quantum Dots to Detector Technologies. Inf. Disp. 2020, 36, 19–23. https://doi.org/10.1002/msid.1165.
- 15.
Wang, Y.; Peng, L.; Schreier, J.; Bi, Y.; Black, A.; Malla, A.; Konstantatos, G. Silver telluride colloidal quantum dot infrared photodetectors and image sensors. Nat. Photonics 2024, 18, 236–242. https://doi.org/10.1038/s41566-023-01345-3.
- 16.
Wu, Z.; Ou, Y.; Cai, M.; Wang, Y.; Tang, R.; Xia, Y. Short-Wave Infrared Photodetectors and Imaging Sensors Based on Lead Chalcogenide Colloidal Quantum Dots. Adv. Opt. Mater. 2023, 11, 2201577. https://doi.org/10.1002/adom.202201577.
- 17.
Kwon, J.B.; Han, M.; Jung, D.G.; Kong, S.H.; Jung, D. High Sensitivity Shortwave Infrared Photodetector Based on PbS QDs Using P3HT. Nanomaterials 2021, 11, 2683.
- 18.
Chen, W.; Tang, H.; Chen, Y.; Heger, J.E.; Li, N.; Kreuzer, L.P.; Müller-Buschbaum, P. Spray-deposited PbS colloidal quantum dot solid for near-infrared photodetectors. Nano Energy 2020, 78, 105254. https://doi.org/10.1016/j.nanoen.2020.105254.
- 19.
Yu, M.X.; Ma, J.J.; Wang, J.M.; Cai, W.G.; Zhang, Z.; Huang, B.; Tian, Z.Q. Ag2Te Quantum Dots as Contrast Agents for Near-Infrared Fluorescence and Computed Tomography Imaging. ACS Appl. Nano Mater. 2020, 3, 6071–6077. https://doi.org/10.1021/acsanm.0c01274.
- 20.
Hu, L.; Dong, Y.; Deng, J.; Xie, Y.; Ma, X.; Qian, F.; Xu, C. High responsivity graphene-InGaAs near-infrared photodetector realized by hole trapping and its response saturation mechanism. Opt. Express 2021, 29, 23234–23243. https://doi.org/10.1364/OE.431083.
- 21.
Park, J.; Hwang, J.C.; Kim, G.G.; Park, J.-U. Flexible electronics based on one-dimensional and two-dimensional hybrid nanomaterials. InfoMat 2020, 2, 33–56. https://doi.org/10.1002/inf2.12047.
- 22.
Mak, K.F.; Ju, L.; Wang, F.; Heinz, T.F. Optical spectroscopy of graphene: From the far infrared to the ultraviolet. Solid State Commun. 2012, 152, 1341–1349. https://doi.org/10.1016/j.ssc.2012.04.064.
- 23.
Kim, J.Y.; Lee, J.-W.; Jung, H.S.; Shin, H.; Park, N.-G. High-Efficiency Perovskite Solar Cells. Chem. Rev. 2020, 120, 7867–7918. https://doi.org/10.1021/acs.chemrev.0c00107.
- 24.
Gao, W.-H.; Chen, C. Perovskites and their constructed near-infrared photodetectors. Nano Energy 2024, 128, 109904. https://doi.org/10.1016/j.nanoen.2024.109904.
- 25.
Jhang, A.-T.; Tsai, P.-C.; Tsai, Y.-T.; Lin, S.-Y.; Fang, M.-H. Quantum-Dots-In-Double-Perovskite for High-Gain Short-Wave Infrared Photodetector. Adv. Opt. Mater. 2024, 12, 2401252. https://doi.org/10.1002/adom.202401252.
- 26.
Qian, Y.; Huang-Fu, Z.C.; Li, H.; Zhang, T.; Li, X.; Schmidt, S.; Rao, Y. Unleashing the Potential: High Responsivity at Room Temperature of Halide Perovskite-Based Short-Wave Infrared Detectors with Ultrabroad Bandwidth. JACS Au 2024, 4, 3921–3930. https://doi.org/10.1021/jacsau.4c00621.
- 27.
