2510001673
  • Open Access
  • Article

Morphological Transformation of NiCoMoSeOx from Nanosheets to Nanorods for Enhanced Oxygen Evolution

  • Jianbin Luo 1, †,   
  • Xiaofei Long 1, 2, †,   
  • Biao Huang 1,   
  • Lei Huang 1, 3,   
  • Jing Cao 1,   
  • Qingdian Yan 1,   
  • Mao Wu 1,   
  • Ming Zhao 1, 3, *

Received: 10 Aug 2025 | Revised: 29 Sep 2025 | Accepted: 10 Oct 2025 | Published: 13 Oct 2025

Abstract

Green hydrogen production via water electrolysis has emerged as a promising technology to address the environmental crisis and to achieve sustainability. However, the anodic oxygen evolution reaction (OER) of water electrolysis is kinetically sluggish, which requires the development of highly efficient catalysts to materialize this technology. Herein, we report the facile synthesis of two-dimensional NiCoMoSeOx nanosheets, which can be further transformed into one-dimensional nanorods. Structural characterizations confirm the existence of amorphous and crystalline domains in the nanosheets while the nanorods feature high crystallinity. The progressive nanosheets-to-nanorods transformation was also accompanied with composition variation and further oxidation. Excitingly, when employed as catalysts for alkaline OER, the nanorods exhibit a dramatic overpotential drop of 123 and 158 mV at 10 and 200 mA cm–2, respectively, relative to the nanosheet counterpart. Moreover, the nanorods also exhibit superior durability than the nanosheets at various current density and could largely maintain its performance for 200 h at 300 mA cm‒2. In situ spectroscopic analysis confirms the critical role of low-valence Mo species in suppressing the Se leaching from nanorods, which greatly stabilizes the structure for improved durability. This work offers an effective approach to produce nanorods via structural transformation, together with valuable insights into the structure-performance relation for enhanced electrocatalysis.

