- 1.
Bartlett, N.W.; Tolley, M.T.; Overvelde, J.T.B.; Weaver, J.C.; Mosadegh, B.; Bertoldi, K.; Whitesides, G.M.; Wood, R.J. A 3D-printed, functionally graded soft robot powered by combustion. Science 2015, 349, 161165.
- 2.
Wang, Y.; Ye, H.; He, J.; Ge, Q.; Xiong, Y. Electrothermally controlled origami fabricated by 4D printing of continuous fiber-reinforced composites. Nat. Commun. 2024, 15, 2322.
- 3.
Iamsaard, S.; Asshoff, S.J.; Matt, B.; Kudernac, T.; Cornelissen, J.; Fletcher, S.P.; Katsonis, N. Conversion of light into macroscopic helical motion. Nat. Chem. 2014, 6, 229235.
- 4.
Silverberg, J.L.; Na, J.H.; Evans, A.A.; Liu, B.; Hull, T.C.; Santangelo, C.D.; Lang, R.J.; Hayward, R.C.; Cohen, I. Origami structures with a critical transition to bistability arising from hidden degrees of freedom. Nat. Mater. 2015, 14, 389–393.
- 5.
Na, H.; Kang, Y.W.; Park, C.S.; Jung, S.; Kim, H.Y.; Sun, J.Y. Hydrogel-based strong and fast actuators by electroosmotic turgor pressure. Science 2022, 376, 301–307.
- 6.
Marago, O.M.; Jones, P.H.; Gucciardi, P.G.; Volpe, G.A.; Ferrari, C. Optical trapping and manipulation of nanostructures. Nat. Nanotechnol. 2013, 8, 807–819.
- 7.
Han, D.D.; Zhang, Y.L.; Ma, J.N.; Liu, Y.Q.; Han, B.; Sun, H.B. Light-mediated manufacture and manipulation of actuators. Adv. Mater. 2016, 28, 8328–8343.
- 8.
He, Q.; Yin, R.; Hua, Y.; Jiao, W.; Mo, C.; Shu, H.; Raney, J.R. A modular strategy for distributed, embodied control of electronics-free soft robots. Sci. Adv. 2023, 9, eade9247.
- 9.
Nocentini, S.; Parmeggiani, C.; Martella, D.; Wiersma, D.S. Optically driven soft micro robotics. Adv. Opt. Mater. 2018, 6, 1800207.
- 10.
Jiao, D.; Zhu, Q.L.; Li, C.Y.; Zheng, Q.; Wu, Z.L. Programmable morphing hydrogels for soft actuators and robots: from structure designs to active functions. Acc. Chem. Res. 2022, 55, 1533–1545.
- 11.
Ube, T.; Ikeda, T. Photomobile polymer materials with complex 3D deformation, continuous motions, self-regulation, and enhanced processability. Adv. Opt. Mater. 2019, 7, 1900380.
- 12.
Park, J.; Lee, Y.; Cho, S.; Choe, A.; Yeom, J.; Ro, Y.G.; Kim, J.; Kang, D.; Lee, S.; Ko, H. Soft Sensors and Actuators for Wearable Human–Machine Interfaces. Chem. Rev. 2024, 124, 1464–1534.
- 13.
Che, Z.; Wan, X.; Xu, J.; Duan, C.; Zheng, T.; Chen, J. Speaking without vocal folds using a machine-learning-assisted wearable sensing-actuation system. Nat. Commun. 2024, 15, 1873.
- 14.
Di Maria, F.; Lodola, F.; Zucchetti, E.; Benfenati, F.; Lanzani, G. The evolution of artificial light actuators in living systems: from planar to nanostructured interfaces. Chem. Soc. Rev. 2018, 47, 4757–4780.
- 15.
Stoychev, G.; Kirillova, A.; Ionov, L. Light-responsive shape-changing polymers. Adv. Opt. Mater. 2019, 7, 1900067.
- 16.
Xu, F.; Feringa, B.L. Photoresponsive supramolecular polymers: from light-controlled small molecules to smart materials. Adv. Mater. 2023, 35, 2204413.
- 17.
Chen, Y.; Yang, J.; Zhang, X.; Feng, Y.; Zeng, H.; Wang, L.; Feng, W. Light-driven bimorph soft actuators: design, fabrication, and properties. Mater. Horiz. 2021, 8, 728–757.
- 18.
