- 1.
Qian, Q.; Zhu, Y.; Ahmad, N.; Feng, Y.; Zhang, H.; Cheng, M.; Liu, H.; Xiao, C.; Zhang, G.; Xie, Y. Recent Advancements in Electrochemical Hydrogen Production via Hybrid Water Splitting. Adv. Mater. 2024, 36, 2306108. https://doi.org/10.1002/adma.202306108.
- 2.
Sharshir, S.; Joseph, A.; Elsayad, M.; Tareemi, A.; Kandeal, A.; Elkadeem, M. A Review of Recent Advances in Alkaline Electrolyzer for Green Hydrogen Production: Performance Improvement and Applications. Int. J. Hydrogen Energy 2024, 49, 458–488. https://doi.org/10.1016/j.ijhydene.2023.08.107.
- 3.
Tüysüz, H. Alkaline Water Electrolysis for Green Hydrogen Production. Acc. Chem. Res. 2024, 57, 558–567. https://doi.org/10.1021/acs.accounts.3c00709.
- 4.
Sebbahi, S.; Assila, A.; Belghiti, A.; Laasri, S.; Kaya, S.; Hlil, E.; Rachidi, S.; Hajjaji, A. A Comprehensive Review of Recent Advances in Alkaline Water Electrolysis for Hydrogen Production. Int. J. Hydrogen Energy 2024, 82, 583–599. https://doi.org/10.1016/j.ijhydene.2024.07.428.
- 5.
He, X.; Deng, B.; Lang, J.; Zheng, Z.; Zhang, Z.; Chang, H.; Wu, Y.; Yang, C.; Zhao, W.; Lei, M.; et al. Interfacial-Free-Water-Enhanced Mass Transfer to Boost Current Density of Hydrogen Evolution. Nano Lett. 2025, 25, 6780–6787. https://doi.org/10.1021/acs.nanolett.5c01235.
- 6.
Lin, Y.; Dong, Y.; Wang, X.; Chen, L. Electrocatalysts for the Oxygen Evolution Reaction in Acidic Media. Adv. Mater. 2023, 35, 2210565. https://doi.org/10.1002/adma.202210565.
- 7.
Li, H.; Lin, Y.; Duan, J.; Wen, Q.; Liu, Y.; Zhai, T. Stability of Electrocatalytic OER: From Principle to Application. Chem. Soc. Rev. 2024, 53, 10709–10740. https://doi.org/10.1039/d3cs00010a.
- 8.
Chen, M.; Kitiphatpiboon, N.; Feng, C.; Abudula, A.; Ma, Y.; Guan, G. Recent Progress in Transition-Metal-Oxide-Based Electrocatalysts for the Oxygen Evolution Reaction in Natural Seawater Splitting: A Critical Review. eScience 2023, 3, 100111. https://doi.org/10.1016/j.esci.2023.100111.
- 9.
Zhao, M.; Chen, Z.; Shi, Y.; Hood, Z.D.; Lyu, Z.; Xie, M.; Chi, M.; Xia, Y. Kinetically Controlled Synthesis of Rhodium Nanocrystals with Different Shapes and a Comparison Study of Their Thermal and Catalytic Properties. J. Am. Chem. Soc. 2021, 143, 6293–6302. https://doi.org/10.1021/jacs.1c02734.
- 10.
Zhou, S.; Liu, Y.; Li, J.; Liu, Z.; Shi, J.; Fan, L.; Cai, W. Surface-Neutralization Engineered NiCo-LDH/Phosphate Hetero-Sheets toward Robust Oxygen Evolution Reaction. Green Energy Environ. 2024, 9, 1151–1158. https://doi.org/10.1016/j.gee.2022.12.003.
- 11.
Xie, J.; Zhang, Q.; Gu, L.; Xu, S.; Wang, P.; Liu, J.; Ding, Y.; Yao, Y.F.; Nan, C.; Zhao, M.; et al. Ruthenium–Platinum Core–Shell Nanocatalysts with Substantially Enhanced Activity and Durability towards Methanol Oxidation. Nano Energy 2016, 21, 247–257. https://doi.org/10.1016/j.nanoen.2016.01.013.
