2507001023
  • Open Access
  • Article
Heterojunction Engineering of All-Inorganic CsPbI3 Perovskite for High-Responsivity SWIR Photodetectors Performed at Room Temperature
  • Sydney Schmidt 1, †,   
  • Haley Fisher 1, †,   
  • Xia Li 1,   
  • Jesse B. Brown 1,   
  • Yuqin Qian 1,   
  • Van Malmquist 1,   
  • Avetik Harutyunyan 2,   
  • Gugang Chen 2, *,   
  • Yi Rao 1, *

Received: 20 Apr 2025 | Revised: 10 Jul 2025 | Accepted: 12 Jul 2025 | Published: 30 Jul 2025

Abstract

Short-wave infrared (SWIR) light, 0.9–2.5 μm wavelengths, has widespread applications, including inspection processes, nighttime imaging, and machine vision. As such, there is increasing demand for practical and effective SWIR detectors. Many current SWIR photodetectors are based on high-cost materials and require cryogenic cooling. Perovskite materials, including CsPbI3, have been effectively used as photodetectors in the UV to near IR ranges, but their large bandgaps limit their use for lower energy SWIR light. In this report we introduce an all-inorganic perovskite photodetector based on CsPbI3 with heterojunction engineering for efficient and practical detection in the SWIR range at room temperature. The devices undergo a simple, solution-based fabrication process which includes spin-coating under ambient conditions and moderate annealing temperatures. Without additional cooling, the SWIR devices produce excellent results at room temperature with responsivity of 1.65 × 103 A W−1 and a specific detectivity of 8.0 × 1010 Jones under 0.28 mW cm2 of 1310 nm light and bias of −5 V. This material shows not only high response but also high sensitivity, making it stand out in the field of SWIR photodetection with the additional benefits of low-cost production and room temperature operation.

Graphical Abstract

References 

  • 1.
    Cao, F.; Liu, L.; Li, L. Short-wave infrared photodetector. Mater. Today 2023, 62, 327–349. https://doi.org/10.1016/j.mattod.2022.11.003.
  • 2.
    Wu, Z.; Zhai, Y.; Kim, H.; Azoulay, J.D.; Ng, T.N. Emerging Design and Characterization Guidelines for Polymer-Based Infrared Photodetectors. Acc. Chem. Res. 2018, 51, 3144–3153. https://doi.org/10.1021/acs.accounts.8b00446.
  • 3.
    Saparbaev, A.; Zhang, M.; Kuvondikov, V.; Nurumbetova, L.; Raji, I.O.; Tajibaev, I.; Yang, R. High-performance CsPbI3 perovskite solar cells without additives in air condition. Sol. Energy 2021, 228, 405–412. https://doi.org/10.1016/j.solener.2021.09.059.
  • 4.
    Shimoni, M.; Haelterman, R.; Perneel, C. Hypersectral Imaging for Military and Security Applications: Combining Myriad Processing and Sensing Techniques. IEEE Geosci. Remote Sens. Mag. 2019, 7, 101–117. https://doi.org/10.1109/MGRS.2019.2902525.
  • 5.
    Liu, C.; Igci, C.; Yang, Y.; Syzgantseva, O.A.; Syzgantseva, M.A.; Rakstys, K.; Nazeeruddin, M.K. Dopant-Free Hole Transport Materials Afford Efficient and Stable Inorganic Perovskite Solar Cells and Modules. Angew. Chem. Int. Ed. 2021, 60, 20489–20497. https://doi.org/10.1002/anie.202107774.
  • 6.
    Jahid, A.; Alsharif, M.H.; Hall, T.J. A contemporary survey on free space optical communication: Potentials, technical challenges, recent advances and research direction. J. Netw. Comput. Appl. 2022, 200, 103311. https://doi.org/10.1016/j.jnca.2021.103311.
  • 7.