Yang, X.; Chen, Y.; Zhang, X.; Xue, P.; Lv, P.; Yang, Y.; Wang, L.; Feng, W. Bioinspired light-fueled water-walking soft robots based on liquid crystal network actuators with polymerizable miniaturized gold nanorods. Nano Today 2022, 43, 101419.
- 19.
Corra, S.; Curcio, M.; Baroncini, M.; Silvi, S.; Credi, A. Photoactivated artificial molecular machines that can perform tasks. Adv. Mater. 2020, 32, 1906064.
- 20.
Habault, D.; Zhang, H.; Zhao, Y. Light-triggered self-healing and shape-memory polymers. Chem. Soc. Rev. 2013, 42, 7244–7256.
- 21.
Zhang, Q.M.; Li, X.; Islam, M.R.; Wei, M.; Serpe, M.J. Light switchable optical materials from azobenzene crosslinked poly (N-isopropylacrylamide)-based microgels. J. Mater. Chem. C 2014, 2, 6961–6965.
- 22.
Hu, L.; Wan, Y.; Zhang, Q.; Serpe, M.J. Stimuli-responsive actuation: harnessing the power of stimuli-responsive polymers for actuation. Adv. Funct. Mater. 2020, 30, 2070012.
- 23.
Jerca, F.A.; Jerca, V.V.; Hoogenboom, R. Advances and opportunities in the exciting world of azobenzenes. Nat. Rev. Chem. 2022, 6, 51-69.
- 24.
Kuenstler, A.S.; Hayward, R.C. Light-induced shape morphing of thin films. Curr. Opin. Colloid Interfaces Sci. 2019, 40, 70–86.
- 25.
Santer, S. Remote control of soft nano-objects by light using azobenzene containing surfactants. J. Phys. D: Appl. Phys. 2017, 51, 013002.
- 26.
Han, B.; Zhang, Y.L.; Chen, Q.D.; Sun, H.B. Carbon-based photothermal actuators. Adv. Funct. Mater. 2018, 28, 1802235.
- 27.
Cheng, H.; Huang, Y.; Shi, G.; Jiang, L.; Qu, L. Graphene-based functional architectures: sheets regulation and macrostructure construction toward actuators and power generators. Acc. Chem. Res. 2017, 50, 1663–1671.
- 28.
Yu, X.; Cheng, H.; Zhang, M.; Zhao, Y.; Qu, L.; Shi, G. Graphene-based smart materials. Nat. Rev. Mater. 2017, 2, 17046.
- 29.
Wang, E.; Desai, M.S.; Lee, S.W. Light-controlled graphene-elastin composite hydrogel actuators. Nano. Lett. 2013, 13, 2826–2830.
- 30.
Zhang, X.; Yu, Z.B.; Wang, C.; Zarrouk, D.; Seo, J.W.T.; Cheng, J.C.; Buchan, A.D.; Takei, K.; Zhao, Y.; Ager, J.W.; et al. Photoactuators and motors based on carbon nanotubes with selective chirality distributions. Nat. Commun. 2014, 5, 2983.
- 31.
Hines, L.; Petersen, K.; Lum, G.Z.; Sitti, M. Soft actuators for small-scale robotics. Adv. Mater. 2017, 29, 1603483.
- 32.
Jiang, Z.C.; Xiao, Y.Y.; Zhao, Y. Shining light on liquid crystal polymer networks: preparing, reconfiguring, and driving soft actuators. Adv. Opt. Mater. 2019, 7, 1900262.
- 33.
Ahn, S.K.; Ware, T.H.; Lee, K.M.; Tondiglia, V.P.; White, T.J. Photoinduced topographical feature development in blueprinted azobenzene-functionalized liquid crystalline elastomers. Adv. Funct. Mater. 2016, 26, 5819–5826.
- 34.
Ikeda, T. Photomodulation of liquid crystal orientations for photonic applications. J. Mater. Chem. 2003, 13, 2037–2057.
- 35.
Kohlmeyer, R.R.; Chen, J. Wavelength-selective, IR light-driven hinges based on liquid crystalline elastomer composites. Angew. Chem. Int. Ed. 2013, 52, 9234–9237.
- 36.
Stumpel, J.E.; Broer, D.J.; Schenning, A. Stimuli-responsive photonic polymer coatings. Chem. Commun. 2014, 50, 15839–15848.
- 37.
