- 1.
Gao, Y.; Xu, Y.; Guo, H.; Li, J.; Ding, L.; Wang, T.; He, J.; Chang, K.; Wu, Z. A 17.73% Solar‐To‐Hydrogen Efficiency with Durably Active Catalyst in Stable Photovoltaic‐Electrolysis Seawater System. Angew. Chem. Int. Ed. 2025, 64, e202420814. https://doi.org/10.1002/anie.202420814.
- 2.
Nsanzimana, J.M.V.; Cai, L.; Djire, A.; Pagot, G.; Mattana, P.; Vezzù, K.; Negro, E.; Xia, B.Y.; Di Noto, V. Tailoring Chemical Microenvironment of Iron‐Triad Electrocatalysts for Hydrogen Production by Water Electrolysis. Adv. Energy Mater. 2025, 15, 2501686. https://doi.org/10.1002/aenm.202501686.
- 3.
Tang, J.; Guo, K.; Guan, D.; Hao, Y.; Shao, Z. A Semi-Vapor Electrolysis Technology for Hydrogen Generation from Wide Water Resources. Energy Environ. Sci. 2024, 17, 7394–7402. https://doi.org/10.1039/D4EE02722A.
- 4.
Zhang, X.; Cao, C.; Ling, T.; Ye, C.; Lu, J.; Shan, J. Developing Practical Catalysts for High‐Current‐Density Water Electrolysis. Adv. Energy Mater. 2024, 14, 2402633. https://doi.org/10.1002/aenm.202402633.
- 5.
Liu, Z.; Zhang, L.; Zheng, C.J.; Zhang, Y.; Chen, B.; Shao, Z.; Ge, J. Advanced Electrode Materials for Efficient Hydrogen Production in Protonic Ceramic Electrolysis Cells. Adv. Mater. 2025, 2503609. https://doi.org/10.1002/adma.202503609.
- 6.
Brunin, G.; Ricci, F.; Ha, V.-A.; Rignanese, G.-M.; Hautier, G. Transparent Conducting Materials Discovery Using High-Throughput Computing. NPJ Comput. Mater. 2019, 5, 63. https://doi.org/10.1038/s41524-019-0200-5.
- 7.
Wang, C.; Wang, B.; Wang, C.; Chang, Z.; Yang, M.; Wang, R. Efficient Machine Learning Model Focusing on Active Sites for the Discovery of Bifunctional Oxygen Electrocatalysts in Binary Alloys. ACS Appl. Mater. Interfaces 2024, 16, 16050–16061. https://doi.org/10.1021/acsami.3c17377.
- 8.
Mai, H.; Le, T.C.; Chen, D.; Winkler, D.A.; Caruso, R.A. Machine Learning for Electrocatalyst and Photocatalyst Design and Discovery. Chem. Rev. 2022, 122, 13478–13515. https://doi.org/10.1021/acs.chemrev.2c00061.
- 9.
Jeong, I.; Shim, Y.; Oh, S.; Yuk, J.M.; Roh, K.; Lee, C.; Lee, K.T. A Machine Learning‐Enhanced Framework for the Accelerated Development of Spinel Oxide Electrocatalysts. Adv. Energy Mater. 2024, 14, 2402342. https://doi.org/10.1002/aenm.202402342.
- 10.
Chen, L.; Tian, Y.; Hu, X.; Yao, S.; Lu, Z.; Chen, S.; Zhang, X.; Zhou, Z. A Universal Machine Learning Framework for Electrocatalyst Innovation: A Case Study of Discovering Alloys for Hydrogen Evolution Reaction. Adv. Funct. Mater. 2022, 32, 2208418. https://doi.org/10.1002/adfm.202208418.
- 11.
Liu, J.; Luo, W.; Wang, L.; Zhang, J.; Fu, X.; Luo, J. Toward Excellence of Electrocatalyst Design by Emerging Descriptor‐Oriented Machine Learning. Adv. Funct. Mater. 2022, 32, 2110748. https://doi.org/10.1002/adfm.202110748.
- 12.
Jung, W.; Choi, J.; An, S.; Yun, S.; Chung, D.S.; Cha, H.; Lim, J.; Park, T. Photocatalytic Hydrogen Evolution with Conjugated Polymers: Structure–Property Insights and Design Strategies. Adv. Energy Mater. 2025, 15, 2501600. https://doi.org/10.1002/aenm.202501600.
- 13.
Lee, W.J.; Kwak, H.S.; Lee, D.; Oh, C.; Yum, E.K.; An, Y.; Halls, M.D.; Lee, C.-W. Design and Synthesis of Novel Oxime Ester Photoinitiators Augmented by Automated Machine Learning. Chem. Mater. 2022, 34, 116–127. https://doi.org/10.1021/acs.chemmater.1c02871.
- 14.
Nuñez, M. Exploring Materials Band Structure Space with Unsupervised Machine Learning. Comput. Mater. Sci. 2019, 158, 117–123. https://doi.org/10.1016/j.commatsci.2018.11.002.
- 15.
