- 1.
Luraghi, A.; Peri, F.; Moroni, L. Electrospinning for drug delivery applications: A review. J. Control. Release 2021, 334, 463–484. https://doi.org/10.1016/j.jconrel.2021.03.033.
- 2.
Kishan, A.P.; Cosgriff-Hernandez, E.M. Recent advancements in electrospinning design for tissue engineering applications: A review. J. Biomed. Mater. Res. Part A 2017, 105, 2892–2905. https://doi.org/10.1002/jbm.a.36124.
- 3.
Lu, T.; Cui, J.; Qu, Q.; Wang, Y.; Zhang, J.; Xiong, R.; Ma, W.; Huang, C. Multistructured Electrospun Nanofibers for Air Filtration: A Review. ACS Appl. Mater. Interfaces 2021, 13, 23293–23313. https://doi.org/10.1021/acsami.1c06520.
- 4.
Mercante, L.A.; Scagion, V.P.; Migliorini, F.L.; Mattoso, L.H.C.; Correa, D.S. Electrospinning-based (bio)sensors for food and agricultural applications: A review. TrAC Trends Anal. Chem. 2017, 91, 91–103. https://doi.org/10.1016/j.trac.2017.04.004.
- 5.
Taylor, S.G. Disintegration of water drops in an electric field. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 1964, 280, 383–397. https://doi.org/10.1098/rspa.1964.0151.
- 6.
Baumgarten, P.K. Electrostatic spinning of acrylic microfibers. J. Colloid Interface Sci. 1971, 36, 71–79. https://doi.org/10.1016/0021-9797(71)90241-4.
- 7.
Boda, S.K.; Li, X.; Xie, J. Electrospraying an enabling technology for pharmaceutical and biomedical applications: A review. J. Aerosol. Sci. 2018, 125, 164–181. https://doi.org/10.1016/j.jaerosci.2018.04.002.
- 8.
Jansen, K.A.; Donato, D.M.; Balcioglu, H.E.; Schmidt, T.; Danen, E.H.; Koenderink, G.H. A guide to mechanobiology: Where biology and physics meet. Biochim. Biophys. Acta 2015, 1853, 3043–3052. https://doi.org/10.1016/j.bbamcr.2015.05.007.
- 9.
Maurmann, N.; França, F.S.; Girón, J.; Pranke, P. Cell Electrospinning: A Review of Materials and Methodologies for Biofabrication. Adv. Biol. 2023, 7, 2300058. https://doi.org/10.1002/adbi.202300058.
- 10.
Nosoudi, N.; Hasanzadeh, A.; Hart, M.; Weaver, B. Advancements and Future Perspectives in Cell Electrospinning and Bio-Electrospraying. Adv. Biol. 2023, 7, 2300213. https://doi.org/10.1002/adbi.202300213.
- 11.
Elveren, B.; Kurečič, M.; Maver, T.; Maver, U. Cell Electrospinning: A Mini-Review of the Critical Processing Parameters and Its Use in Biomedical Applications. Adv. Biol. 2023, 7, 2300057. https://doi.org/10.1002/adbi.202300057.
- 12.
Karvinen, J.; Kellomäki, M. Design aspects and characterization of hydrogel-based bioinks for extrusion-based bioprinting. Bioprinting 2023, 32, e00274. https://doi.org/10.1016/j.bprint.2023.e00274.
- 13.
He, C.-F.; Qiao, T.-H.; Wang, G.-H.; Sun, Y.; He, Y. High-resolution projection-based 3D bioprinting. Nat. Rev. Bioeng. 2025, 3, 143–158. https://doi.org/10.1038/s44222-024-00218-w.
- 14.
Lee, M.; Rizzo, R.; Surman, F.; Zenobi-Wong, M. Guiding Lights: Tissue Bioprinting Using Photoactivated Materials. Chem. Rev. 2020, 120, 10950–11027. https://doi.org/10.1021/acs.chemrev.0c00077.
- 15.
Zandrini, T.; Florczak, S.; Levato, R.; Ovsianikov, A. Breaking the resolution limits of 3D bioprinting: Future opportunities and present challenges. Trends Biotechnol. 2023, 41, 604–614. https://doi.org/10.1016/j.tibtech.2022.10.009.
- 16.