Kohlmeyer, R.R.; Lor, M.; Chen, J. Remote, local, and chemical programming of healable multishape memory polymer nanocomposites. Nano. Lett. 2012, 12, 2757–2762.
- 38.
Dugave, C.; Demange, L. Cistrans isomerization of organic molecules and biomolecules: implications and applications. Chem. Rev. 2003, 103, 2475–2532.
- 39.
Xu, W.C.; Sun, S.; Wu, S. Photoinduced reversible solid-to-liquid transitions for photoswitchable materials. Angew. Chem. Int. Ed. 2019, 58, 9712–9740.
- 40.
Bandara, H.M.D.; Burdette, S.C. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 2012, 41, 1809–1825.
- 41.
Irie, M.; Fukaminato, T.; Matsuda, K.; Kobatake, S. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem. Rev. 2014, 114, 12174–12277.
- 42.
Klajn, R. Spiropyran-based dynamic materials. Chem. Soc. Rev. 2014, 43, 148–184.
- 43.
Huang, C.; Lv, J.A.; Tian, X.; Wang, Y.; Yu, Y.; Liu, J. Miniaturized swimming soft robot with complex movement actuated and controlled by remote light signals. Sci. Rep. 2015, 5, 17414.
- 44.
Iwaso, K.; Takashima, Y.; Harada, A. Fast response dry-type artificial molecular muscles with [c2] daisy chains. Nat. Chem. 2016, 8, 625–632.
- 45.
Morimoto, M.; Irie, M. A diarylethene cocrystal that converts light into mechanical work. J. Am. Chem. Soc. 2010, 132, 14172–14178.
- 46.
Luo, R.; Wu, J.; Dinh, N.D.; Chen, C.H. Gradient porous elastic hydrogels with shape-memory property and anisotropic responses for programmable locomotion. Adv. Funct. Mater. 2015, 25, 7272–7279.
- 47.
Hu, Y.; Liu, J.; Chang, L.; Yang, L.; Xu, A.; Qi, K.; Lu, P.; Wu, G.; Chen, W.; Wu, Y. Electrically and sunlight-driven actuator with versatile biomimetic motions based on rolled carbon nanotube bilayer composite. Adv. Funct. Mater. 2017, 27, 1704388.
- 48.
Ji, M.; Jiang, N.; Chang, J.; Sun, J. Near-infrared light-driven, highly efficient bilayer actuators based on polydopamine-modified reduced graphene oxide. Adv. Funct. Mater. 2014, 24, 5412–5419.
- 49.
Chen, Z.; Gao, B.; Li, P.; Zhao, X.; Yan, Q.; Liu, Z.; Xu, L.; Zheng, H.; Xue, F.; Ding, R.; et al. Multistimuli-responsive actuators derived from natural materials for entirely biodegradable and programmable untethered soft robots. ACS Nano 2023, 17, 23032–23045.
- 50.
Deng, J.; Li, J.; Chen, P.; Fang, X.; Sun, X.; Jiang, Y.; Weng, W.; Wang, B.; Peng, H. Tunable photothermal actuators based on a pre-programmed aligned nanostructure. J. Am. Chem. Soc. 2016, 138, 225–230.
- 51.
Yang, Y.; Zhan, W.; Peng, R.; He, C.; Pang, X.; Shi, D.; Jiang, T.; Lin, Z. Graphene-enabled superior and tunable photomechanical actuation in liquid crystalline elastomer nanocomposites. Adv. Mater. 2015, 27, 6376–6381.
- 52.
Martella, D.; Nocentini, S.; Nuzhdin, D.; Parmeggiani, C.; Wiersma, D.S. Photonic microhand with autonomous action. Adv. Mater. 2017, 29, 1704047.
- 53.
Peng, W.; Zhang, G.; Liu, J.; Nie, S.; Wu, Y.; Deng, S.; Fang, G.; Zhou, J.; Song, J.; Qian, J.; et al. Light-coded digital crystallinity patterns toward bioinspired 4D transformation of shape-memory polymers. Adv. Funct. Mater. 2020, 30, 2000522.
- 54.
Qian, X.; Zhao, Y.; Alsaid, Y.; Wang, X.; Hua, M.; Galy, T.; Gopalakrishna, H.; Yang, Y.; Cui, J.; Liu, N.; et al. Artificial phototropism for omnidirectional tracking and harvesting of light. Nat. Nanotechnol. 2019, 14, 1048–1055.
- 55.