Wang, H.; Sun, Y.; Chen, J.; Wang, F.; Han, R.; Zhang, C.; Yang, J. A Review of Perovskite-Based Photodetectors and Their Applications. Nanomaterials 2022, 12, 4390.
- 28.
Miao, J.; Zhang, F. Recent progress on highly sensitive perovskite photodetectors. J. Mater. Chem. C 2019, 7, 1741–1791. https://doi.org/10.1039/C8TC06089D.
- 29.
Wang, F.; Zou, X.; Xu, M.; Wang, H.; Wang, H.; Guo, H.; Hu, W. Recent Progress on Electrical and Optical Manipulations of Perovskite Photodetectors. Adv. Sci. 2021, 8, 2100569. https://doi.org/10.1002/advs.202100569.
- 30.
Li, L.; Ye, S.; Qu, J.; Zhou, F.; Song, J.; Shen, G. Recent Advances in Perovskite Photodetectors for Image Sensing. Small 2021, 17, 2005606. https://doi.org/10.1002/smll.202005606.
- 31.
Fakharuddin, A.; Gangishetty, M.K.; Abdi-Jalebi, M.; Chin, S.H.; bin Mohd Yusoff, A.R.; Congreve, D.N.; Bolink, H.J. Perovskite light-emitting diodes. Nat. Electron. 2022, 5, 203–216. https://doi.org/10.1038/s41928-022-00745-7.
- 32.
Liu, Y.; Xia, M.; Ren, D.; Nussbaum, S.; Yum, J.H.; Gratzel, M.; Sivula, K. Photoelectrochemical CO2 Reduction at a Direct CuInGaS2/Electrolyte Junction. ACS Energy Lett. 2023, 8, 1645–1651. https://doi.org/10.1021/acsenergylett.3c00022.
- 33.
Filip, M.R.; Eperon, G.E.; Snaith, H.J.; Giustino, F. Steric engineering of metal-halide perovskites with tunable optical band gaps. Nat. Commun. 2014, 5, 5757. https://doi.org/10.1038/ncomms6757.
- 34.
Chen, S.; Teng, C.; Zhang, M.; Li, Y.; Xie, D.; Shi, G. A Flexible UV–Vis–NIR Photodetector based on a Perovskite/Conjugated-Polymer Composite. Adv. Mater. 2016, 28, 5969–5974. https://doi.org/10.1002/adma.201600468.
- 35.
Alwadai, N.; Haque, M.A.; Mitra, S.; Flemban, T.; Pak, Y.; Wu, T.; Roqan, I. High-Performance Ultraviolet-to-Infrared Broadband Perovskite Photodetectors Achieved via Inter-/Intraband Transitions. ACS Appl Mater Interfaces 2017, 9, 37832–37838. https://doi.org/10.1021/acsami.7b09705 From NLM.
- 36.
Pan, X.; Zhou, H.; Liu, R.; Wu, D.; Song, Z.; Tang, X.; Wang, H. Achieving a high-performance, self-powered, broadband perovskite photodetector employing MAPbI3 microcrystal films. J. Mater. Chem. C 2020, 8, 2028–2035. https://doi.org/10.1039/C9TC05668H.
- 37.
Yao, Z.; Zhao, W.; Liu, S. Stability of the CsPbI3 perovskite: From fundamentals to improvements. J. Mater. Chem. A 2021, 9, 11124–11144. https://doi.org/10.1039/D1TA01252E.
- 38.
Li, Y.; Shi, Z.; Lei, L.; Zhang, F.; Ma, Z.; Wu, D.; Li, X. Highly Stable Perovskite Photodetector Based on Vapor-Processed Micrometer-Scale CsPbBr3 Microplatelets. Chem. Mater. 2018, 30, 6744–6755. https://doi.org/10.1021/acs.chemmater.8b02435.
- 39.
Pintor Monroy, M.I.; Goldberg, I.; Elkhouly, K.; Georgitzikis, E.; Clinckemalie, L.; Croes, G.; Genoe, J. All-Evaporated, All-Inorganic CsPbI3 Perovskite-Based Devices for Broad-Band Photodetector and Solar Cell Applications. ACS Appl. Electron. Mater. 2021, 3, 3023–3033. https://doi.org/10.1021/acsaelm.1c00252.