Greiner, A.; Wendorff, J.H. Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers. Angew. Chem. Int. Ed. 2007, 46, 5670–5703. https://doi.org/10.1002/anie.200604646.
- 17.
Boularaoui, S.; Al Hussein, G.; Khan, K.A.; Christoforou, N.; Stefanini, C. An overview of extrusion-based bioprinting with a focus on induced shear stress and its effect on cell viability. Bioprinting 2020, 20, e00093. https://doi.org/10.1016/j.bprint.2020.e00093.
- 18.
Canbolat, M.F.; Tang, C.; Bernacki, S.H.; Pourdeyhimi, B.; Khan, S. Mammalian Cell Viability in Electrospun Composite Nanofiber Structures. Macromol. Biosci. 2011, 11, 1346–1356. https://doi.org/10.1002/mabi.201100108.
- 19.
Yeo, M.; Yoon, J.W.; Park, G.T.; Shin, S.-C.; Song, Y.-C.; Cheon, Y.-I.; Lee, B.-J.; Kim, G.H.; Kim, J.H. Esophageal wound healing by aligned smooth muscle cell-laden nanofibrous patch. Mater. Today Bio 2023, 19, 100564. https://doi.org/10.1016/j.mtbio.2023.100564.
- 20.
Nosoudi, N.; Oommen, A.J.; Stultz, S.; Jordan, M.; Aldabel, S.; Hohne, C.; Mosser, J.; Archacki, B.; Turner, A.; Turner, P. Electrospinning Live Cells Using Gelatin and Pullulan. Bioengineering 2020, 7, 21. https://doi.org/10.3390/bioengineering7010021.
- 21.
Diep, E.; Schiffman, J.D. Electrospinning Living Bacteria: A Review of Applications from Agriculture to Health Care. ACS Appl. Bio Mater. 2023, 6, 951–964. https://doi.org/10.1021/acsabm.2c01055.
- 22.
Schulte-Hermann, J.; Riessland, H.; MacKinnon, N.; Korvink, J.G.; Islam, M. Biomineralization of Electrospun Bacteria-Encapsulated Fibers: A Relevant Step toward Living Ceramic Fibers. ACS Appl. Bio Mater. 2024, 7, 7936–7943. https://doi.org/10.1021/acsabm.4c00715.
- 23.
Zussman, E. Encapsulation of cells within electrospun fibers. Polym. Adv. Technol. 2010, 22, 366–371. https://doi.org/10.1002/pat.1812.
- 24.
Zhang, Y.-Q.; Wang, P.; Shi, Q.-F.; Ning, X.; Chen, Z.; Ramakrishna, S.; Zheng, J.; Long, Y.-Z. Advances in Wet Electrospinning: Rich Morphology and Promising Applications. Adv. Fiber Mater. 2025, 7, 374–413. https://doi.org/10.1007/s42765-024-00493-7.
- 25.
Townsend-Nicholson, A.; Jayasinghe, S.N. Cell Electrospinning: a Unique Biotechnique for Encapsulating Living Organisms for Generating Active Biological Microthreads/Scaffolds. Biomacromolecules 2006, 7, 3364–3369.
- 26.
Shih, Y.-H.; Yang, J.-C.; Li, S.-H.; Yang, W.-C.; Chen, C.-C. Bio-electrospinning of poly(l-lactic acid) hollow fibrous membrane. Text. Res. J. 2012, 82, 602–612. https://doi.org/10.1177/0040517511420756.
- 27.
Zanatta, G.; Steffens, D.; Braghirolli, D.I.; Fernandes, R.A.; Netto, C.A.; Pranke, P. Viability of mesenchymal stem cells during electrospinning. Braz. J. Med. Biol. Res. 2012, 45, 125–130. https://doi.org/10.1590/s0100-879x2011007500163.
- 28.
Ang, H.Y.; Irvine, S.A.; Avrahami, R.; Sarig, U.; Bronshtein, T.; Zussman, E.; Boey, F.Y.C.; Machluf, M.; Venkatraman, S.S. Characterization of a bioactive fiber scaffold with entrapped HUVECs in coaxial electrospun core-shell fiber. Biomatter 2014, 4, e28238. https://doi.org/10.4161/biom.28238.
- 29.