Graphical Abstract

References 

  • 1.
    Qian, Q.; Zhu, Y.; Ahmad, N.; Feng, Y.; Zhang, H.; Cheng, M.; Liu, H.; Xiao, C.; Zhang, G.; Xie, Y. Recent Advancements in Electrochemical Hydrogen Production via Hybrid Water Splitting. Adv. Mater. 2024, 36, 2306108. https://doi.org/10.1002/adma.202306108.
  • 2.
    Sharshir, S.; Joseph, A.; Elsayad, M.; Tareemi, A.; Kandeal, A.; Elkadeem, M. A Review of Recent Advances in Alkaline Electrolyzer for Green Hydrogen Production: Performance Improvement and Applications. Int. J. Hydrogen Energy 2024, 49, 458–488. https://doi.org/10.1016/j.ijhydene.2023.08.107.
  • 3.
    Tüysüz, H. Alkaline Water Electrolysis for Green Hydrogen Production. Acc. Chem. Res. 2024, 57, 558–567. https://doi.org/10.1021/acs.accounts.3c00709.
  • 4.
    Sebbahi, S.; Assila, A.; Belghiti, A.; Laasri, S.; Kaya, S.; Hlil, E.; Rachidi, S.; Hajjaji, A. A Comprehensive Review of Recent Advances in Alkaline Water Electrolysis for Hydrogen Production. Int. J. Hydrogen Energy 2024, 82, 583–599. https://doi.org/10.1016/j.ijhydene.2024.07.428.
  • 5.
    He, X.; Deng, B.; Lang, J.; Zheng, Z.; Zhang, Z.; Chang, H.; Wu, Y.; Yang, C.; Zhao, W.; Lei, M.; et al. Interfacial-Free-Water-Enhanced Mass Transfer to Boost Current Density of Hydrogen Evolution. Nano Lett. 2025, 25, 6780–6787. https://doi.org/10.1021/acs.nanolett.5c01235.
  • 6.
    Lin, Y.; Dong, Y.; Wang, X.; Chen, L. Electrocatalysts for the Oxygen Evolution Reaction in Acidic Media. Adv. Mater. 2023, 35, 2210565. https://doi.org/10.1002/adma.202210565.
  • 7.
    Li, H.; Lin, Y.; Duan, J.; Wen, Q.; Liu, Y.; Zhai, T. Stability of Electrocatalytic OER: From Principle to Application. Chem. Soc. Rev. 2024, 53, 10709–10740. https://doi.org/10.1039/d3cs00010a.
  • 8.
    Chen, M.; Kitiphatpiboon, N.; Feng, C.; Abudula, A.; Ma, Y.; Guan, G. Recent Progress in Transition-Metal-Oxide-Based Electrocatalysts for the Oxygen Evolution Reaction in Natural Seawater Splitting: A Critical Review. eScience 2023, 3, 100111. https://doi.org/10.1016/j.esci.2023.100111.
  • 9.
    Zhao, M.; Chen, Z.; Shi, Y.; Hood, Z.D.; Lyu, Z.; Xie, M.; Chi, M.; Xia, Y. Kinetically Controlled Synthesis of Rhodium Nanocrystals with Different Shapes and a Comparison Study of Their Thermal and Catalytic Properties. J. Am. Chem. Soc. 2021, 143, 6293–6302. https://doi.org/10.1021/jacs.1c02734.
  • 10.
    Zhou, S.; Liu, Y.; Li, J.; Liu, Z.; Shi, J.; Fan, L.; Cai, W. Surface-Neutralization Engineered NiCo-LDH/Phosphate Hetero-Sheets toward Robust Oxygen Evolution Reaction. Green Energy Environ. 2024, 9, 1151–1158. https://doi.org/10.1016/j.gee.2022.12.003.
  • 11.
    Xie, J.; Zhang, Q.; Gu, L.; Xu, S.; Wang, P.; Liu, J.; Ding, Y.; Yao, Y.F.; Nan, C.; Zhao, M.; et al. Ruthenium–Platinum Core–Shell Nanocatalysts with Substantially Enhanced Activity and Durability towards Methanol Oxidation. Nano Energy 2016, 21, 247–257. https://doi.org/10.1016/j.nanoen.2016.01.013.
  • 12.
    Wu, C.-Y.; Hsiao, Y.-C.; Chen, Y.; Lin, K.-H.; Lee, T.-J.; Chi, C.-C.; Lin, J.-T.; Hsu, L.-C.; Tsai, H.-J.; Gao, J.-Q.; et al. A Catalyst Family of High-Entropy Alloy Atomic Layers with Square Atomic Arrangements Comprising Iron- and Platinum-Group Metals. Sci. Adv. 2024, 10, eadl3693. https://doi.org/10.1126/sciadv.adl3693.
  • 13.
    Qin, R.; Chen, G.; Feng, X.; Weng, J.; Han, Y. Ru/Ir-Based Electrocatalysts for Oxygen Evolution Reaction in Acidic Conditions: From Mechanisms, Optimizations to Challenges. Adv. Sci. 2024, 11, 2309364. https://doi.org/10.1002/advs.202309364.
  • 14.
    Kumar, H.; Yan, M. Quantification of Nanomaterial Surfaces. Mater. Interfaces 2025, 2, 66–83. https://doi.org/10.53941/mi.2025.100007.
  • 15.
    Hou, Y.; Cui, S.; Wen, Z.; Guo, X.; Feng, X.; Chen, J. Strongly Coupled 3D Hybrids of N-Doped Porous Carbon Nanosheet/CoNi Alloy-Encapsulated Carbon Nanotubes for Enhanced Electrocatalysis. Small 2015, 11, 5940–5948. https://doi.org/10.1002/smll.201502297.
  • 16.