    Haddadi, A.; Suo, X.V.; Adhikary, S.; Dianat, P.; Chevallier, R.; Hoang, A.M.; Razeghi, M. High-performance short-wavelength infrared photodetectors based on type-II InAs/InAs1−xSbx/AlAs1−xSbx superlattices. Appl. Phys. Lett. 2015, 107, 141104. https://doi.org/10.1063/1.4932518.
  • 8.
    Richter, J.; Lorenz, S.; Kaas, A.; Fuchs, M.; Röder, C.; Peuker, U.A.; Gloaguen, R. Spectral Characterization of Battery Components from Li-Ion Battery Recycling Processes. Metals 2024, 14, 147.
  • 9.
    Ferreira, M.P.; Wagner, F.H.; Aragão, L.E.O.C.; Shimabukuro, Y.E.; de Souza Filho, C.R. Tree species classification in tropical forests using visible to shortwave infrared WorldView-3 images and texture analysis. ISPRS J. Photogramm. Remote Sens. 2019, 149, 119–131. https://doi.org/10.1016/j.isprsjprs.2019.01.019.
  • 10.
    Tan, C.L.; Mohseni, H. Emerging technologies for high performance infrared detectors. Nanophotonics 2018, 7, 169–197. https://doi.org/10.1515/nanoph-2017-0061.
  • 11.
    Liu, Z.; Luo, T.; Liang, B.; Chen, G.; Yu, G.; Xie, X.; Shen, G. High-detectivity InAs nanowire photodetectors with spectral response from ultraviolet to near-infrared. Nano Res. 2013, 6, 775–783. https://doi.org/10.1007/s12274-013-0356-0.
  • 12.
    Pokharel, R.; Ramaswamy, P.; Devkota, S.; Parakh, M.; Dawkins, K.; Penn, A.; Iyer, S. Epitaxial High-Yield Intrinsic and Te-Doped Dilute Nitride GaAsSbN Nanowire Heterostructure and Ensemble Photodetector Application. ACS Appl. Electron. Mater. 2020, 2, 2730–2738. https://doi.org/10.1021/acsaelm.0c00450.
  • 13.
    Zhang, F.; Zhang, X.; Li, Z.; Yi, R.; Li, Z.; Wang, N.; Fu, L. A New Strategy for Selective Area Growth of Highly Uniform InGaAs/InP Multiple Quantum Well Nanowire Arrays for Optoelectronic Device Applications. Adv. Funct. Mater. 2022, 32, 2103057. https://doi.org/10.1002/adfm.202103057.
  • 14.
    Ackerman, M.M. Bringing Colloidal Quantum Dots to Detector Technologies. Inf. Disp. 2020, 36, 19–23. https://doi.org/10.1002/msid.1165.
  • 15.
    Wang, Y.; Peng, L.; Schreier, J.; Bi, Y.; Black, A.; Malla, A.; Konstantatos, G. Silver telluride colloidal quantum dot infrared photodetectors and image sensors. Nat. Photonics 2024, 18, 236–242. https://doi.org/10.1038/s41566-023-01345-3.
  • 16.
    Wu, Z.; Ou, Y.; Cai, M.; Wang, Y.; Tang, R.; Xia, Y. Short-Wave Infrared Photodetectors and Imaging Sensors Based on Lead Chalcogenide Colloidal Quantum Dots. Adv. Opt. Mater. 2023, 11, 2201577. https://doi.org/10.1002/adom.202201577.
  • 17.
    Kwon, J.B.; Han, M.; Jung, D.G.; Kong, S.H.; Jung, D. High Sensitivity Shortwave Infrared Photodetector Based on PbS QDs Using P3HT. Nanomaterials 2021, 11, 2683.
  • 18.
    Chen, W.; Tang, H.; Chen, Y.; Heger, J.E.; Li, N.; Kreuzer, L.P.; Müller-Buschbaum, P. Spray-deposited PbS colloidal quantum dot solid for near-infrared photodetectors. Nano Energy 2020, 78, 105254. https://doi.org/10.1016/j.nanoen.2020.105254.