Ehler, E.; Jayasinghe, S.N. Cell electrospinning cardiac patches for tissue engineering the heart. Analyst 2014, 139, 4449–4452. https://doi.org/10.1039/c4an00766b.
- 30.
Yeo, M.; Kim, G. Fabrication of cell-laden electrospun hybrid scaffolds of alginate-based bioink and PCL microstructures for tissue regeneration. Chem. Eng. J. 2015, 275, 27–35. https://doi.org/10.1016/j.cej.2015.04.038.
- 31.
Braghirolli, D.; Pranke, P.; Zamboni, F.; Acasigua, G.A.X. Association of electrospinning with electrospraying: A strategy to produce 3D scaffolds with incorporated stem cells for use in tissue engineering. Int. J. Nanomed. 2015, 5159-5170. https://doi.org/10.2147/ijn.s84312.
- 32.
Yeo, M.; Kim, G.H. Anisotropically Aligned Cell-Laden Nanofibrous Bundle Fabricated via Cell Electrospinning to Regenerate Skeletal Muscle Tissue. Small 2018, 14, 1803491. https://doi.org/10.1002/smll.201803491.
- 33.
Wu, Y.; Ranjan, V.D.; Zhang, Y. A Living 3D In Vitro Neuronal Network Cultured inside Hollow Electrospun Microfibers. Adv. Biosyst. 2018, 2, 1700218. https://doi.org/10.1002/adbi.201700218.
- 34.
Guo, Y.; Gilbert-Honick, J.; Somers, S.M.; Mao, H.Q.; Grayson, W.L. Modified cell-electrospinning for 3D myogenesis of C2C12s in aligned fibrin microfiber bundles. Biochem. Biophys. Res. Commun. 2019, 516, 558–564. https://doi.org/10.1016/j.bbrc.2019.06.082.
- 35.
Ranjan, V.D.; Zeng, P.; Li, B.; Zhang, Y. In vitro cell culture in hollow microfibers with porous structures. Biomater. Sci. 2020, 8, 2175–2188. https://doi.org/10.1039/c9bm01986c.
- 36.
Yeo, M.; Kim, G. Micro/nano-hierarchical scaffold fabricated using a cell electrospinning/3D printing process for co-culturing myoblasts and HUVECs to induce myoblast alignment and differentiation. Acta Biomater. 2020, 107, 102–114. https://doi.org/10.1016/j.actbio.2020.02.042.
- 37.
Das, P.; Hore, A.; Ghosh, A.; Datta, P. Bone tissue engineering construct fabricated using a cell electrospinning technique with polyglutamic acid biopolymer. J. Polym. Res. 2021, 28, 255. https://doi.org/10.1007/s10965-021-02612-z.
- 38.
Yang, I.-H.; Chen, Y.-S.; Li, J.-J.; Liang, Y.-J.; Lin, T.-C.; Jakfar, S.; Thacker, M.; Wu, S.-C.; Lin, F.-H. The development of laminin-alginate microspheres encapsulated with Ginsenoside Rg1 and ADSCs for breast reconstruction after lumpectomy. Bioact. Mater. 2021, 6, 1699–1710. https://doi.org/10.1016/j.bioactmat.2020.11.029.
- 39.
Nosoudi, N.; Hart, C.; Mcknight, I.; Esmaeilpour, M.; Ghomian, T.; Zadeh, A.; Raines, R.; Ramirez Vick, J.E. Differentiation of adipose-derived stem cells to chondrocytes using electrospraying. Sci. Rep. 2021, 11, 24301. https://doi.org/10.1038/s41598-021-03824-5.
- 40.
Semitela, Â.; Ramalho, G.; Capitão, A.; Sousa, C.; Mendes, A.F.; Aap Marques, P.; Completo, A. Bio-electrospraying assessment toward in situ chondrocyte-laden electrospun scaffold fabrication. J. Tissue Eng. 2022, 13, 204173142110693. https://doi.org/10.1177/20417314211069342.
- 41.
Wen, Z.; Chen, Y.; Liao, P.; Wang, F.; Zeng, W.; Liu, S.; Wu, H.; Wang, N.; Moroni, L.; Zhang, M.; et al. In Situ Precision Cell Electrospinning as an Efficient Stem Cell Delivery Approach for Cutaneous Wound Healing. Adv. Healthc. Mater. 2023, 12, 2300970. https://doi.org/10.1002/adhm.202300970.