- 12.
Wu, C.-Y.; Hsiao, Y.-C.; Chen, Y.; Lin, K.-H.; Lee, T.-J.; Chi, C.-C.; Lin, J.-T.; Hsu, L.-C.; Tsai, H.-J.; Gao, J.-Q.; et al. A Catalyst Family of High-Entropy Alloy Atomic Layers with Square Atomic Arrangements Comprising Iron- and Platinum-Group Metals. Sci. Adv. 2024, 10, eadl3693. https://doi.org/10.1126/sciadv.adl3693.
- 13.
Qin, R.; Chen, G.; Feng, X.; Weng, J.; Han, Y. Ru/Ir-Based Electrocatalysts for Oxygen Evolution Reaction in Acidic Conditions: From Mechanisms, Optimizations to Challenges. Adv. Sci. 2024, 11, 2309364. https://doi.org/10.1002/advs.202309364.
- 14.
Kumar, H.; Yan, M. Quantification of Nanomaterial Surfaces. Mater. Interfaces 2025, 2, 66–83. https://doi.org/10.53941/mi.2025.100007.
- 15.
Hou, Y.; Cui, S.; Wen, Z.; Guo, X.; Feng, X.; Chen, J. Strongly Coupled 3D Hybrids of N-Doped Porous Carbon Nanosheet/CoNi Alloy-Encapsulated Carbon Nanotubes for Enhanced Electrocatalysis. Small 2015, 11, 5940–5948. https://doi.org/10.1002/smll.201502297.
- 16.
Yan, Q.; Li, X.; Luo, J.; Zhao, M. Single-Molecule Fluorescence Imaging of Energy-Related Catalytic Reactions. Chem. Biomed. Imaging 2025, 3, 280–300. https://doi.org/10.1021/cbmi.4c00112.
- 17.
Hammons, J.A.; Kang, S.; Ferron, T.J.; Aydin, F.; Lin, T.Y.; Seung, K.; Chow, P.; Xiao, Y.; Davis, J.T. Nanobubble Formation and Coverage during High Current Density Alkaline Water Electrolysis. Nano Lett. 2024, 24, 13695–13701. https://doi.org/10.1021/acs.nanolett.4c03657.
- 18.
Wang, J.; Gao, Y.; Kong, H.; Kim, J.; Choi, S.; Ciucci, F.; Hao, Y.; Yang, S.; Shao, Z.; Lim, J. Non-Precious-Metal Catalysts for Alkaline Water Electrolysis: Operando Characterizations, Theoretical Calculations, and Recent Advances. Chem. Soc. Rev 2020, 49, 9154–9196. https://doi.org/10.1039/d0cs00575d.
- 19.
Wang, J.; Xu, F.; Jin, H.; Chen, Y.; Wang, Y. Non-Noble Metal-Based Carbon Composites in Hydrogen Evolution Reaction: Fundamentals to Applications. Adv. Mater. 2017, 29, 1605838. https://doi.org/10.1002/adma.201605838.
- 20.
Li, X.; Huang, C.; Han, W.; Ouyang, T.; Liu, Z. Transition Metal-Based Electrocatalysts for Overall Water Splitting. Chin. Chem. Lett. 2021, 32, 2597–2616. https://doi.org/10.1016/j.cclet.2021.01.047.
- 21.
Pan, Q.; Wang, L. Recent Perspectives on the Structure and Oxygen Evolution Activity for Non-Noble Metal-Based Catalysts. J. Power Sources 2021, 485, 229335. https://doi.org/10.1016/j.jpowsour.2020.229335.
- 22.
Gao, F.; Zhang, Y.; Wu, Z.; You, H.; Du, Y. Universal Strategies to Multi-Dimensional Noble-Metal-Based Catalysts for Electrocatalysis. Coord. Chem. Rev. 2021, 436, 213825. https://doi.org/10.1016/j.ccr.2021.213825.
- 23.