  • 19.
    Yu, M.X.; Ma, J.J.; Wang, J.M.; Cai, W.G.; Zhang, Z.; Huang, B.; Tian, Z.Q. Ag2Te Quantum Dots as Contrast Agents for Near-Infrared Fluorescence and Computed Tomography Imaging. ACS Appl. Nano Mater. 2020, 3, 6071–6077. https://doi.org/10.1021/acsanm.0c01274.
  • 20.
    Hu, L.; Dong, Y.; Deng, J.; Xie, Y.; Ma, X.; Qian, F.; Xu, C. High responsivity graphene-InGaAs near-infrared photodetector realized by hole trapping and its response saturation mechanism. Opt. Express 2021, 29, 23234–23243. https://doi.org/10.1364/OE.431083.
  • 21.
    Park, J.; Hwang, J.C.; Kim, G.G.; Park, J.-U. Flexible electronics based on one-dimensional and two-dimensional hybrid nanomaterials. InfoMat 2020, 2, 33–56. https://doi.org/10.1002/inf2.12047.
  • 22.
    Mak, K.F.; Ju, L.; Wang, F.; Heinz, T.F. Optical spectroscopy of graphene: From the far infrared to the ultraviolet. Solid State Commun. 2012, 152, 1341–1349. https://doi.org/10.1016/j.ssc.2012.04.064.
  • 23.
    Kim, J.Y.; Lee, J.-W.; Jung, H.S.; Shin, H.; Park, N.-G. High-Efficiency Perovskite Solar Cells. Chem. Rev. 2020, 120, 7867–7918. https://doi.org/10.1021/acs.chemrev.0c00107.
  • 24.
    Gao, W.-H.; Chen, C. Perovskites and their constructed near-infrared photodetectors. Nano Energy 2024, 128, 109904. https://doi.org/10.1016/j.nanoen.2024.109904.
  • 25.
    Jhang, A.-T.; Tsai, P.-C.; Tsai, Y.-T.; Lin, S.-Y.; Fang, M.-H. Quantum-Dots-In-Double-Perovskite for High-Gain Short-Wave Infrared Photodetector. Adv. Opt. Mater. 2024, 12, 2401252. https://doi.org/10.1002/adom.202401252.
  • 26.
    Qian, Y.; Huang-Fu, Z.C.; Li, H.; Zhang, T.; Li, X.; Schmidt, S.; Rao, Y. Unleashing the Potential: High Responsivity at Room Temperature of Halide Perovskite-Based Short-Wave Infrared Detectors with Ultrabroad Bandwidth. JACS Au 2024, 4, 3921–3930. https://doi.org/10.1021/jacsau.4c00621.
  • 27.
    Wang, H.; Sun, Y.; Chen, J.; Wang, F.; Han, R.; Zhang, C.; Yang, J. A Review of Perovskite-Based Photodetectors and Their Applications. Nanomaterials 2022, 12, 4390.
  • 28.
    Miao, J.; Zhang, F. Recent progress on highly sensitive perovskite photodetectors. J. Mater. Chem. C 2019, 7, 1741–1791. https://doi.org/10.1039/C8TC06089D.
  • 29.
    Wang, F.; Zou, X.; Xu, M.; Wang, H.; Wang, H.; Guo, H.; Hu, W. Recent Progress on Electrical and Optical Manipulations of Perovskite Photodetectors. Adv. Sci. 2021, 8, 2100569. https://doi.org/10.1002/advs.202100569.
  • 30.
    Li, L.; Ye, S.; Qu, J.; Zhou, F.; Song, J.; Shen, G. Recent Advances in Perovskite Photodetectors for Image Sensing. Small 2021, 17, 2005606. https://doi.org/10.1002/smll.202005606.
  • 31.