- 42.
Xu, F.; Dawson, C.; Hoare, T. Multicellular Layered Nanofibrous Poly(Oligo Ethylene Glycol Methacrylate) (POEGMA)-Based Hydrogel Scaffolds via Reactive Cell Electrospinning. Adv. Biol. 2023, 7, 2300052. https://doi.org/10.1002/adbi.202300052.
- 43.
Dawson, C.; Xu, F.; Hoare, T. Reactive Cell Electrospinning of Anisotropically Aligned and Bilayer Hydrogel Nanofiber Networks. ACS Biomater. Sci. Eng. 2023, 9, 6490–6503. https://doi.org/10.1021/acsbiomaterials.3c01013.
- 44.
Lu, T.; Yang, L.; Li, Z.; Liu, Y.; Xu, S.E.; Ye, C. Immediate implantation of ultrafine fiber slow-release system based on cell electrospinning to induce osteogenesis of mesenchymal stem cells. Regen. Biomater. 2024, 11, rbad113. https://doi.org/10.1093/rb/rbad113.
- 45.
Al-Abduljabbar, A.; Farooq, I. Electrospun Polymer Nanofibers: Processing, Properties, and Applications. Polymers 2022, 15, 65. https://doi.org/10.3390/polym15010065.
- 46.
Lasprilla-Botero, J.; Álvarez-Láinez, M.; Lagaron, J.M. The influence of electrospinning parameters and solvent selection on the morphology and diameter of polyimide nanofibers. Mater. Today Commun. 2018, 14, 1–9. https://doi.org/10.1016/j.mtcomm.2017.12.003.
- 47.
Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019, 119, 5298–5415. https://doi.org/10.1021/acs.chemrev.8b00593.
- 48.
Sell, S.A.; Wolfe, P.S.; Garg, K.; Mccool, J.M.; Rodriguez, I.A.; Bowlin, G.L. The Use of Natural Polymers in Tissue Engineering: A Focus on Electrospun Extracellular Matrix Analogues. Polymers 2010, 2, 522–553. https://doi.org/10.3390/polym2040522.
- 49.
Yang, J.M.; Yang, J.H.; Tsou, S.C.; Ding, C.H.; Hsu, C.C.; Yang, K.C.; Yang, C.C.; Chen, K.S.; Chen, S.W.; Wang, J.S. Cell proliferation on PVA/sodium alginate and PVA/poly(gamma-glutamic acid) electrospun fiber. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 66, 170–177. https://doi.org/10.1016/j.msec.2016.04.068.
- 50.
Wang, Y.; Guo, Z.; Qian, Y.; Zhang, Z.; Lyu, L.; Wang, Y.; Ye, F. Study on the Electrospinning of Gelatin/Pullulan Composite Nanofibers. Polymers 2019, 11, 1424. https://doi.org/10.3390/polym11091424.
- 51.
Seon-Lutz, M.; Couffin, A.C.; Vignoud, S.; Schlatter, G.; Hebraud, A. Electrospinning in water and in situ crosslinking of hyaluronic acid/cyclodextrin nanofibers: Towards wound dressing with controlled drug release. Carbohydr. Polym. 2019, 207, 276–287. https://doi.org/10.1016/j.carbpol.2018.11.085.
- 52.
Nie, H.; He, A.; Wu, W.; Zheng, J.; Xu, S.; Li, J.; Han, C.C. Effect of poly(ethylene oxide) with different molecular weights on the electrospinnability of sodium alginate. Polymer 2009, 50, 4926–4934. https://doi.org/10.1016/j.polymer.2009.07.043.
- 53.
Saquing, C.D.; Tang, C.; Monian, B.; Bonino, C.A.; Manasco, J.L.; Alsberg, E.; Khan, S.A. Alginate–Polyethylene Oxide Blend Nanofibers and the Role of the Carrier Polymer in Electrospinning. Ind. Eng. Chem. Res. 2013, 52, 8692–8704. https://doi.org/10.1021/ie302385b.
- 54.
Kim, M.W. Surface activity and property of polyethyleneoxide (PEO) in water. Colloids Surf. A Physicochem. Eng. Asp. 1997, 128, 145 154.