    Yan, Q.; Li, X.; Luo, J.; Zhao, M. Single-Molecule Fluorescence Imaging of Energy-Related Catalytic Reactions. Chem. Biomed. Imaging 2025, 3, 280–300. https://doi.org/10.1021/cbmi.4c00112.
  • 17.
    Hammons, J.A.; Kang, S.; Ferron, T.J.; Aydin, F.; Lin, T.Y.; Seung, K.; Chow, P.; Xiao, Y.; Davis, J.T. Nanobubble Formation and Coverage during High Current Density Alkaline Water Electrolysis. Nano Lett. 2024, 24, 13695–13701. https://doi.org/10.1021/acs.nanolett.4c03657.
  • 18.
    Wang, J.; Gao, Y.; Kong, H.; Kim, J.; Choi, S.; Ciucci, F.; Hao, Y.; Yang, S.; Shao, Z.; Lim, J. Non-Precious-Metal Catalysts for Alkaline Water Electrolysis: Operando Characterizations, Theoretical Calculations, and Recent Advances. Chem. Soc. Rev 2020, 49, 9154–9196. https://doi.org/10.1039/d0cs00575d.
  • 19.
    Wang, J.; Xu, F.; Jin, H.; Chen, Y.; Wang, Y. Non-Noble Metal-Based Carbon Composites in Hydrogen Evolution Reaction: Fundamentals to Applications. Adv. Mater. 2017, 29, 1605838. https://doi.org/10.1002/adma.201605838.
  • 20.
    Li, X.; Huang, C.; Han, W.; Ouyang, T.; Liu, Z. Transition Metal-Based Electrocatalysts for Overall Water Splitting. Chin. Chem. Lett. 2021, 32, 2597–2616. https://doi.org/10.1016/j.cclet.2021.01.047.
  • 21.
    Pan, Q.; Wang, L. Recent Perspectives on the Structure and Oxygen Evolution Activity for Non-Noble Metal-Based Catalysts. J. Power Sources 2021, 485, 229335. https://doi.org/10.1016/j.jpowsour.2020.229335.
  • 22.
    Gao, F.; Zhang, Y.; Wu, Z.; You, H.; Du, Y. Universal Strategies to Multi-Dimensional Noble-Metal-Based Catalysts for Electrocatalysis. Coord. Chem. Rev. 2021, 436, 213825. https://doi.org/10.1016/j.ccr.2021.213825.
  • 23.
    Zubair, M.; Ul Hassan, M.; Mehran, M.; Baig, M.; Hussain, S.; Shahzad, F. 2D MXenes and Their Heterostructures for HER, OER and Overall Water Splitting: A Review. Int. J. Hydrogen Energy 2022, 47, 2794–2818. https://doi.org/10.1016/j.ijhydene.2021.10.248.
  • 24.
    Wang, C.; Lin, Y.; Cui, L.; Zhu, J.; Bu, X. 2D Metal-Organic Frameworks as Competent Electrocatalysts for Water Splitting. Small 2023, 19, 2207342. https://doi.org/10.1002/smll.202207342.
  • 25.
    Sun, S.; Jin, X.; Cong, B.; Zhou, X.; Hong, W.; Chen, G. Construction of Porous Nanoscale NiO/NiCo2O4 Heterostructure for Highly Enhanced Electrocatalytic Oxygen Evolution Activity. J. Catal. 2019, 379, 1–9. https://doi.org/10.1016/j.jcat.2019.09.010.
  • 26.
    Cheng, H.; Wang, C.; Lyu, Z.; Zhu, Z.; Xia, Y. Controlling the Nucleation and Growth of Au on A-Se Nanospheres to Enhance Their Cellular Uptake and Cytotoxicity. J. Am. Chem. Soc. 2023, 145, 1216–1226. https://doi.org/10.1021/jacs.2c11053.
  • 27.
    Cheng, H.; Zhou, S.; Xie, M.; Gilroy, K.D.; Zhu, Z.; Xia, Y. Colloidal Nanospheres of Amorphous Selenium: Facile Synthesis, Size Control, and Optical Properties. Chem. Nano. Mater. 2021, 7, 620–625. https://doi.org/10.1002/cnma.202100115.
  • 28.
    Zheng, W.; Liu, M.; Lee, L.Y.S. Best Practices in Using Foam-Type Electrodes for Electrocatalytic Performance Benchmark. ACS Energy Lett. 2020, 5, 3260–3264. https://doi.org/10.1021/acsenergylett.0c01958.
  • 29.
    Miyake, H.; Ye, S.; Osawa, M. Electroless Deposition of Gold Thin Films on Silicon for Surface-Enhanced Infrared Spectroelectrochemistry. Electrochem. Commun. 2002, 4, 973–977. https://doi.org/10.1016/S1388-2481(02)00510-6.
  • 30.
    Ye, S.; Ichihara, T.; Uosaki, K. Spectroscopic Studies on Electroless Deposition of Copper on a Hydrogen-Terminated Si(111) Surface in Fluoride Solutions. J. Electrochem. Soc. 2001, 148, C421. https://doi.org/10.1149/1.1370964.
  • 31.
    Mukherjee, S.; Mukhopadhyay, N.K.; Basu, J. Structural Modulation, Oriented Growth of Rock Salt, and Spinel in (Co(Cr/Mg)FeMnNi) Multicomponent Oxide and Derivatives. J. Am. Ceram. Soc. 2025, 108, e20619. https://doi.org/10.1111/jace.20619.
  • 32.