Wani, O.M.; Zeng, H.; Priimagi, A. A Light-driven artificial flytrap. Nat. Commun. 2017, 8, 15546.
- 56.
Yang, L.; Chang, L.; Hu, Y.; Huang, M.; Ji, Q.; Lu, P.; Liu, J.; Chen, W.; Wu, Y. An autonomous soft actuator with light-driven self-sustained wavelike oscillation for phototactic self-locomotion and power generation. Adv. Funct. Mater. 2020, 30, 1908842.
- 57.
Jeon, S.J.; Hauser, A.W.; Hayward, R.C. Shape-morphing materials from stimuli-responsive hydrogel hybrids. Acc. Chem. Res. 2017, 50, 161–169.
- 58.
Gao, D.; Lin, M.F.; Xiong, J.; Li, S.; Lou, S.N.; Liu, Y.; Ciou, J.H.; Zhou, X.; Lee, P.S. Photothermal actuated origamis based on graphene oxide–cellulose programmable bilayers. Nanoscale Horiz. 2020, 5, 730–738.
- 59.
Cheng, Y.C.; Lu, H.C.; Lee, X.; Zeng, H.; Priimagi, A. Kirigami-based light-induced shape-morphing and locomotion. Adv. Mater. 2020, 32, 1906233.
- 60.
Yang, T.; Chen, Y.; Minzioni, P. A review on optical actuators for microfluidic systems. J. Micromech. Microeng. 2017, 27, 123001.
- 61.
Ter Schiphorst, J.; Coleman, S.; Stumpel, J.E.; Ben Azouz, A.; Diamond, D.; Schenning, A.P. Molecular design of light-responsive hydrogels, for in situ generation of fast and reversible valves for microfluidic applications. Chem. Mater. 2015, 27, 5925–5931.
- 62.
Lv, J.A.; Liu, Y.; Wei, J.; Chen, E.; Qin, L.; Yu, Y. Photocontrol of fluid slugs in liquid crystal polymer microactuators. Nature 2016, 537, 179.
- 63.
Fernandez-Villamarin, M.; Brooks, L.; Mendes, P.M. The Role of photochemical reactions in the development of advanced soft materials for biomedical applications. Adv. Opt. Mater. 2019, 7, 1900215.
- 64.
Korde, J.M.; Kandasubramanian, B. Naturally biomimicked smart shape memory hydrogels for biomedical functions. Chem. Eng. J. 2020, 379, 122430.
- 65.
Molla, M.R.; Rangadurai, P.; Antony, L.; Swaminathan, S.; de Pablo, J.J.; Thayumanavan, S. Dynamic actuation of glassy polymersomes through isomerization of a single azobenzene unit at the block copolymer interface. Nat. Chem. 2018, 10, 659–666.
- 66.
Yan, T.; Li, F.; Tian, J.; Wang, L.; Luo, Q.; Hou, C.; Dong, Z.; Xu, J.; Liu, J. Biomimetic pulsating vesicles with both pH-tunable membrane permeability and light-triggered disassembly–re-assembly behaviors prepared by supra-amphiphilic helices. ACS Appl. Mater. Interfaces 2019, 11, 30566–30574.
- 67.
Mu, J.; Yang, L.; Sheng, N.; Zhang, Y.; Guo, Y.; Song, X.; Jiang, H.; Zhang, Y.; Zuo, S.; Zhang, H.; et al. Advancing medical devices with soft actuators. Innovation Mater. 2025, 3, 100112.
- 68.
Toncheva, A.; Khelifa, F.; Paint, Y.; Voué, M.; Lambert, P.; Dubois, P.; Raquez, J.M. Fast IR-actuated shape-memory polymers using in situ silver nanoparticle-grafted cellulose nanocrystals. ACS Appl. Mater. Interfaces 2018, 10, 29933–29942.
- 69.
Zhou, C.; Xu, Z.; Lin, Z.; Qin, X.; Xia, J.; Ai, X.; Lou, C.; Huang, Z.; Huang, S.; Liu, H.; et al. Submillimeter fiber robots capable of decoupled macro-micro motion for endoluminal manipulation. Sci. Adv. 2024, 10, eadr6428.
- 70.
Chung, H.; Dai, T.; Sharma, S.K.; Huang, Y.-Y.; Carroll, J.D.; Hamblin, M.R. The nuts and bolts of low-level laser (light) therapy. Ann. Biomed. Eng. 2012, 40, 516–533.