- 55.
Bt Ibrahim, S.F.; Mohd Azam, N.A.N.; Mat Amin, K.A. Sodium alginate film: The effect of crosslinker on physical and mechanical properties. IOP Conf. Ser. Mater. Sci. Eng. 2019, 509, 012063. https://doi.org/10.1088/1757-899x/509/1/012063.
- 56.
Yang, Q.; Guo, J.; Zhang, S.; Guan, F.; Yu, Y.; Feng, S.; Song, X.; Bao, D.; Zhang, X. Development of cell adhesive and inherently antibacterial polyvinyl alcohol/polyethylene oxide nanofiber scaffolds via incorporating chitosan for tissue engineering. Int. J. Biol. Macromol. 2023, 236, 124004. https://doi.org/10.1016/j.ijbiomac.2023.124004.
- 57.
Huang, C.-Y.; Hu, K.-H.; Wei, Z.-H. Comparison of cell behavior on pva/pva-gelatin electrospun nanofibers with random and aligned configuration. Sci. Rep. 2016, 6, 37960. https://doi.org/10.1038/srep37960.
- 58.
Kwak, H.W.; Shin, M.; Lee, J.Y.; Yun, H.; Song, D.W.; Yang, Y.; Shin, B.S.; Park, Y.H.; Lee, K.H. Fabrication of an ultrafine fish gelatin nanofibrous web from an aqueous solution by electrospinning. Int. J. Biol. Macromol. 2017, 102, 1092–1103. https://doi.org/10.1016/j.ijbiomac.2017.04.087.
- 59.
Young, A.T.; White, O.C.; Daniele, M.A. Rheological Properties of Coordinated Physical Gelation and Chemical Crosslinking in Gelatin Methacryloyl (GelMA) Hydrogels. Macromol. Biosci. 2020, 20, 2000183. https://doi.org/10.1002/mabi.202000183.
- 60.
Xiao, S.; Guo, S.; Nesin, V.; Heller, R.; Schoenbach, K.H. Subnanosecond electric pulses cause membrane permeabilization and cell death. IEEE Trans. Biomed. Eng. 2011, 58, 1239–1245. https://doi.org/10.1109/TBME.2011.2112360.
- 61.
Kotnik, T.; Rems, L.; Tarek, M.; Miklavcic, D. Membrane Electroporation and Electropermeabilization: Mechanisms and Models. Annu. Rev. Biophys. 2019, 48, 63–91. https://doi.org/10.1146/annurev-biophys-052118-115451.
- 62.
Zu, Y.; Huang, S.; Lu, Y.; Liu, X.; Wang, S. Size Specific Transfection to Mammalian Cells by Micropillar Array Electroporation. Sci. Rep. 2016, 6, 38661. https://doi.org/10.1038/srep38661.
- 63.
Harris, E.; Elmer, J.J. Optimization of electroporation and other non-viral gene delivery strategies for T cells. Biotechnol. Prog. 2021, 37, e3066. https://doi.org/10.1002/btpr.3066.
- 64.
Yang, I.-H.; Chen, Y.-S.; Li, J.-J.; Liang, Y.-J.; Lin, T.-C.; Jakfar, S.; Thacker, M.; Wu, S.-C.; Lin, F.-H. The development of laminin-alginate microspheres encapsulated with Ginsenoside Rg1 and ADSCs for breast reconstruction after lumpectomy. Bioact. Mater. 2021, 6, 1699–1710. https://doi.org/10.1016/j.bioactmat.2020.11.029.
- 65.
Jayasinghe, S.N.; Eagles, P.A.M.; Qureshi, A.N. Electric field driven jetting: An emerging approach for processing living cells. Biotechnol. J. 2006, 1, 86–94. https://doi.org/10.1002/biot.200500025.
- 66.
O’Hare, M.J.; Ormerod, M.G.; Imrie, P.R.; Peacock, J.H.; Asche, W. Electropermeabilization and Electrosensitivity of Different Types of Mammalian Cells. In Electroporation and Electrofusion in Cell Biology; Springer: Berlin/Heidelberg, Germany, 1989; pp. 319–330.
- 67.
