2512002525
  • Open Access
  • Article

Redox Behavior and Electrochromism of a Viologen-Based Molten Poly(ionic liquid)

  • Hironobu Tahara 1,2,*,   
  • Saki Takuma 2,   
  • Suguru Motokucho 1,2,   
  • Hiroto Murakami 1,2,*

Received: 30 Aug 2025 | Revised: 08 Dec 2025 | Accepted: 14 Dec 2025 | Published: 16 Dec 2025

Abstract

We present the synthesis and characterization of a viologen-based molten poly(ionic liquid), VPIL(TFSI), and its application to electrochromic (EC) devices. VPIL(TFSI) was obtained as a highly viscous liquid with a glass transition temperature of −23 °C, enabling its use in a molten state without additional solvent. Electrochemical analysis by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) of neat VPIL(TFSI) revealed a unique conduction mechanism: while ionic conductivity is dominated by the counter-anion (TFSI) migration, charge transport during redox cycling involves electron hopping between viologen units. Diffusion coefficient analysis indicated that electron hopping is slower than counter-anion migration, suggesting that the reorientation of viologen moieties, rather than ion migration, determines the transport kinetics. An EC device was fabricated using an equimolar mixture of VPIL(TFSI) and a ferrocene-based RAIL as cathodic and anodic components, respectively, without any supporting electrolyte. The device exhibited distinct coloration with strong absorption bands at 530 and 890 nm, attributed to π-dimerization of reduced viologen species, along with high contrast and coloration efficiency comparable to theoretical values. These findings demonstrate the potential of molten poly(ionic liquids) as promising redox-active media for solvent-free and durable electrochromic devices.

Graphical Abstract

References 

  • 1.

    Freemantle, M. Designer Solvents. Chem. Eng. News 1998, 76, 32–37.

  • 2.

    Doherty, A.P. Redox-active ionic liquids for energy harvesting and storage applications. Curr. Opin. Electrochem. 2018, 7, 61–65.

  • 3.

    Rochefort, D. Enabling new electrochemical methods with redox-active ionic liquids. Curr. Opin. Electrochem. 2019, 15, 125–132.

  • 4.

    Xie, H.J.; Gelinas, B.; Rochefort, D. Redox-active electrolyte supercapacitors using electroactive ionic liquids. Electrochrm. Commun. 2016, 66, 42–45.

  • 5.

    Mourad, E.; Coustan, L.; Lannelongue, P.; Zigah, D.; Medhdi, A.; Vioux, A.; Freunberger, S.A.; Favier, F.; Fontaine, O. Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors. Nature Mater. 2017, 16, 446.

  • 6.

    Takechi, K.; Kato, Y.; Hase, Y. A Highly Concentrated Catholyte Based on a Solvate Ionic Liquid for Rechargeable Flow Batteries. Adv. Mater. 2015, 27, 2501–2506.

  • 7.

    Tahara, H.; Baba, R.; Iwanaga, K.; Sagara, T.; Murakami, H. Electrochromism of a bipolar reversible redox-active ferrocene–viologen linked ionic liquid. Chem. Commun. 2017, 53, 2455–2458.

  • 8.

    Tahara, H.; Uranaka, K.; Hirano, M.; Ikeda, T.; Sagara, T.; Murakami, H. Electrochromism of Ferrocene- and Viologen-Based Redox-Active Ionic Liquids Composite. ACS Appl. Mater. Interfaces 2019, 11, 1–6.

  • 9.

    Hatazawa, T.; Terrill, R.H.; Murray, R.W. Microelectrode Voltammetry and Electron Transport in an Undiluted Room Temperature Melt of an Oligo(ethylene glycol)-Tailed Viologen. Anal. Chem. 1996, 68, 507–603.

  • 10.

    Causin, V.; Saielli, G. Effect of asymmetric substitution on the mesomorphic behaviour of low-1melting viologen salts of bis(trifluoromethanesulfonyl)amide. J. Mater. Chem. 2009, 19, 9153–9162.

  • 11.

    Jordao, N.; Cabrita, L.; Pina, F.; Branco, L. Novel Bipyridinium Ionic Liquids as Liquid Electrochromic Devices. Chem. Eur. J. 2014, 20, 3982–3988.

  • 12.

    Bodappa, N.; Broekmann, P.; Fu, Y.-C.; Furrer, J.; Furue, Y.; Sagara, T.; Siegenthaler, H.; Tahara, H.; Vesztergom, S.; Zick, K.; et al. Temperature-Dependent Transport Properties of a Redox-Active Ionic Liquid with a Viologen Group. J. Phys. Chem. C 2015, 119, 1067–1077.

  • 13.

    Yuan, J.; Mecerreyes, D.; Antonietti, M. Poly(ionic liquid)s: An update. Progress in Polym. Sci. 2013, 38, 1009–1036.

  • 14.

    Qian, W.; Texter, J.; Yan, F. Frontiers in poly(ionic liquid)s: Syntheses and applications Chem. Soc. Rev. 2017, 46, 1124–1159.

  • 15.

    Zhang, S.-Y.; Zhuang, Q.; Zhang, M.; Wang, H.; Gao, Z.; Yuan, J. Poly(ionic liquid) composites. Chem. Soc. Rev. 2020, 49, 1726–1755.

  • 16.

    Ito, K.; Ohno, H. Polyether/salt hybrid: 5. Phase and bulk electrochemical response of viologens having poly(ethylene oxide) chain. Polymer 1997, 38, 921–926.

