2508001091
  • Open Access
  • Review

Light-Driven Soft Actuators: Materials, Designs, and Applications

  • Siqi Huang 1, †,   
  • Dong Zhang 1, †,   
  • Younan Xia 1, 2, *

Received: 16 Jul 2025 | Revised: 23 Jul 2025 | Accepted: 30 Jul 2025 | Published: 11 Aug 2025

Abstract

Light-driven soft actuators have attracted extensive attention owning to their unique merits, including wireless remote actuation, precise spatiotemporal control, noncontact localized manipulation, as well as easily tunable properties. This review highlights recent advances in the design and fabrication of state-of-the-art light-driven soft actuators, starting from an overview of typical materials to the design strategies developed up to date, followed by discussion of their emerging applications in the contexts of biomimetic locomotion robotics, complex 3D architecture manufacturing, microfluidic systems, and biomedical research. At the end, we discuss opportunities and challenges in this rapidly growing field, together with perspectives on future directions.

Graphical Abstract

References 

  • 1.
    Bartlett, N.W.; Tolley, M.T.; Overvelde, J.T.B.; Weaver, J.C.; Mosadegh, B.; Bertoldi, K.; Whitesides, G.M.; Wood, R.J. A 3D-printed, functionally graded soft robot powered by combustion. Science 2015, 349, 161165.
  • 2.
    Wang, Y.; Ye, H.; He, J.; Ge, Q.; Xiong, Y. Electrothermally controlled origami fabricated by 4D printing of continuous fiber-reinforced composites. Nat. Commun. 2024, 15, 2322.
  • 3.
    Iamsaard, S.; Asshoff, S.J.; Matt, B.; Kudernac, T.; Cornelissen, J.; Fletcher, S.P.; Katsonis, N. Conversion of light into macroscopic helical motion. Nat. Chem. 2014, 6, 229235.
  • 4.
    Silverberg, J.L.; Na, J.H.; Evans, A.A.; Liu, B.; Hull, T.C.; Santangelo, C.D.; Lang, R.J.; Hayward, R.C.; Cohen, I. Origami structures with a critical transition to bistability arising from hidden degrees of freedom. Nat. Mater. 2015, 14, 389–393.
  • 5.
    Na, H.; Kang, Y.W.; Park, C.S.; Jung, S.; Kim, H.Y.; Sun, J.Y. Hydrogel-based strong and fast actuators by electroosmotic turgor pressure. Science 2022, 376, 301–307.
  • 6.
    Marago, O.M.; Jones, P.H.; Gucciardi, P.G.; Volpe, G.A.; Ferrari, C. Optical trapping and manipulation of nanostructures. Nat. Nanotechnol. 2013, 8, 807–819.
  • 7.
    Han, D.D.; Zhang, Y.L.; Ma, J.N.; Liu, Y.Q.; Han, B.; Sun, H.B. Light-mediated manufacture and manipulation of actuators. Adv. Mater. 2016, 28, 8328–8343.
  • 8.
    He, Q.; Yin, R.; Hua, Y.; Jiao, W.; Mo, C.; Shu, H.; Raney, J.R. A modular strategy for distributed, embodied control of electronics-free soft robots. Sci. Adv. 2023, 9, eade9247.
  • 9.
    Nocentini, S.; Parmeggiani, C.; Martella, D.; Wiersma, D.S. Optically driven soft micro robotics. Adv. Opt. Mater. 2018, 6, 1800207.
  • 10.
    Jiao, D.; Zhu, Q.L.; Li, C.Y.; Zheng, Q.; Wu, Z.L. Programmable morphing hydrogels for soft actuators and robots: from structure designs to active functions. Acc. Chem. Res. 2022, 55, 1533–1545.
  • 11.
    Ube, T.; Ikeda, T. Photomobile polymer materials with complex 3D deformation, continuous motions, self-regulation, and enhanced processability. Adv. Opt. Mater. 2019, 7, 1900380.
  • 12.
    Park, J.; Lee, Y.; Cho, S.; Choe, A.; Yeom, J.; Ro, Y.G.; Kim, J.; Kang, D.; Lee, S.; Ko, H. Soft Sensors and Actuators for Wearable Human–Machine Interfaces. Chem. Rev. 2024, 124, 1464–1534.
  • 13.
    Che, Z.; Wan, X.; Xu, J.; Duan, C.; Zheng, T.; Chen, J. Speaking without vocal folds using a machine-learning-assisted wearable sensing-actuation system. Nat. Commun. 2024, 15, 1873.
  • 14.