ĈemazˆR, M.; Jarm, T.; Miklavĉiĉ, D.; Lebar, A.M.; Ihan, A.; Kopitar, N.A.; Serŝa, G. Effect of Electric-Field Intensity on Electropermeabilization and Electrosensitmty of Various Tumor-Cell Lines In Vitro. Electro Magnetobiol. 1998, 17, 263–272. https://doi.org/10.3109/15368379809022571.
- 68.
Lang, Q.; Wu, Y.; Ren, Y.; Tao, Y.; Lei, L.; Jiang, H. AC Electrothermal Circulatory Pumping Chip for Cell Culture. ACS Appl. Mater. Interfaces 2015, 7, 26792–26801. https://doi.org/10.1021/acsami.5b08863.
- 69.
Pucihar, G.; Kotnik, T.; Kanduser, M.; Miklavcic, D. The influence of medium conductivity on electropermeabilization and survival of cells in vitro. Bioelectrochemistry 2001, 54, 107–115.
- 70.
Kucernak, A.R.; Wang, H.; Lin, X. Avoid Using Phosphate Buffered Saline (PBS) as an Electrolyte for Accurate OER Studies. ACS Energy Lett. 2024, 9, 3939–3946. https://doi.org/10.1021/acsenergylett.4c01589.
- 71.
Ageev, I.M.; Rybin, Y.M. Features of Measuring the Electrical Conductivity of Distilled Water in Contact with Air. Meas. Tech. 2020, 62, 923–927. https://doi.org/10.1007/s11018-020-01714-2.
- 72.
Sun, Z.; Deitzel, J.M.; Knopf, J.; Chen, X.; Gillespie, J.W. The effect of solvent dielectric properties on the collection of oriented electrospun fibers. J. Appl. Polym. Sci. 2012, 125, 2585–2594. https://doi.org/10.1002/app.35454.
- 73.
Wendorff, J.H.; Agarwal, S.; Greiner, A. Electrospinning: Materials, Processing and Applications; Wiley-VCH: Weinheim, Germany, 2012.
- 74.
Angammana, C.J.; Jayaram, S.H. Analysis of the Effects of Solution Conductivity on Electrospinning Process and Fiber Morphology. IEEE Trans. Ind. Appl. 2011, 47, 1109–1117. https://doi.org/10.1109/tia.2011.2127431.
- 75.
Nezarati, R.M.; Eifert, M.B.; Cosgriff-Hernandez, E. Effects of humidity and solution viscosity on electrospun fiber morphology. Tissue Eng. Part C Methods 2013, 19, 810–819. https://doi.org/10.1089/ten.TEC.2012.0671.
- 76.
Kim, Y.B.; Lee, H.; Kim, G.H. Strategy to Achieve Highly Porous/Biocompatible Macroscale Cell Blocks, Using a Collagen/Genipin-bioink and an Optimal 3D Printing Process. ACS Appl. Mater. Interfaces 2016, 8, 32230–32240. https://doi.org/10.1021/acsami.6b11669.
- 77.
Blaeser, A.; Duarte Campos, D.F.; Puster, U.; Richtering, W.; Stevens, M.M.; Fischer, H. Controlling Shear Stress in 3D Bioprinting is a Key Factor to Balance Printing Resolution and Stem Cell Integrity. Adv. Healthc. Mater. 2016, 5, 326–333. https://doi.org/10.1002/adhm.201500677.
- 78.
Yoon, J.; Yang, H.S.; Lee, B.S.; Yu, W.R. Recent Progress in Coaxial Electrospinning: New Parameters, Various Structures, and Wide Applications. Adv. Mater. 2018, 30, e1704765. https://doi.org/10.1002/adma.201704765.
- 79.
Han, D.; Steckl, A.J. Coaxial Electrospinning Formation of Complex Polymer Fibers and their Applications. Chempluschem 2019, 84, 1453–1497. https://doi.org/10.1002/cplu.201900281.
- 80.
Lu, Y.; Huang, J.; Yu, G.; Cardenas, R.; Wei, S.; Wujcik, E.K.; Guo, Z. Coaxial electrospun fibers: Applications in drug delivery and tissue engineering. WIREs Nanomed. Nanobiotechnol. 2016, 8, 654–677. https://doi.org/10.1002/wnan.1391.
- 81.