  • 17.

    Chen, F.; Ren, Y.; Guo, J.; Yan, F. Thermo- and Electro-Dual Responsive Poly(ionic liquid) Electrolyte Based Smart Windows. Chem. Commun. 2017, 53, 1595–1598.

  • 18.

    Burgess, M.; Chénard, E.; Hernández-Burgos, K.; Nagarjuna, G.; Assary, R.S.; Hui, J.; Moore, J.S.; Rodríguez-López, J. Impact of Backbone Tether Length and Structure on the Electrochemical Performance of Viologen Redox Active Polymers. Chem. Mater. 2016, 28, 7362–7374.

  • 19.

    Greene, A.F.; Danielson, M.K.; Delawder, A.O.; Liles, K.P.; Li, X.; Natraj, A.; Wellen, A.; Barnes, J.C. Redox-Responsive Artificial Molecular Muscles: Reversible Radical-Based Self-Assembly for Actuating Hydrogels. Chem. Mater. 2017, 29, 9498–9508.

  • 20.

    In, Y.; Park, H.; Kwon, J.; Kim, Y.; Kim, K.-W.; Pathak, D.; Kim, S.; Lee, S.; Moon, H. Isomeric effects of poly-viologens on electrochromic performance and applications in low-power electrochemical devices. Sol. Energy Mater. Sol. Cells 2022, 240, 111734.

  • 21.

    Gharib, B.; Hirsch, A. Synthesis and Characterization of New Ferrocene-Containing Ionic Liquids. J. Org. Chem. 2014, 2014, 4123–4136.

  • 22.

    Tahara, H.; Miyaji, M.; Murakami, H.; Sagara, T. Determination Method of Diffusion Coefficient in a Neat Redox-Active Ionic Liquid at a Microdisk Electrode in the Domains Ranging from the Steady-State to Potentiodynamic Near-Steady-State. Anal. Chem. 2023, 95, 9822–9830.

  • 23.

    Newman, J. Resistance for Flow of Current to a Disk. J. Electrochem. Soc. 1966, 113, 501–502.

  • 24.

    Vellzquez, C.S.; Hutchison, J.E.; Murray, R.W. Electrochemical Reactions and Charge Transport in Undiluted Room-Temperature Melts of Oligo(ethy1ene glycol)-Based Electron Carriers. J. Am. Chem. Soc. 1993, 115, 7896–7897.

  • 25.

    Dahms, H. Electronic conduction in aqueous solution. J. Phys. Chem. 1968, 72, 362–364.

  • 26.

    Ruff, I.; Friedrich, V.J. Transfer diffusion. I. Theoretical. J. Phys. Chem. 1971, 75, 3297–3302.

  • 27.

    Lyons, M.E. Transport and kinetics in electroactive polymers. In Advances in Chemical Physics; Prigogine, I., Rice, S.A., Eds.; Wiley:  New York, NY, USA, 1996. 

  • 28.

    Hyk, W.; Stojek, Z. Generalized Theory of Steady-State Voltammetry without a Supporting Electrolyte. Effect of Product and Substrate Diffusion Coefficient Diversity. Anal. Chem. 2002, 74, 4805–4813.

  • 29.

    Andrieux, C.P.; Savéant, J.M. Electroneutrality coupling of electron hopping between localized sites with electroinactive counterion displacement. 1. Potential-step plateau currents. J. Phys. Chem. 1988, 92, 6761–6767.

  • 30.

    Sagara, T.; Tahara, H. Redox of Viologen for Powering and Coloring. Chem. Rec. 2021, 21, 2375–2388.

  • 31.

    Luong, J.H.T.; Male, K.B.; Zhao, S. Electrochemical Preparation of 1,1′-Dimethylferricinium from a Water-Soluble 1,1′-Dimethylferrocene-2-Hydroxypropyl-{3-cyclodextrinComplex and Its Applications in Enzyme Assay. Anal. Biochem. 1993, 212, 269–276.

  • 32.

    Nchimi-Nono, K.; Dalvand, P.; Wadhwa, K.; Nuryyeva, S.; Alneyadi, S.; Prakasam, T.; Fahrenbach, A.C.; Olsen, J.-C.; Asfari, Z.; Platas-Iglesias, C.; et al. Radical-Cation Dimerization Overwhelms Inclusion in [n]Pseudorotaxanes. Chem. Eur. J. 2014, 20, 7334–7344.

  • 33.

    Wang, X.; Guo, L.; Cao, S.; Zhao, W. Highly stable viologens-based electrochromic devices with low operational voltages utilizing polymeric ionic liquids. Chem. Phys. Lett. 2020, 749, 137434.

  • 34.

    Correa, C.; Cordoba de Torresi, S.I.; Benedetti, T.M.; Torresi, R.M.; Correa, C.; Cordoba de Torresi, S.I.; Benedetti, T.M.; Torresi, R.M.J. Viologen-functionalized poly (ionic liquids): Spectroelectrochemical and QCM-D studies. Electroanal. Chem. 2018, 819, 365–373.

Share this article:
How to Cite
Tahara, H.; Takuma, S.; Motokucho, S.; Murakami, H. Redox Behavior and Electrochromism of a Viologen-Based Molten Poly(ionic liquid). Materials and Interfaces 2025, 2 (4), 418–427. https://doi.org/10.53941/mi.2025.100033.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.