    Di Maria, F.; Lodola, F.; Zucchetti, E.; Benfenati, F.; Lanzani, G. The evolution of artificial light actuators in living systems: from planar to nanostructured interfaces. Chem. Soc. Rev. 2018, 47, 4757–4780.
  • 15.
    Stoychev, G.; Kirillova, A.; Ionov, L. Light-responsive shape-changing polymers. Adv. Opt. Mater. 2019, 7, 1900067.
  • 16.
    Xu, F.; Feringa, B.L. Photoresponsive supramolecular polymers: from light-controlled small molecules to smart materials. Adv. Mater. 2023, 35, 2204413.
  • 17.
    Chen, Y.; Yang, J.; Zhang, X.; Feng, Y.; Zeng, H.; Wang, L.; Feng, W. Light-driven bimorph soft actuators: design, fabrication, and properties. Mater. Horiz. 2021, 8, 728–757.
  • 18.
    Yang, X.; Chen, Y.; Zhang, X.; Xue, P.; Lv, P.; Yang, Y.; Wang, L.; Feng, W. Bioinspired light-fueled water-walking soft robots based on liquid crystal network actuators with polymerizable miniaturized gold nanorods. Nano Today 2022, 43, 101419.
  • 19.
    Corra, S.; Curcio, M.; Baroncini, M.; Silvi, S.; Credi, A. Photoactivated artificial molecular machines that can perform tasks. Adv. Mater. 2020, 32, 1906064.
  • 20.
    Habault, D.; Zhang, H.; Zhao, Y. Light-triggered self-healing and shape-memory polymers. Chem. Soc. Rev. 2013, 42, 7244–7256.
  • 21.
    Zhang, Q.M.; Li, X.; Islam, M.R.; Wei, M.; Serpe, M.J. Light switchable optical materials from azobenzene crosslinked poly (N-isopropylacrylamide)-based microgels. J. Mater. Chem. C 2014, 2, 6961–6965.
  • 22.
    Hu, L.; Wan, Y.; Zhang, Q.; Serpe, M.J. Stimuli-responsive actuation: harnessing the power of stimuli-responsive polymers for actuation. Adv. Funct. Mater. 2020, 30, 2070012.
  • 23.
    Jerca, F.A.; Jerca, V.V.; Hoogenboom, R. Advances and opportunities in the exciting world of azobenzenes. Nat. Rev. Chem. 2022, 6, 51-69.
  • 24.
    Kuenstler, A.S.; Hayward, R.C. Light-induced shape morphing of thin films. Curr. Opin. Colloid Interfaces Sci. 2019, 40, 70–86.
  • 25.
    Santer, S. Remote control of soft nano-objects by light using azobenzene containing surfactants. J. Phys. D: Appl. Phys. 2017, 51, 013002.
  • 26.
    Han, B.; Zhang, Y.L.; Chen, Q.D.; Sun, H.B. Carbon-based photothermal actuators. Adv. Funct. Mater. 2018, 28, 1802235.
  • 27.
    Cheng, H.; Huang, Y.; Shi, G.; Jiang, L.; Qu, L. Graphene-based functional architectures: sheets regulation and macrostructure construction toward actuators and power generators. Acc. Chem. Res. 2017, 50, 1663–1671.
  • 28.
    Yu, X.; Cheng, H.; Zhang, M.; Zhao, Y.; Qu, L.; Shi, G. Graphene-based smart materials. Nat. Rev. Mater. 2017, 2, 17046.
  • 29.
    Wang, E.; Desai, M.S.; Lee, S.W. Light-controlled graphene-elastin composite hydrogel actuators. Nano. Lett. 2013, 13, 2826–2830.
  • 30.
    Zhang, X.; Yu, Z.B.; Wang, C.; Zarrouk, D.; Seo, J.W.T.; Cheng, J.C.; Buchan, A.D.; Takei, K.; Zhao, Y.; Ager, J.W.; et al. Photoactuators and motors based on carbon nanotubes with selective chirality distributions. Nat. Commun. 2014, 5, 2983.
  • 31.
    Hines, L.; Petersen, K.; Lum, G.Z.; Sitti, M. Soft actuators for small-scale robotics. Adv. Mater. 2017, 29, 1603483.
  • 32.
    Jiang, Z.C.; Xiao, Y.Y.; Zhao, Y. Shining light on liquid crystal polymer networks: preparing, reconfiguring, and driving soft actuators. Adv. Opt. Mater. 2019, 7, 1900262.
  • 33.
    Ahn, S.K.; Ware, T.H.; Lee, K.M.; Tondiglia, V.P.; White, T.J. Photoinduced topographical feature development in blueprinted azobenzene-functionalized liquid crystalline elastomers. Adv. Funct. Mater. 2016, 26, 5819–5826.
  • 34.
    Ikeda, T. Photomodulation of liquid crystal orientations for photonic applications. J. Mater. Chem. 2003, 13, 2037–2057.
  • 35.