Saudi, A.; Amini, S.; Amirpour, N.; Kazemi, M.; Zargar Kharazi, A.; Salehi, H.; Rafienia, M. Promoting neural cell proliferation and differentiation by incorporating lignin into electrospun poly(vinyl alcohol) and poly(glycerol sebacate) fibers. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 104, 110005. https://doi.org/10.1016/j.msec.2019.110005.
- 82.
Liu, J.J.; Wang, C.Y.; Wang, J.G.; Ruan, H.J.; Fan, C.Y. Peripheral nerve regeneration using composite poly(lactic acid-caprolactone)/nerve growth factor conduits prepared by coaxial electrospinning. J. Biomed. Mater. Res. Part A 2011, 96A, 13–20. https://doi.org/10.1002/jbm.a.32946.
- 83.
Xu, H.; Gao, Z.; Wang, Z.; Wu, W.; Li, H.; Liu, Y.; Jia, S.; Hao, D.; Zhu, L. Electrospun PCL Nerve Conduit Filled with GelMA Gel for CNTF and IGF-1 Delivery in Promoting Sciatic Nerve Regeneration in Rat. ACS Biomater. Sci. Eng. 2023, 9, 6309–6321. https://doi.org/10.1021/acsbiomaterials.3c01048.
- 84.
Zhang, Y.; Zhang, Z.; Wang, Y.; Su, Y.; Chen, M. 3D myotube guidance on hierarchically organized anisotropic and conductive fibers for skeletal muscle tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 116, 111070. https://doi.org/10.1016/j.msec.2020.111070.
- 85.
Onoe, H.; Takeuchi, S. Cell-laden microfibers for bottom-up tissue engineering. Drug Discov. Today 2015, 20, 236–246. https://doi.org/10.1016/j.drudis.2014.10.018.
- 86.
Jana, S.; Levengood, S.K.L.; Zhang, M. Anisotropic Materials for Skeletal-Muscle-Tissue Engineering. Adv. Mater. 2016, 28, 10588–10612. https://doi.org/10.1002/adma.201600240.
- 87.
Batalov, I.; Jallerat, Q.; Kim, S.; Bliley, J.; Feinberg, A.W. Engineering aligned human cardiac muscle using developmentally inspired fibronectin micropatterns. Sci. Rep. 2021, 11, 11502. https://doi.org/10.1038/s41598-021-87550-y.
- 88.
Kobayashi, M.; Lei, N.Y.; Wang, Q.; Wu, B.M.; Dunn, J.C. Orthogonally oriented scaffolds with aligned fibers for engineering intestinal smooth muscle. Biomaterials 2015, 61, 75–84. https://doi.org/10.1016/j.biomaterials.2015.05.023.
- 89.
Nardone, G.; Oliver-De La Cruz, J.; Vrbsky, J.; Martini, C.; Pribyl, J.; Skládal, P.; Pešl, M.; Caluori, G.; Pagliari, S.; Martino, F.; et al. YAP regulates cell mechanics by controlling focal adhesion assembly. Nat. Commun. 2017, 8, 15321. https://doi.org/10.1038/ncomms15321.
- 90.
Teo, B.K.K.; Wong, S.T.; Lim, C.K.; Kung, T.Y.S.; Yap, C.H.; Ramagopal, Y.; Romer, L.H.; Yim, E.K.F. Nanotopography Modulates Mechanotransduction of Stem Cells and Induces Differentiation through Focal Adhesion Kinase. ACS Nano 2013, 7, 4785–4798. https://doi.org/10.1021/nn304966.
- 91.
Von Erlach, T.C.; Bertazzo, S.; Wozniak, M.A.; Horejs, C.-M.; Maynard, S.A.; Attwood, S.; Robinson, B.K.; Autefage, H.; Kallepitis, C.; Del Río Hernández, A.; et al. Cell-geometry-dependent changes in plasma membrane order direct stem cell signalling and fate. Nat. Mater. 2018, 17, 237–242. https://doi.org/10.1038/s41563-017-0014-0.
- 92.
Iranshahi, K.; Defraeye, T.; Rossi, R.M.; Müller, U.C. Electrohydrodynamics and its applications: Recent advances and future perspectives. Int. J. Heat Mass Transf. 2024, 232, 125895. https://doi.org/10.1016/j.ijheatmasstransfer.2024.125895.