    Fakharuddin, A.; Gangishetty, M.K.; Abdi-Jalebi, M.; Chin, S.H.; bin Mohd Yusoff, A.R.; Congreve, D.N.; Bolink, H.J. Perovskite light-emitting diodes. Nat. Electron. 2022, 5, 203–216. https://doi.org/10.1038/s41928-022-00745-7.
  • 32.
    Liu, Y.; Xia, M.; Ren, D.; Nussbaum, S.; Yum, J.H.; Gratzel, M.; Sivula, K. Photoelectrochemical CO2 Reduction at a Direct CuInGaS2/Electrolyte Junction. ACS Energy Lett. 2023, 8, 1645–1651. https://doi.org/10.1021/acsenergylett.3c00022.
  • 33.
    Filip, M.R.; Eperon, G.E.; Snaith, H.J.; Giustino, F. Steric engineering of metal-halide perovskites with tunable optical band gaps. Nat. Commun. 2014, 5, 5757. https://doi.org/10.1038/ncomms6757.
  • 34.
    Chen, S.; Teng, C.; Zhang, M.; Li, Y.; Xie, D.; Shi, G. A Flexible UV–Vis–NIR Photodetector based on a Perovskite/Conjugated-Polymer Composite. Adv. Mater. 2016, 28, 5969–5974. https://doi.org/10.1002/adma.201600468.
  • 35.
    Alwadai, N.; Haque, M.A.; Mitra, S.; Flemban, T.; Pak, Y.; Wu, T.; Roqan, I. High-Performance Ultraviolet-to-Infrared Broadband Perovskite Photodetectors Achieved via Inter-/Intraband Transitions. ACS Appl Mater Interfaces 2017, 9, 37832–37838. https://doi.org/10.1021/acsami.7b09705 From NLM.
  • 36.
    Pan, X.; Zhou, H.; Liu, R.; Wu, D.; Song, Z.; Tang, X.; Wang, H. Achieving a high-performance, self-powered, broadband perovskite photodetector employing MAPbI3 microcrystal films. J. Mater. Chem. C 2020, 8, 2028–2035. https://doi.org/10.1039/C9TC05668H.
  • 37.
    Yao, Z.; Zhao, W.; Liu, S. Stability of the CsPbI3 perovskite: From fundamentals to improvements. J. Mater. Chem. A 2021, 9, 11124–11144. https://doi.org/10.1039/D1TA01252E.
  • 38.
    Li, Y.; Shi, Z.; Lei, L.; Zhang, F.; Ma, Z.; Wu, D.; Li, X. Highly Stable Perovskite Photodetector Based on Vapor-Processed Micrometer-Scale CsPbBr3 Microplatelets. Chem. Mater. 2018, 30, 6744–6755. https://doi.org/10.1021/acs.chemmater.8b02435.
  • 39.
    Pintor Monroy, M.I.; Goldberg, I.; Elkhouly, K.; Georgitzikis, E.; Clinckemalie, L.; Croes, G.; Genoe, J. All-Evaporated, All-Inorganic CsPbI3 Perovskite-Based Devices for Broad-Band Photodetector and Solar Cell Applications. ACS Appl. Electron. Mater. 2021, 3, 3023–3033. https://doi.org/10.1021/acsaelm.1c00252.
  • 40.
    Liu, X.; Liu, Z.; Li, J.; Tan, X.; Sun, B.; Fang, H.; Liao, G. Ultrafast, self-powered and charge-transport-layer-free photodetectors based on high-quality evaporated CsPbBr3 perovskites for applications in optical communication. J. Mater. Chem. C 2020, 8, 3337–3350. https://doi.org/10.1039/C9TC06630F.
  • 41.
    Han, J.; Xie, Q.; Luo, J.; Deng, G.H.; Qian, Y.; Sun, D.; Rao, Y. Anisotropic Geminate and Non-Geminate Recombination of Triplet Excitons in Singlet Fission of Single Crystalline Hexacene. J. Phys. Chem. Lett. 2020, 11, 1261–1267. https://doi.org/10.1021/acs.jpclett.9b03800.