Zubair, M.; Ul Hassan, M.; Mehran, M.; Baig, M.; Hussain, S.; Shahzad, F. 2D MXenes and Their Heterostructures for HER, OER and Overall Water Splitting: A Review. Int. J. Hydrogen Energy 2022, 47, 2794–2818. https://doi.org/10.1016/j.ijhydene.2021.10.248.
- 24.
Wang, C.; Lin, Y.; Cui, L.; Zhu, J.; Bu, X. 2D Metal-Organic Frameworks as Competent Electrocatalysts for Water Splitting. Small 2023, 19, 2207342. https://doi.org/10.1002/smll.202207342.
- 25.
Sun, S.; Jin, X.; Cong, B.; Zhou, X.; Hong, W.; Chen, G. Construction of Porous Nanoscale NiO/NiCo2O4 Heterostructure for Highly Enhanced Electrocatalytic Oxygen Evolution Activity. J. Catal. 2019, 379, 1–9. https://doi.org/10.1016/j.jcat.2019.09.010.
- 26.
Cheng, H.; Wang, C.; Lyu, Z.; Zhu, Z.; Xia, Y. Controlling the Nucleation and Growth of Au on A-Se Nanospheres to Enhance Their Cellular Uptake and Cytotoxicity. J. Am. Chem. Soc. 2023, 145, 1216–1226. https://doi.org/10.1021/jacs.2c11053.
- 27.
Cheng, H.; Zhou, S.; Xie, M.; Gilroy, K.D.; Zhu, Z.; Xia, Y. Colloidal Nanospheres of Amorphous Selenium: Facile Synthesis, Size Control, and Optical Properties. Chem. Nano. Mater. 2021, 7, 620–625. https://doi.org/10.1002/cnma.202100115.
- 28.
Zheng, W.; Liu, M.; Lee, L.Y.S. Best Practices in Using Foam-Type Electrodes for Electrocatalytic Performance Benchmark. ACS Energy Lett. 2020, 5, 3260–3264. https://doi.org/10.1021/acsenergylett.0c01958.
- 29.
Miyake, H.; Ye, S.; Osawa, M. Electroless Deposition of Gold Thin Films on Silicon for Surface-Enhanced Infrared Spectroelectrochemistry. Electrochem. Commun. 2002, 4, 973–977. https://doi.org/10.1016/S1388-2481(02)00510-6.
- 30.
Ye, S.; Ichihara, T.; Uosaki, K. Spectroscopic Studies on Electroless Deposition of Copper on a Hydrogen-Terminated Si(111) Surface in Fluoride Solutions. J. Electrochem. Soc. 2001, 148, C421. https://doi.org/10.1149/1.1370964.
- 31.
Mukherjee, S.; Mukhopadhyay, N.K.; Basu, J. Structural Modulation, Oriented Growth of Rock Salt, and Spinel in (Co(Cr/Mg)FeMnNi) Multicomponent Oxide and Derivatives. J. Am. Ceram. Soc. 2025, 108, e20619. https://doi.org/10.1111/jace.20619.
- 32.
Park, J.; Kim, H.K.; Park, J.; Kim, B.; Baik, H.; Baik, M.-H.; Lee, K. Flattening Bent Janus Nanodiscs Expands Lattice Parameters. Chem 2023, 9, 948–962. https://doi.org/10.1016/j.chempr.2022.12.004.
- 33.
Abidat, I.; Morais, C.; Comminges, C.; Canaff, C.; Rousseau, J.; Guignard, N.; Napporn, T.W.; Habrioux, A.; Kokoh, K.B. Three Dimensionally Ordered Mesoporous Hydroxylated NixCo3-xO4 Spinels for the Oxygen Evolution Reaction: On the Hydroxyl-Induced Surface Restructuring Effect. J. Mater. Chem. A 2017, 5, 7173–7183. https://doi.org/10.1039/c7ta00185a.
- 34.
Anantharaj, S.; Noda, S. Appropriate Use of Electrochemical Impedance Spectroscopy in Water Splitting Electrocatalysis. Chem. Electro. Chem. 2020, 7, 2297–2308. https://doi.org/10.1002/celc.202000515.
- 35.