- 40.
Liu, X.; Liu, Z.; Li, J.; Tan, X.; Sun, B.; Fang, H.; Liao, G. Ultrafast, self-powered and charge-transport-layer-free photodetectors based on high-quality evaporated CsPbBr3 perovskites for applications in optical communication. J. Mater. Chem. C 2020, 8, 3337–3350. https://doi.org/10.1039/C9TC06630F.
- 41.
Han, J.; Xie, Q.; Luo, J.; Deng, G.H.; Qian, Y.; Sun, D.; Rao, Y. Anisotropic Geminate and Non-Geminate Recombination of Triplet Excitons in Singlet Fission of Single Crystalline Hexacene. J. Phys. Chem. Lett. 2020, 11, 1261–1267. https://doi.org/10.1021/acs.jpclett.9b03800.
- 42.
Haque, F.; Wright, M.; Mahmud, M.A.; Yi, H.; Wang, D.; Duan, L.; Uddin, A. Effects of Hydroiodic Acid Concentration on the Properties of CsPbI 3 Perovskite Solar Cells. ACS Omega 2018, 3, 11937–11944. https://doi.org/10.1021/acsomega.8b01589.
- 43.
Ke, F.; Wang, C.; Jia, C.; Wolf, N.R.; Yan, J.; Niu, S.; Lin, Y. Preserving a robust CsPbI3 perovskite phase via pressure-directed octahedral tilt. Nat. Commun. 2021, 12, 461. https://doi.org/10.1038/s41467-020-20745-5.
- 44.
Luo, P.; Xia, W.; Zhou, S.; Sun, L.; Cheng, J.; Xu, C.; Lu, Y. Solvent Engineering for Ambient-Air-Processed, Phase-Stable CsPbI3 in Perovskite Solar Cells. J. Phys. Chem. Lett. 2016, 7, 3603–3608. https://doi.org/10.1021/acs.jpclett.6b01576.
- 45.
Montecucco, R.; Quadrivi, E.; Po, R.; Grancini, G. All-Inorganic Cesium-Based Hybrid Perovskites for Efficient and Stable Solar Cells and Modules. Adv. Energy Mater. 2021, 11, 2100672. https://doi.org/10.1002/aenm.202100672.
- 46.
Liu, D.; Li, Y.; Yuan, J.; Hong, Q.; Shi, G.; Yuan, D.; Fung, M.K. Improved performance of inverted planar perovskite solar cells with F4-TCNQ doped PEDOT:PSS hole transport layers. J. Mater. Chem. A 2017, 5, 5701–5708. https://doi.org/10.1039/C6TA10212C.
- 47.
Yan, G.; Ji, Z.; Li, Z.; Jiang, B.; Kuang, M.; Cai, X.; Mai, W. All-inorganic Cs2AgBiBr6/CuSCN-based photodetectors for weak light imaging. Sci. China Mater. 2021, 64, 198–208. https://doi.org/10.1007/s40843-020-1358-5.
- 48.
Wang, F.; Zhang, T.; Xie, R.; Wang, Z.; Hu, W. How to characterize figures of merit of two-dimensional photodetectors. Nat. Commun. 2023, 14, 2224. https://doi.org/10.1038/s41467-023-37635-1.
- 49.
Naeem, R.; Ehsan, M.; Rehman, A.; Yamani, Z.; Hakeem, A.; Mazhar, M. Single step aerosol assisted chemical vapor deposition of p-n Sn(II)oxide-Ti(IV)oxide nanocomposite thin film electrodes for investigation of photoelectrochemical properties. N. J. Chem. 2018, 42, 5256–5266. https://doi.org/10.1039/C7NJ04606E.
- 50.
Zhang, L.; Zhou, M.; Zhang, Z.; Yuan, J.; Li, B.; Wen, W.; Tian, J. Ultra-long photoluminescence lifetime in an inorganic halide perovskite thin film. J. Mater. Chem. A 2019, 7, 22229–22234. https://doi.org/10.1039/C9TA07412K.