  • 42.
    Haque, F.; Wright, M.; Mahmud, M.A.; Yi, H.; Wang, D.; Duan, L.; Uddin, A. Effects of Hydroiodic Acid Concentration on the Properties of CsPbI 3 Perovskite Solar Cells. ACS Omega 2018, 3, 11937–11944. https://doi.org/10.1021/acsomega.8b01589.
  • 43.
    Ke, F.; Wang, C.; Jia, C.; Wolf, N.R.; Yan, J.; Niu, S.; Lin, Y. Preserving a robust CsPbI3 perovskite phase via pressure-directed octahedral tilt. Nat. Commun. 2021, 12, 461. https://doi.org/10.1038/s41467-020-20745-5.
  • 44.
    Luo, P.; Xia, W.; Zhou, S.; Sun, L.; Cheng, J.; Xu, C.; Lu, Y. Solvent Engineering for Ambient-Air-Processed, Phase-Stable CsPbI3 in Perovskite Solar Cells. J. Phys. Chem. Lett. 2016, 7, 3603–3608. https://doi.org/10.1021/acs.jpclett.6b01576.
  • 45.
    Montecucco, R.; Quadrivi, E.; Po, R.; Grancini, G. All-Inorganic Cesium-Based Hybrid Perovskites for Efficient and Stable Solar Cells and Modules. Adv. Energy Mater. 2021, 11, 2100672. https://doi.org/10.1002/aenm.202100672.
  • 46.
    Liu, D.; Li, Y.; Yuan, J.; Hong, Q.; Shi, G.; Yuan, D.; Fung, M.K. Improved performance of inverted planar perovskite solar cells with F4-TCNQ doped PEDOT:PSS hole transport layers. J. Mater. Chem. A 2017, 5, 5701–5708. https://doi.org/10.1039/C6TA10212C.
  • 47.
    Yan, G.; Ji, Z.; Li, Z.; Jiang, B.; Kuang, M.; Cai, X.; Mai, W. All-inorganic Cs2AgBiBr6/CuSCN-based photodetectors for weak light imaging. Sci. China Mater. 2021, 64, 198–208. https://doi.org/10.1007/s40843-020-1358-5.
  • 48.
    Wang, F.; Zhang, T.; Xie, R.; Wang, Z.; Hu, W. How to characterize figures of merit of two-dimensional photodetectors. Nat. Commun. 2023, 14, 2224. https://doi.org/10.1038/s41467-023-37635-1.
  • 49.
    Naeem, R.; Ehsan, M.; Rehman, A.; Yamani, Z.; Hakeem, A.; Mazhar, M. Single step aerosol assisted chemical vapor deposition of p-n Sn(II)oxide-Ti(IV)oxide nanocomposite thin film electrodes for investigation of photoelectrochemical properties. N. J. Chem. 2018, 42, 5256–5266. https://doi.org/10.1039/C7NJ04606E.
  • 50.
    Zhang, L.; Zhou, M.; Zhang, Z.; Yuan, J.; Li, B.; Wen, W.; Tian, J. Ultra-long photoluminescence lifetime in an inorganic halide perovskite thin film. J. Mater. Chem. A 2019, 7, 22229–22234. https://doi.org/10.1039/C9TA07412K.
  • 51.
    Zhang, Z.; Ji, R.; Kroll, M.; Hofstetter, Y.J.; Jia, X.; Becker-Koch, D.; Vaynzof, Y. Efficient Thermally Evaporated γ-CsPbI3 Perovskite Solar Cells. Adv. Energy Mater. 2021, 11, 2100299. https://doi.org/10.1002/aenm.202100299.
  • 52.
    Fu, Y.; Rea, M.T.; Chen, J.; Morrow, D.J.; Hautzinger, M.P.; Zhao, Y.; Jin, S. Selective Stabilization and Photophysical Properties of Metastable Perovskite Polymorphs of CsPbI3 in Thin Films. Chem. Mater. 2017, 29, 8385–8394. https://doi.org/10.1021/acs.chemmater.7b02948.