Ruiz-Fresneda, M.A.; Eswayah, A.S.; Romero-González, M.; Gardiner, P.H.; Solari, P.L.; Merroun, M.L. Chemical and Structural Characterization of Se IV Biotransformations by Stenotrophomonas Bentonitica into Se0 Nanostructures and Volatiles Se Species. Environ. Sci. Nano 2020, 7, 2140–2155. https://doi.org/10.1039/D0EN00507J.
- 36.
Ariyoshi, K.; Siroma, Z.; Mineshige, A.; Takeno, M.; Fukutsuka, T.; Abe, T.; Uchida, S. Electrochemical Impedance Spectroscopy Part 1: Fundamentals. Electrochemistry 2022, 90, 102007. https://doi.org/10.5796/electrochemistry.22-66071.
- 37.
Ding, J.; Du, M.; Wang, S.; Zhang, L.; Yue, Y.; Smedskjaer, M.M. Amorphous Material Based Heterostructures with Disordered Heterointerfaces for Advanced Rechargeable Batteries. Energy Environ. Sci. 2025, 18, 1587–1611. https://doi.org/10.1039/D4EE04566A.
- 38.
Zou, X.; Liu, Y.; Li, G.; Wu, Y.; Liu, D.; Li, W.; Li, H.; Wang, D.; Zhang, Y.; Zou, X. Ultrafast Formation of Amorphous Bimetallic Hydroxide Films on 3D Conductive Sulfide Nanoarrays for Large-Current-Density Oxygen Evolution Electrocatalysis. Adv. Mater. 2017, 29, 1700404. https://doi.org/10.1002/adma.201700404.
- 39.
Sun, J.; Xue, H.; Guo, N.; Song, T.; Hao, Y.; Sun, J.; Zhang, J.; Wang, Q. Synergetic Metal Defect and Surface Chemical Reconstruction into NiCo2S4/ZnS Heterojunction to Achieve Outstanding Oxygen Evolution Performance. Angew. Chem. Int. Ed. 2021, 60, 19435–19441. https://doi.org/10.1002/anie.202107731.
- 40.
Jiang, J.; Sun, F.; Zhou, S.; Hu, W.; Zhang, H.; Dong, J.; Jiang, Z.; Zhao, J.; Li, J.; Yan, W.; et al. Atomic-Level Insight into Super-Efficient Electrocatalytic Oxygen Evolution on Iron and Vanadium Co-Doped Nickel (Oxy)Hydroxide. Nat. Commun. 2018, 9, 2885. https://doi.org/10.1038/s41467-018-05341-y.
- 41.
Xue, Z.; Li, X.; Liu, Q.; Cai, M.; Liu, K.; Liu, M.; Ke, Z.; Liu, X.; Li, G. Interfacial Electronic Structure Modulation of NiTe Nanoarrays with NiS Nanodots Facilitates Electrocatalytic Oxygen Evolution. Adv. Mater. 2019, 31, 1900430. https://doi.org/10.1002/adma.201900430.
- 42.
Niu, S.; Jiang, W.-J.; Wei, Z.; Tang, T.; Ma, J.; Hu, J.-S.; Wan, L.-J. Se-Doping Activates FeOOH for Cost-Effective and Efficient Electrochemical Water Oxidation. J. Am. Chem. Soc. 2019, 141, 7005–7013. https://doi.org/10.1021/jacs.9b01214.
- 43.
Chen, J.; Qi, M.; Yang, Y.; Xiao, X.; Li, Y.; Jin, H.; Wang, Y. Chloride Residues in RuO2 Catalysts Enhance Its Stability and Efficiency for Acidic Oxygen Evolution Reaction. Angew. Chem. Int. Ed. 2025, 64, e202420860. https://doi.org/10.1002/anie.202420860.
- 44.
Liu, X.; Zhao, P.; Liu, F.; Lin, R.; Yao, H.; Zhu, S. Attenuated Total Reflection Infrared Spectroscopy for Studying Electrochemical Cycling of Hydrogen, Carbon, and Nitrogen-Containing Molecules. J. Energy Chem. 2024, 99, 495–511. https://doi.org/10.1016/j.jechem.2024.08.008.