2511002147
  • Open Access
  • Article

Seeded Growth of Large Gold Nanorods Modulated by Halide-Mediated Kinetics

  • Francisco Bevilacqua 1, 2,   
  • Luis M. Liz-Marzán 1, 2, 3, 4, *

Received: 24 Sep 2025 | Revised: 23 Oct 2025 | Accepted: 03 Nov 2025 | Published: 04 Nov 2025

Abstract

We report a robust and versatile method to overgrow pentatwinned gold nanorods using a combination of cetyltrimehylammonium chloride (CTAC) and bromide (CTAB), thereby expanding current protocols to the production of larger nanorod dimensions. When increasing CTAB content in the reaction medium, the aspect ratio of the resulting nanorods was found to decrease, due to the higher binding energy of bromide on gold surfaces, compared to chloride. A further handle to tailor the dimensions of larger nanorods can be achieved by tuning the Au3+/Au0 ratio. At a fixed CTAB concentration, increasing Au3+/Au0 ratio resulted in larger nanorods with minor variation of the aspect ratio, which again highlights the central role of CTAB in the overgrowth process. Our findings highlight the effect of CTAB on both growth kinetics and facet stabilization, offering a simple approach to finely tune the dimensions of pentatwinned gold nanorods. We also demonstrate the versatile use of CTAB/CTAC ratio in a more standard synthesis method, again leading to fine tuning of nanorod dimensions.