    Park, J.; Kim, H.K.; Park, J.; Kim, B.; Baik, H.; Baik, M.-H.; Lee, K. Flattening Bent Janus Nanodiscs Expands Lattice Parameters. Chem 2023, 9, 948–962. https://doi.org/10.1016/j.chempr.2022.12.004.
  • 33.
    Abidat, I.; Morais, C.; Comminges, C.; Canaff, C.; Rousseau, J.; Guignard, N.; Napporn, T.W.; Habrioux, A.; Kokoh, K.B. Three Dimensionally Ordered Mesoporous Hydroxylated NixCo3-xO4 Spinels for the Oxygen Evolution Reaction: On the Hydroxyl-Induced Surface Restructuring Effect. J. Mater. Chem. A 2017, 5, 7173–7183. https://doi.org/10.1039/c7ta00185a.
  • 34.
    Anantharaj, S.; Noda, S. Appropriate Use of Electrochemical Impedance Spectroscopy in Water Splitting Electrocatalysis. Chem. Electro. Chem. 2020, 7, 2297–2308. https://doi.org/10.1002/celc.202000515.
  • 35.
    Ruiz-Fresneda, M.A.; Eswayah, A.S.; Romero-González, M.; Gardiner, P.H.; Solari, P.L.; Merroun, M.L. Chemical and Structural Characterization of Se IV Biotransformations by Stenotrophomonas Bentonitica into Se0 Nanostructures and Volatiles Se Species. Environ. Sci. Nano 2020, 7, 2140–2155. https://doi.org/10.1039/D0EN00507J.
  • 36.
    Ariyoshi, K.; Siroma, Z.; Mineshige, A.; Takeno, M.; Fukutsuka, T.; Abe, T.; Uchida, S. Electrochemical Impedance Spectroscopy Part 1: Fundamentals. Electrochemistry 2022, 90, 102007. https://doi.org/10.5796/electrochemistry.22-66071.
  • 37.
    Ding, J.; Du, M.; Wang, S.; Zhang, L.; Yue, Y.; Smedskjaer, M.M. Amorphous Material Based Heterostructures with Disordered Heterointerfaces for Advanced Rechargeable Batteries. Energy Environ. Sci. 2025, 18, 1587–1611. https://doi.org/10.1039/D4EE04566A.
  • 38.
    Zou, X.; Liu, Y.; Li, G.; Wu, Y.; Liu, D.; Li, W.; Li, H.; Wang, D.; Zhang, Y.; Zou, X. Ultrafast Formation of Amorphous Bimetallic Hydroxide Films on 3D Conductive Sulfide Nanoarrays for Large-Current-Density Oxygen Evolution Electrocatalysis. Adv. Mater. 2017, 29, 1700404. https://doi.org/10.1002/adma.201700404.
  • 39.
    Sun, J.; Xue, H.; Guo, N.; Song, T.; Hao, Y.; Sun, J.; Zhang, J.; Wang, Q. Synergetic Metal Defect and Surface Chemical Reconstruction into NiCo2S4/ZnS Heterojunction to Achieve Outstanding Oxygen Evolution Performance. Angew. Chem. Int. Ed. 2021, 60, 19435–19441. https://doi.org/10.1002/anie.202107731.
  • 40.
    Jiang, J.; Sun, F.; Zhou, S.; Hu, W.; Zhang, H.; Dong, J.; Jiang, Z.; Zhao, J.; Li, J.; Yan, W.; et al. Atomic-Level Insight into Super-Efficient Electrocatalytic Oxygen Evolution on Iron and Vanadium Co-Doped Nickel (Oxy)Hydroxide. Nat. Commun. 2018, 9, 2885. https://doi.org/10.1038/s41467-018-05341-y.
  • 41.
    Xue, Z.; Li, X.; Liu, Q.; Cai, M.; Liu, K.; Liu, M.; Ke, Z.; Liu, X.; Li, G. Interfacial Electronic Structure Modulation of NiTe Nanoarrays with NiS Nanodots Facilitates Electrocatalytic Oxygen Evolution. Adv. Mater. 2019, 31, 1900430. https://doi.org/10.1002/adma.201900430.
  • 42.
    Niu, S.; Jiang, W.-J.; Wei, Z.; Tang, T.; Ma, J.; Hu, J.-S.; Wan, L.-J. Se-Doping Activates FeOOH for Cost-Effective and Efficient Electrochemical Water Oxidation. J. Am. Chem. Soc. 2019, 141, 7005–7013. https://doi.org/10.1021/jacs.9b01214.
  • 43.
    Chen, J.; Qi, M.; Yang, Y.; Xiao, X.; Li, Y.; Jin, H.; Wang, Y. Chloride Residues in RuO2 Catalysts Enhance Its Stability and Efficiency for Acidic Oxygen Evolution Reaction. Angew. Chem. Int. Ed. 2025, 64, e202420860. https://doi.org/10.1002/anie.202420860.
  • 44.
    Liu, X.; Zhao, P.; Liu, F.; Lin, R.; Yao, H.; Zhu, S. Attenuated Total Reflection Infrared Spectroscopy for Studying Electrochemical Cycling of Hydrogen, Carbon, and Nitrogen-Containing Molecules. J. Energy Chem. 2024, 99, 495–511. https://doi.org/10.1016/j.jechem.2024.08.008.
Share this article:
How to Cite
Luo, J.; Long, X.; Huang, B.; Huang, L.; Cao, J.; Yan, Q.; Wu, M.; Zhao, M. Morphological Transformation of NiCoMoSeOx from Nanosheets to Nanorods for Enhanced Oxygen Evolution. Materials and Interfaces 2025, 2 (4), 375–387. https://doi.org/10.53941/mi.2025.100029.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.