  • 53.
    You, J.; Hong, Z.; Yang, Y.; Chen, Q.; Cai, M.; Song, T.B.; Yang, Y. Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility. ACS Nano 2014, 8, 1674–1680. https://doi.org/10.1021/nn406020d.
  • 54.
    Menon, H.; Jeddi, H.; Morgan, N.P.; Fontcuberta i Morral, A.; Pettersson, H.; Borg, M. Monolithic InSb nanostructure photodetectors on Si using rapid melt growth. Nanoscale Adv. 2023, 5, 1152–1162. https://doi.org/10.1039/D2NA00903J.
  • 55.
    Yang, Q.; Wu, Q.; Luo, W.; Yao, W.; Yan, S.; Shen, J. InGaAs/graphene infrared photodetectors with enhanced responsivity. Mater. Res. Express 2019, 6, 116208. https://doi.org/10.1088/2053-1591/ab4925.
  • 56.
    Deviprasad, V.P.; Ghadi, H.; Das, D.; Panda, D.; Rawool, H.; Chavan, V.; Chakrabarti, S. High performance short wave infrared photodetector using p-i-p quantum dots (InAs/GaAs) validated with theoretically simulated model. J. Alloys Compd. 2019, 804, 18–26. https://doi.org/10.1016/j.jallcom.2019.06.286.
  • 57.
    Liu, Y.; Shivananju, B.N.; Wang, Y.; Zhang, Y.; Yu, W.; Xiao, S.; Bao, Q. Highly Efficient and Air-Stable Infrared Photodetector Based on 2D Layered Graphene–Black Phosphorus Heterostructure. ACS Appl. Mater. Interfaces 2017, 9, 36137–36145. https://doi.org/10.1021/acsami.7b09889.
  • 58.
    Ouedraogo, N.A.N.; Chen, Y.; Xiao, Y.Y.; Meng, Q.; Han, C.B.; Yan, H.; Zhang, Y. Stability of all-inorganic perovskite solar cells. Nano Energy 2020, 67, 104249. https://doi.org/10.1016/j.nanoen.2019.104249.
  • 59.
    Wang, D.; Wright, M.; Elumalai, N.K.; Uddin, A. Stability of perovskite solar cells. Sol. Energy Mater. Sol. Cells 2016, 147, 255–275. https://doi.org/10.1016/j.solmat.2015.12.025.
  • 60.
    Boyd, C.C.; Cheacharoen, R.; Leijtens, T.; McGehee, M.D. Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. Chem. Rev. 2019, 119, 3418–3451. https://doi.org/10.1021/acs.chemrev.8b00336.
  • 61.
    Wang, P.; Zhang, X.; Zhou, Y.; Jiang, Q.; Ye, Q.; Chu, Z.; You, J. Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nat. Commun. 2018, 9, 2225. https://doi.org/10.1038/s41467-018-04636-4.
  • 62.
    Bian, H.; Bai, D.; Jin, Z.; Wang, K.; Liang, L.; Wang, H.; Liu, S.F. Graded Bandgap CsPbI2+xBr1−x Perovskite Solar Cells with a Stabilized Efficiency of 14.4%. Joule 2018, 2, 1500–1510. https://doi.org/10.1016/j.joule.2018.04.012.
Share this article:
How to Cite
Schmidt, S.; Fisher, H.; Li, X.; Brown, J. B.; Qian, Y.; Malmquist, V.; Harutyunyan, A.; Chen, G.; Rao, Y. Heterojunction Engineering of All-Inorganic CsPbI3 Perovskite for High-Responsivity SWIR Photodetectors Performed at Room Temperature. Materials and Interfaces 2025, 2 (3), 302–312. https://doi.org/10.53941/mi.2025.100023.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.