Graphical Abstract

References 

  • 1.
    Jana, N.R.; Gearheart, L.; Murphy, C.J. Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template. Adv. Mater. 2001, 13, 1389–1393.
  • 2.
    Nikoobakht, B.; El-Sayed, M.A. Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method. Chem. Mater. 2003, 15, 1957–1962.
  • 3.
    Scarabelli, L.; Sánchez-Iglesias, A.; Pérez-Juste, J.; Liz-Marzán, L.M. “Tips and Tricks” Practical Guide to the Synthesis of Gold Nanorods. J. Phys. Chem. Lett. 2015, 6, 4270–4279.
  • 4.
    Sánchez-Iglesias, A.; Winckelmans, N.; Bals, S.; Grzelczak, M.; Liz-Marzán, L.M. High Yield Seeded Growth of Monodisperse Pentatwinned Gold Nanoparticles Through Thermally-Induced Seed Twinning. J. Am. Chem. Soc. 2017, 139, 107–110.
  • 5.
    González-Rubio, G.; Kumar, V.; Llombart, P.; Díaz-Núñez, P.; Bladt, E.; Altantzis, T.; Bals, S.; Peña-Rodríguez, O.; Noya, E.G.; MacDowell, L.G.; et al. Disconnecting Symmetry Breaking from Seeded Growth for the Reproducible Synthesis of High Quality Gold Nanorods. ACS Nano 2019, 13, 4424–4435.
  • 6.
    Huang, X.; El-Sayed, I.H.; El-Sayed, M.A. In Cancer Nanotechnology; Humana Press: Totowa, NJ, USA, 2010; pp. 343–357.
  • 7.
    Langer, J.; De Aberasturi, D.J.; Aizpurua, J.; Alvarez-Puebla, R.A.; Auguié, B.; Baumberg, J.J.; Bazan, G.C.; Bell, S.E.J.; Boisen, A.; Brolo, A.G.; et al. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2020, 14, 28–117.
  • 8.
    Troncoso-Afonso, L.; Vinnacombe-Willson, G.A.; García-Astrain, C.; Liz-Márzan, L.M. SERS in 3D Cell Models: A Powerful Tool in Cancer Research. Chem. Soc. Rev. 2024, 53, 5118–5148.
  • 9.
    Canbek, Z.C.; Cortes-Huerto, R.; Testard, F.; Spalla, O.; Moldovan, S.; Ersen, O.; Wisnet, A.; Wang, G.; Goniakowski, J.; Noguera, C.; et al. Twinned Gold Nanoparticles under Growth: Bipyramids Shape Controlled by Environment. Cryst. Growth Des. 2015, 15, 3637–3644.
  • 10.
    Hanske, C.; González-Rubio, G.; Hamon, C.; Formentín, P.; Modin, E.; Chuvilin, A.; Guerrero-Martínez, A.; Marsal, L.F.; Liz-Marzán, L.M. Large-Scale Plasmonic Pyramidal Supercrystals via Templated Self-Assembly of Monodisperse Gold Nanospheres. J. Phys. Chem. C 2017, 121, 10899–10906.
  • 11.
    González-Rubio, G.; Scarabelli, L.; Guerrero-Martínez, A.; Liz-Marzán, L.M. Surfactant-Assisted Symmetry Breaking in Colloidal Gold Nanocrystal Growth. ChemNanoMat 2020, 6, 698–707.
  • 12.
    Jana, N.R.; Gearheart, L.; Murphy, C.J. Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods. J. Phys. Chem. B 2001, 105, 4065–4067.
  • 13.
    Chang, H.-H.; Murphy, C.J. Mini Gold Nanorods with Tunable Plasmonic Peaks beyond 1000 Nm. Chem. Mater. 2018, 30, 1427–1435.
  • 14.
    González-Rubio, G.; Llombart, P.; Zhou, J.; Geiss, H.; Peña-Rodríguez, O.; Gai, H.; Ni, B.; Rosenberg, R.; Cölfen, H. Revisiting the Role of Seed Size for the Synthesis of Highly Uniform Sub-10 nm Length Gold Nanorods. Chem. Mater. 2024, 36, 1982–1997.
  • 15.
    Harper-Harris, J.; Kant, K.; Singh, G. Oleic Acid-Assisted Synthesis of Tunable High-Aspect-Ratio Multiply-Twinned Gold Nanorods for Bioimaging. ACS Appl. Nano Mater. 2021, 4, 3325–3330.
  • 16.
    Wu, H.-Y.; Chu, H.-C.; Kuo, T.-J.; Kuo, C.-L.; Huang, M.H. Seed-Mediated Synthesis of High Aspect Ratio Gold Nanorods with Nitric Acid. Chem. Mater. 2005, 17, 6447–6451.
  • 17.
    Almora-Barrios, N.; Novell-Leruth, G.; Whiting, P.; Liz-Marzán, L.M.; López, N. Theoretical Description of the Role of Halides, Silver, and Surfactants on the Structure of Gold Nanorods. Nano Lett. 2014, 14, 871–875.
  • 18.
    Meena, S.K.; Sulpizi, M. Understanding the Microscopic Origin of Gold Nanoparticle Anisotropic Growth from Molecular Dynamics Simulations. Langmuir 2013, 29, 14954–14961.
  • 19.
    Gómez-Graña, S.; Hubert, F.; Testard, F.; Guerrero-Martínez, A.; Grillo, I.; Liz-Marzán, L.M.; Spalla, O. Surfactant (Bi)Layers on Gold Nanorods. Langmuir 2012, 28, 1453–1459.
  • 20.
    Zech, T.; Schmutzler, T.; Noll, D.M.; Appavou, M.-S.; Unruh, T. Effect of Bromide on the Surfactant Stabilization Layer Density of Gold Nanorods. Langmuir 2022, 38, 2227–2237.
  • 21.
    Mosquera, J.; Wang, D.; Bals, S.; Liz-Marzán, L.M. Surfactant Layers on Gold Nanorods. Acc. Chem. Res. 2023, 56, 1204–1212.
  • 22.
    González-Rubio, G.; Díaz-Núñez, P.; Rivera, A.; Prada, A.; Tardajos, G.; González-Izquierdo, J.; Bañares, L.; Llombart, P.; Macdowell, L.G.; Palafox, M.A.; et al. Femtosecond Laser Reshaping Yields Gold Nanorods with Ultranarrow Surface Plasmon Resonances. Science 2017, 358, 640–644.
  • 23.
    Meena, S.K.; Celiksoy, S.; Schäfer, P.; Henkel, A.; Sönnichsen, C.; Sulpizi, M. The Role of Halide Ions in the Anisotropic Growth of Gold Nanoparticles: A Microscopic, Atomistic Perspective. Phys. Chem. Chem. Phys. 2016, 18, 13246–13254.
  • 24.
    Sánchez-Iglesias, A.; Jenkinson, K.; Bals, S.; Liz-Marzán, L.M. Kinetic Regulation of the Synthesis of Pentatwinned Gold Nanorods below Room Temperature. J. Phys. Chem. C 2021, 125, 23937–23944.
  • 25.
    Bevilacqua, F.; Girod, R.; Martín, V.F.; Obelleiro-Liz, M.; Vinnacombe-Willson, G.A.; Van Gordon, K.; Hofkens, J.; Taboada, J.M.; Bals, S.; Liz-Marzán, L.M. Additive-Free Synthesis of (Chiral) Gold Bipyramids from Pentatwinned Nanorods. ACS Mater. Lett. 2024, 6, 5163–5169.
  • 26.
    Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L.M.; Mulvaney, P. Gold Nanorods: Synthesis, Characterization and Applications. Coord. Chem. Rev. 2005, 249, 1870–1901.
  • 27.
    Yu, R.; Liz-Marzán, L.M.; De Abajo, F.J.G. Universal Analytical Modeling of Plasmonic Nanoparticles. Chem. Soc. Rev. 2017, 46, 6710–6724.
  • 28.
    Rangel, T.; Kecik, D.; Trevisanutto, P.E.; Rignanese, G.-M.; Van Swygenhoven, H.; Olevano, V. Band Structure of Gold from Many-Body Perturbation Theory. Phys. Rev. B 2012, 86, 125125.
  • 29.
    Hendel, T.; Wuithschick, M.; Kettemann, F.; Birnbaum, A.; Rademann, K.; Polte, J. In Situ Determination of Colloidal Gold Concentrations with UV–Vis Spectroscopy: Limitations and Perspectives. Anal. Chem. 2014, 86, 11115–11124.
Share this article:
How to Cite
Bevilacqua, F.; Liz-Marzán, L. M. Seeded Growth of Large Gold Nanorods Modulated by Halide-Mediated Kinetics. Materials and Interfaces 2025, 2 (4), 388–396. https://doi.org/10.53941/mi.2025.100030.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.