Wang, C.; Wang, B.; Wang, C.; Li, A.; Chang, Z.; Wang, R. A Machine Learning Model with Minimize Feature Parameters for Multi-Type Hydrogen Evolution Catalyst Prediction. NPJ Comput. Mater. 2025, 11, 111. https://doi.org/10.1038/s41524-025-01607-4.
- 16.
Wang, Z.; Yang, M.; Xie, X.; Yu, C.; Jiang, Q.; Huang, M.; Algadi, H.; Guo, Z.; Zhang, H. Applications of Machine Learning in Perovskite Materials. Adv. Compos. Hybrid. Mater. 2022, 5, 2700–2720. https://doi.org/10.1007/s42114-022-00560-w.
- 17.
Mou, L.; Han, T.; Smith, P.E.S.; Sharman, E.; Jiang, J. Machine Learning Descriptors for Data‐Driven Catalysis Study. Adv. Sci. 2023, 10, 2301020. https://doi.org/10.1002/advs.202301020.
- 18.
Zhang, N.; Yang, B.; Liu, K.; Li, H.; Chen, G.; Qiu, X.; Li, W.; Hu, J.; Fu, J.; Jiang, Y.; et al.Machine Learning in Screening High Performance Electrocatalysts for CO2 Reduction. Small Methods 2021, 5, 2100987. https://doi.org/10.1002/smtd.202100987.
- 19.
Mamun, O.; Winther, K.T.; Boes, J.R.; Bligaard, T. High-Throughput Calculations of Catalytic Properties of Bimetallic Alloy Surfaces. Sci. Data 2019, 6, 76. https://doi.org/10.1038/s41597-019-0080-z.
- 20.
Chen, X.; Zhou, T.; He, T.; Liu, Q. Vacancy Engineering in the First Coordination Shell of Single‐Atom Catalysts for Enhanced Hydrogen and Oxygen Evolution Reactions. Small 2025, 21, 2412000. https://doi.org/10.1002/smll.202412000.
- 21.
Li, Y.; Zheng, S.; He, Y.; Yang, S.; Huang, W.-H.; Pao, C.-W.; Hu, Z.; Huang, X. Masked Second-Shell Sulfur Coordinating Atomically Dispersed Pd on Tin Oxide Boosts the Direct Synthesis of Hydrogen Peroxide. Chem. Eng. J. 2024, 500, 157297. https://doi.org/10.1016/j.cej.2024.157297.
- 22.
Lv, Y.; Sun, W.; Luo, Q.; Gao, J.; Gu, G.; Ma, F. Fast Screening of High Anti-Corrosion Ta Ternary Alloys by Machine Learning and Electron-Level Descriptors. Mater. Chem. Phys. 2025, 339, 130820. https://doi.org/10.1016/j.matchemphys.2025.130820.
- 23.
Tereshchenko, A.; Pashkov, D.; Guda, A.; Guda, S.; Rusalev, Y.; Soldatov, A. Adsorption Sites on Pd Nanoparticles Unraveled by Machine-Learning Potential with Adaptive Sampling. Molecules 2022, 27, 357. https://doi.org/10.3390/molecules27020357.
- 24.
Shapera, E.P.; Bučar, D.-K.; Prasankumar, R.P.; Heil, C. Machine Learning Assisted Prediction of Organic Salt Structure Properties. NPJ Comput. Mater. 2024, 10, 176. https://doi.org/10.1038/s41524-024-01355-x.
- 25.
Chen, K.; Kunkel, C.; Cheng, B.; Reuter, K.; Margraf, J.T. Physics-Inspired Machine Learning of Localized Intensive Properties. Chem. Sci. 2023, 14, 4913–4922. https://doi.org/10.1039/D3SC00841J.
- 26.
Zou, Y.; Qian, J.; Wang, X.; Li, S.; Li, Y. Machine Learning-Assisted Prediction and Interpretation of Electrochemical Corrosion Behavior in High-Entropy Alloys. Comput. Mater. Sci. 2024, 244, 113259. https://doi.org/10.1016/j.commatsci.2024.113259.
- 27.
Mishra, A.; Kompella, L.; Sanagavarapu, L.M.; Varam, S. Ensemble-Based Machine Learning Models for Phase Prediction in High Entropy Alloys. Comput. Mater. Sci. 2022, 210, 111025. https://doi.org/10.1016/j.commatsci.2021.111025.
- 28.
Kapse, S.; Janwari, S.; Waghmare, U.V.; Thapa, R. Energy Parameter and Electronic Descriptor for Carbon Based Catalyst Predicted Using QM/ML. Appl. Catal. B: Environ. 2021, 286, 119866. https://doi.org/10.1016/j.apcatb.2020.119866.
- 29.
Cerda, P.; Varoquaux, G.; Kégl, B. Similarity Encoding for Learning with Dirty Categorical Variables. Mach. Learn. 2018, 107, 1477–1494. https://doi.org/10.1007/s10994-018-5724-2.
- 30.