- 51.
Zhang, Z.; Ji, R.; Kroll, M.; Hofstetter, Y.J.; Jia, X.; Becker-Koch, D.; Vaynzof, Y. Efficient Thermally Evaporated γ-CsPbI3 Perovskite Solar Cells. Adv. Energy Mater. 2021, 11, 2100299. https://doi.org/10.1002/aenm.202100299.
- 52.
Fu, Y.; Rea, M.T.; Chen, J.; Morrow, D.J.; Hautzinger, M.P.; Zhao, Y.; Jin, S. Selective Stabilization and Photophysical Properties of Metastable Perovskite Polymorphs of CsPbI3 in Thin Films. Chem. Mater. 2017, 29, 8385–8394. https://doi.org/10.1021/acs.chemmater.7b02948.
- 53.
You, J.; Hong, Z.; Yang, Y.; Chen, Q.; Cai, M.; Song, T.B.; Yang, Y. Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility. ACS Nano 2014, 8, 1674–1680. https://doi.org/10.1021/nn406020d.
- 54.
Menon, H.; Jeddi, H.; Morgan, N.P.; Fontcuberta i Morral, A.; Pettersson, H.; Borg, M. Monolithic InSb nanostructure photodetectors on Si using rapid melt growth. Nanoscale Adv. 2023, 5, 1152–1162. https://doi.org/10.1039/D2NA00903J.
- 55.
Yang, Q.; Wu, Q.; Luo, W.; Yao, W.; Yan, S.; Shen, J. InGaAs/graphene infrared photodetectors with enhanced responsivity. Mater. Res. Express 2019, 6, 116208. https://doi.org/10.1088/2053-1591/ab4925.
- 56.
Deviprasad, V.P.; Ghadi, H.; Das, D.; Panda, D.; Rawool, H.; Chavan, V.; Chakrabarti, S. High performance short wave infrared photodetector using p-i-p quantum dots (InAs/GaAs) validated with theoretically simulated model. J. Alloys Compd. 2019, 804, 18–26. https://doi.org/10.1016/j.jallcom.2019.06.286.
- 57.
Liu, Y.; Shivananju, B.N.; Wang, Y.; Zhang, Y.; Yu, W.; Xiao, S.; Bao, Q. Highly Efficient and Air-Stable Infrared Photodetector Based on 2D Layered Graphene–Black Phosphorus Heterostructure. ACS Appl. Mater. Interfaces 2017, 9, 36137–36145. https://doi.org/10.1021/acsami.7b09889.
- 58.
Ouedraogo, N.A.N.; Chen, Y.; Xiao, Y.Y.; Meng, Q.; Han, C.B.; Yan, H.; Zhang, Y. Stability of all-inorganic perovskite solar cells. Nano Energy 2020, 67, 104249. https://doi.org/10.1016/j.nanoen.2019.104249.
- 59.
Wang, D.; Wright, M.; Elumalai, N.K.; Uddin, A. Stability of perovskite solar cells. Sol. Energy Mater. Sol. Cells 2016, 147, 255–275. https://doi.org/10.1016/j.solmat.2015.12.025.
- 60.
Boyd, C.C.; Cheacharoen, R.; Leijtens, T.; McGehee, M.D. Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. Chem. Rev. 2019, 119, 3418–3451. https://doi.org/10.1021/acs.chemrev.8b00336.
- 61.
Wang, P.; Zhang, X.; Zhou, Y.; Jiang, Q.; Ye, Q.; Chu, Z.; You, J. Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nat. Commun. 2018, 9, 2225. https://doi.org/10.1038/s41467-018-04636-4.
- 62.
Bian, H.; Bai, D.; Jin, Z.; Wang, K.; Liang, L.; Wang, H.; Liu, S.F. Graded Bandgap CsPbI2+xBr1−x Perovskite Solar Cells with a Stabilized Efficiency of 14.4%. Joule 2018, 2, 1500–1510. https://doi.org/10.1016/j.joule.2018.04.012.