- 93.
Wang, Z.; Li, S.; Wu, Z.; Kang, Y.; Xie, S.; Cai, Z.; Shan, X.; Li, Q. Pulsed electromagnetic field-assisted reduced graphene oxide composite 3D printed nerve scaffold promotes sciatic nerve regeneration in rats. Biofabrication 2024, 16, 035013. https://doi.org/10.1088/1758-5090/ad3d8a.
- 94.
Jensen, B.N.; Wang, Y.; Le Friec, A.; Nabavi, S.; Dong, M.; Seliktar, D.; Chen, M. Wireless electromagnetic neural stimulation patch with anisotropic guidance. NPJ Flex. Electron. 2023, 7, 34. https://doi.org/10.1038/s41528-023-00270-3.
- 95.
Liu, Z.; Cai, M.; Zhang, X.; Yu, X.; Wang, S.; Wan, X.; Wang, Z.L.; Li, L. Cell-Traction-Triggered On-Demand Electrical Stimulation for Neuron-Like Differentiation. Adv. Mater. 2021, 33, 2106317. https://doi.org/10.1002/adma.202106317.
- 96.
Guo, W.; Zhang, X.; Yu, X.; Wang, S.; Qiu, J.; Tang, W.; Li, L.; Liu, H.; Wang, Z.L. Self-Powered Electrical Stimulation for Enhancing Neural Differentiation of Mesenchymal Stem Cells on Graphene-Poly(3,4-ethylenedioxythiophene) Hybrid Microfibers. ACS Nano 2016, 10, 5086–5095. https://doi.org/10.1021/acsnano.6b00200.
- 97.
Hu, W.; Wei, X.; Zhu, L.; Yin, D.; Wei, A.; Bi, X.; Liu, T.; Zhou, G.; Qiang, Y.; Sun, X.; et al. Enhancing proliferation and migration of fibroblast cells by electric stimulation based on triboelectric nanogenerator. Nano Energy 2019, 57, 600–607. https://doi.org/10.1016/j.nanoen.2018.12.077.
- 98.
Choe, G.; Han, U.G.; Ye, S.; Kang, S.; Yoo, J.; Cho, Y.S.; Jung, Y. Effect of Electrical Stimulation on Nerve-Guided Facial Nerve Regeneration. ACS Biomater. Sci. Eng. 2023, 9, 3512–3521. https://doi.org/10.1021/acsbiomaterials.3c00222.
- 99.
He, L.; Xiao, Q.; Zhao, Y.; Li, J.; Reddy, S.; Shi, X.; Su, X.; Chiu, K.; Ramakrishna, S. Engineering an Injectable Electroactive Nanohybrid Hydrogel for Boosting Peripheral Nerve Growth and Myelination in Combination with Electrical Stimulation. ACS Appl. Mater. Interfaces 2020, 12, 53150–53163. https://doi.org/10.1021/acsami.0c16885.
- 100.
Huang, J.; Xue, S.; Buchmann, P.; Teixeira, A.P.; Fussenegger, M.; Huang, J.; Xue, S.; Buchmann, P.; Teixeira, A.P.; Fussenegger, M. An electrogenetic interface to program mammalian gene expression by direct current. Nat. Metab. 2023, 5, 1395–1407. https://doi.org/10.1038/s42255-023-00850-7.
- 101.
Argentati, C.; Morena, F.; Tortorella, I.; Bazzucchi, M.; Porcellati, S.; Emiliani, C.; Martino, S. Insight into Mechanobiology: How Stem Cells Feel Mechanical Forces and Orchestrate Biological Functions. Int. J. Mol. Sci. 2019, 20, 5337 https://doi.org/10.3390/ijms20215337.
- 102.
Elosegui-Artola, A.; Andreu, I.; Beedle, A.E.M.; Lezamiz, A.; Uroz, M.; Kosmalska, A.J.; Oria, R.; Kechagia, J.Z.; Rico-Lastres, P.; Le Roux, A.L.; et al. Force Triggers YAP Nuclear Entry by Regulating Transport across Nuclear Pores. Cell 2017, 171, 1397–1410.e1314. https://doi.org/10.1016/j.cell.2017.10.008.