Esterhuizen, J.A.; Goldsmith, B.R.; Linic, S. Uncovering Electronic and Geometric Descriptors of Chemical Activity for Metal Alloys and Oxides Using Unsupervised Machine Learning. Chem. Catal. 2021, 1, 923–940. https://doi.org/10.1016/j.checat.2021.07.014.
- 31.
Lansford, J.L.; Vlachos, D.G. Spectroscopic Probe Molecule Selection Using Quantum Theory, First-Principles Calculations, and Machine Learning. ACS Nano 2020, 14, 17295–17307. https://doi.org/10.1021/acsnano.0c07408.
- 32.
Chen, M.S.; Zuehlsdorff, T.J.; Morawietz, T.; Isborn, C.M.; Markland, T.E. Exploiting Machine Learning to Efficiently Predict Multidimensional Optical Spectra in Complex Environments. J. Phys. Chem. Lett. 2020, 11, 7559–7568. https://doi.org/10.1021/acs.jpclett.0c02168.
- 33.
Wexler, R.B.; Martirez, J.M.P.; Rappe, A.M. Chemical Pressure-Driven Enhancement of the Hydrogen Evolving Activity of Ni2 P from Nonmetal Surface Doping Interpreted via Machine Learning. J. Am. Chem. Soc. 2018, 140, 4678–4683. https://doi.org/10.1021/jacs.8b00947.
- 34.
Padama, A.A.B.; Palmero, M.A.; Shimizu, K.; Chookajorn, T.; Watanabe, S. Machine Learning and Density Functional Theory-Based Analysis of the Surface Reactivity of High Entropy Alloys: The Case of H Atom Adsorption on CoCuFeMnNi. Comput. Mater. Sci. 2025, 247, 113480. https://doi.org/10.1016/j.commatsci.2024.113480.
- 35.
Pandit, N.K.; Roy, D.; Mandal, S.C.; Pathak, B. Rational Designing of Bimetallic/Trimetallic Hydrogen Evolution Reaction Catalysts Using Supervised Machine Learning. J. Phys. Chem. Lett. 2022, 13, 7583–7593. https://doi.org/10.1021/acs.jpclett.2c01401.
- 36.
Dong, C.; Zhu, Y.; Qu, C.; Chen, Y.; Ma, Y.; Yu, Y.; Li, C. Coordination Chemistry-Driven Oxygen Vacancy Strategy for Rational Design of High-Performance Catalysts in BTX Oxidation. Coord. Chem. Rev. 2025, 545, 217007. https://doi.org/10.1016/j.ccr.2025.217007.
- 37.
Chen, R.; Yang, J.; Yu, Y.; Liu, Z.; Wang, C.; Wen, Y.; Gao, Y.; Zhao, Y.; Sampara, C.S.; Li, W.; et al. Extra Trees Regression Assisted 1D Monolith Reactor Simulations Based on Microkinetic Analysis and Rate Transformation. Chem. Eng. Sci. 2025, 302, 120721. https://doi.org/10.1016/j.ces.2024.120721.
- 38.
Da Costa, M.L.; Oviedo, L.R.; Franco, D.S.P.; Da Silva, W.L.; De Oliveira, J.S. Catalytic Ozonation for the Efficient Degradation of Tetracycline Using CoFe2O4@TiO2 Ceramic Nanocomposite: Kinetic, Thermodynamic and Machine Learning Study. Ceram. Int. 2025, 51, 7143–7158. https://doi.org/10.1016/j.ceramint.2024.12.149.
- 39.
Naqvi, S.K.H.; Chong, K.T.; Tayara, H. Machine Learning-Enhanced Analysis of Catalyst Particle Size Effects and Performance Prediction of Platinum on Carbon Electrocatalysts. Comput. Mater. Sci. 2025, 259, 114105. https://doi.org/10.1016/j.commatsci.2025.114105.
- 40.
Panapitiya, G.; Avendaño-Franco, G.; Ren, P.; Wen, X.; Li, Y.; Lewis, J.P. Machine-Learning Prediction of CO Adsorption in Thiolated, Ag-Alloyed Au Nanoclusters. J. Am. Chem. Soc. 2018, 140, 17508–17514. https://doi.org/10.1021/jacs.8b08800.
- 41.
He, X.; Liu, J.; Yang, C.; Jiang, G. Predicting Thermodynamic Stability of Magnesium Alloys in Machine Learning. Comput. Mater. Sci. 2023, 223, 112111. https://doi.org/10.1016/j.commatsci.2023.112111.
- 42.
Cheng, G.; Gong, X.-G.; Yin, W.-J. An Approach for Full Space Inverse Materials Design by Combining Universal Machine Learning Potential, Universal Property Model, and Optimization Algorithm. Sci. Bull. 2024, 69, 3066–3074. https://doi.org/10.1016/j.scib.2024.07.015.
- 43.
Martínez-Alonso, C.; Vassilev-Galindo, V.; Comer, B.M.; Abild-Pedersen, F.; Winther, K.T.; LLorca, J. Application of machine learning to discover new intermetallic catalysts for the hydrogen evolution and the oxygen reduction reactions. Catal. Sci. Technol. 2024, 14, 3784–3799.