    Kohlmeyer, R.R.; Chen, J. Wavelength-selective, IR light-driven hinges based on liquid crystalline elastomer composites. Angew. Chem. Int. Ed. 2013, 52, 9234–9237.
  • 36.
    Stumpel, J.E.; Broer, D.J.; Schenning, A. Stimuli-responsive photonic polymer coatings. Chem. Commun. 2014, 50, 15839–15848.
  • 37.
    Kohlmeyer, R.R.; Lor, M.; Chen, J. Remote, local, and chemical programming of healable multishape memory polymer nanocomposites. Nano. Lett. 2012, 12, 2757–2762.
  • 38.
    Dugave, C.; Demange, L. Cistrans isomerization of organic molecules and biomolecules: implications and applications. Chem. Rev. 2003, 103, 2475–2532.
  • 39.
    Xu, W.C.; Sun, S.; Wu, S. Photoinduced reversible solid-to-liquid transitions for photoswitchable materials. Angew. Chem. Int. Ed. 2019, 58, 9712–9740.
  • 40.
    Bandara, H.M.D.; Burdette, S.C. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 2012, 41, 1809–1825.
  • 41.
    Irie, M.; Fukaminato, T.; Matsuda, K.; Kobatake, S. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem. Rev. 2014, 114, 12174–12277.
  • 42.
    Klajn, R. Spiropyran-based dynamic materials. Chem. Soc. Rev. 2014, 43, 148–184.
  • 43.
    Huang, C.; Lv, J.A.; Tian, X.; Wang, Y.; Yu, Y.; Liu, J. Miniaturized swimming soft robot with complex movement actuated and controlled by remote light signals. Sci. Rep. 2015, 5, 17414.
  • 44.
    Iwaso, K.; Takashima, Y.; Harada, A. Fast response dry-type artificial molecular muscles with [c2] daisy chains. Nat. Chem. 2016, 8, 625–632.
  • 45.
    Morimoto, M.; Irie, M. A diarylethene cocrystal that converts light into mechanical work. J. Am. Chem. Soc. 2010, 132, 14172–14178.
  • 46.
    Luo, R.; Wu, J.; Dinh, N.D.; Chen, C.H. Gradient porous elastic hydrogels with shape-memory property and anisotropic responses for programmable locomotion. Adv. Funct. Mater. 2015, 25, 7272–7279.
  • 47.
    Hu, Y.; Liu, J.; Chang, L.; Yang, L.; Xu, A.; Qi, K.; Lu, P.; Wu, G.; Chen, W.; Wu, Y. Electrically and sunlight-driven actuator with versatile biomimetic motions based on rolled carbon nanotube bilayer composite. Adv. Funct. Mater. 2017, 27, 1704388.
  • 48.
    Ji, M.; Jiang, N.; Chang, J.; Sun, J. Near-infrared light-driven, highly efficient bilayer actuators based on polydopamine-modified reduced graphene oxide. Adv. Funct. Mater. 2014, 24, 5412–5419.
  • 49.
    Chen, Z.; Gao, B.; Li, P.; Zhao, X.; Yan, Q.; Liu, Z.; Xu, L.; Zheng, H.; Xue, F.; Ding, R.; et al. Multistimuli-responsive actuators derived from natural materials for entirely biodegradable and programmable untethered soft robots. ACS Nano 2023, 17, 23032–23045.
  • 50.
    Deng, J.; Li, J.; Chen, P.; Fang, X.; Sun, X.; Jiang, Y.; Weng, W.; Wang, B.; Peng, H. Tunable photothermal actuators based on a pre-programmed aligned nanostructure. J. Am. Chem. Soc. 2016, 138, 225–230.
  • 51.
    Yang, Y.; Zhan, W.; Peng, R.; He, C.; Pang, X.; Shi, D.; Jiang, T.; Lin, Z. Graphene-enabled superior and tunable photomechanical actuation in liquid crystalline elastomer nanocomposites. Adv. Mater. 2015, 27, 6376–6381.
  • 52.
    Martella, D.; Nocentini, S.; Nuzhdin, D.; Parmeggiani, C.; Wiersma, D.S. Photonic microhand with autonomous action. Adv. Mater. 2017, 29, 1704047.
  • 53.
    Peng, W.; Zhang, G.; Liu, J.; Nie, S.; Wu, Y.; Deng, S.; Fang, G.; Zhou, J.; Song, J.; Qian, J.; et al. Light-coded digital crystallinity patterns toward bioinspired 4D transformation of shape-memory polymers. Adv. Funct. Mater. 2020, 30, 2000522.
  • 54.
    Qian, X.; Zhao, Y.; Alsaid, Y.; Wang, X.; Hua, M.; Galy, T.; Gopalakrishna, H.; Yang, Y.; Cui, J.; Liu, N.; et al. Artificial phototropism for omnidirectional tracking and harvesting of light. Nat. Nanotechnol. 2019, 14, 1048–1055.
  • 55.
    Wani, O.M.; Zeng, H.; Priimagi, A. A Light-driven artificial flytrap. Nat. Commun. 2017, 8, 15546.
  • 56.
    Yang, L.; Chang, L.; Hu, Y.; Huang, M.; Ji, Q.; Lu, P.; Liu, J.; Chen, W.; Wu, Y. An autonomous soft actuator with light-driven self-sustained wavelike oscillation for phototactic self-locomotion and power generation. Adv. Funct. Mater. 2020, 30, 1908842.
  • 57.
    Jeon, S.J.; Hauser, A.W.; Hayward, R.C. Shape-morphing materials from stimuli-responsive hydrogel hybrids. Acc. Chem. Res. 2017, 50, 161–169.
  • 58.
    Gao, D.; Lin, M.F.; Xiong, J.; Li, S.; Lou, S.N.; Liu, Y.; Ciou, J.H.; Zhou, X.; Lee, P.S. Photothermal actuated origamis based on graphene oxide–cellulose programmable bilayers. Nanoscale Horiz. 2020, 5, 730–738.
  • 59.
    Cheng, Y.C.; Lu, H.C.; Lee, X.; Zeng, H.; Priimagi, A. Kirigami-based light-induced shape-morphing and locomotion. Adv. Mater. 2020, 32, 1906233.
  • 60.
    Yang, T.; Chen, Y.; Minzioni, P. A review on optical actuators for microfluidic systems. J. Micromech. Microeng. 2017, 27, 123001.
  • 61.
    Ter Schiphorst, J.; Coleman, S.; Stumpel, J.E.; Ben Azouz, A.; Diamond, D.; Schenning, A.P. Molecular design of light-responsive hydrogels, for in situ generation of fast and reversible valves for microfluidic applications. Chem. Mater. 2015, 27, 5925–5931.
  • 62.
    Lv, J.A.; Liu, Y.; Wei, J.; Chen, E.; Qin, L.; Yu, Y. Photocontrol of fluid slugs in liquid crystal polymer microactuators. Nature 2016, 537, 179.
  • 63.
    Fernandez-Villamarin, M.; Brooks, L.; Mendes, P.M. The Role of photochemical reactions in the development of advanced soft materials for biomedical applications. Adv. Opt. Mater. 2019, 7, 1900215.
  • 64.
    Korde, J.M.; Kandasubramanian, B. Naturally biomimicked smart shape memory hydrogels for biomedical functions. Chem. Eng. J. 2020, 379, 122430.
  • 65.
    Molla, M.R.; Rangadurai, P.; Antony, L.; Swaminathan, S.; de Pablo, J.J.; Thayumanavan, S. Dynamic actuation of glassy polymersomes through isomerization of a single azobenzene unit at the block copolymer interface. Nat. Chem. 2018, 10, 659–666.
  • 66.
    Yan, T.; Li, F.; Tian, J.; Wang, L.; Luo, Q.; Hou, C.; Dong, Z.; Xu, J.; Liu, J. Biomimetic pulsating vesicles with both pH-tunable membrane permeability and light-triggered disassembly–re-assembly behaviors prepared by supra-amphiphilic helices. ACS Appl. Mater. Interfaces 2019, 11, 30566–30574.
  • 67.
    Mu, J.; Yang, L.; Sheng, N.; Zhang, Y.; Guo, Y.; Song, X.; Jiang, H.; Zhang, Y.; Zuo, S.; Zhang, H.; et al. Advancing medical devices with soft actuators. Innovation Mater. 2025, 3, 100112.
  • 68.
    Toncheva, A.; Khelifa, F.; Paint, Y.; Voué, M.; Lambert, P.; Dubois, P.; Raquez, J.M. Fast IR-actuated shape-memory polymers using in situ silver nanoparticle-grafted cellulose nanocrystals. ACS Appl. Mater. Interfaces 2018, 10, 29933–29942.
  • 69.
    Zhou, C.; Xu, Z.; Lin, Z.; Qin, X.; Xia, J.; Ai, X.; Lou, C.; Huang, Z.; Huang, S.; Liu, H.; et al. Submillimeter fiber robots capable of decoupled macro-micro motion for endoluminal manipulation. Sci. Adv. 2024, 10, eadr6428.
  • 70.
    Chung, H.; Dai, T.; Sharma, S.K.; Huang, Y.-Y.; Carroll, J.D.; Hamblin, M.R. The nuts and bolts of low-level laser (light) therapy. Ann. Biomed. Eng. 2012, 40, 516–533.
Share this article:
How to Cite
Huang, S.; Zhang, D.; Xia, Y. Light-Driven Soft Actuators: Materials, Designs, and Applications. Materials and Interfaces 2025, 2 (3), 313–331. https://doi.org/10.53941/mi.2025.100024.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.