2601002931
  • Open Access
  • Article
Decoherence as a Local and Realistic Account of the EPR Paradox
  • Everett X. Wang

Received: 19 Nov 2025 | Revised: 21 Jan 2026 | Accepted: 27 Jan 2026 | Published: 03 Feb 2026

Abstract

Quantum mechanics, despite its extraordinary success in describing microscopic phenomena, continues to raise foundational questions concerning measurement, nonlocality, and the nature of physical reality. These issues are exemplified by the Einstein-Podolsky-Rosen (EPR) paradox and the Bell inequality, which contrast quantum correlations with classical notions of locality and realism. In this work, we critically examine the assumptions underlying Bell’s theorem in light of the incompatible and contextual nature of quantum observables. We show that Bell’s constraint on simultaneous definite values for incompatible observables, together with the assumption of hidden variables, is not applicable to quantum mechanics itself, which is inherently nonclassical and contextual. When measurement is modeled as a local system-environment interaction within the framework of quantum decoherence, the resulting dynamics remain entirely local and unitary in the EPR scenario. Decoherence naturally selects pointer states and suppresses interference, giving rise to the appearance of wavefunction collapse consistent with quantum predictions. Importantly, the Bell correlations obtained in this framework reproduce the standard quantum results and are independent of both system-bath and inter-bath interactions, which affect only the rate of decoherence. Our analysis suggests that, in the EPR scenario, quantum mechanics can be both local and realistic when the wavefunction is treated as an ontic description of reality within the decoherence framework, offering a potential route toward a locally realistic quantum theory aligned with Einstein’s vision. This work contributes to a more rigorous foundation for quantum mechanics, providing insights that can accelerate progress in quantum computing and nanoenergy harvesting. 

References 

  • 1.

    Einstein, A.; Podolsky, B.; Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 1935, 47, 777–780. https://doi.org/10.1103/PhysRev.47.777.

  • 2.

    Einstein, A. Physics and reality. J. Frankl. Inst. 1936, 221, 349–382. https://doi.org/10.1016/S0016-0032(36)91047-5.

  • 3.

    Sauer, T. An Einstein manuscript on the EPR paradox for spin observables. Stud. Hist. Phil. Sci. Part B 2007, 38, 879–887. https://doi.org/10.1016/j.shpsb.2007.03.002.

  • 4.

    Howard, D. Einstein on locality and separability. Stud. Hist. Phil. Sci. Part A 1985, 16, 171–201. https://doi.org/10.1016/0039-3681(85)90001-9.

  • 5.

    Harrigan, N.; Spekkens, R.W. Einstein, incompleteness, and the epistemic view of quantum states. Found. Phys. 2010, 40, 125–157. https://doi.org/10.1007/s10701-009-9347-0. 

  • 6.

    Jaeger, G. Quantum Objects: Non-Local Correlation, Causality and Objective Indefiniteness in the Quantum World; Fundamental Theories of Physics 175; Springer Verlag: Berlin/Heidelberg, Germany, 2014. https://doi.org/10.1007/978-3-642-37629-0.

  • 7.

    Bell, J.S. On the Einstein-Podolsky-Rosen paradox. Physics 1964, 1, 195–200. Reprinted in Bell, J.S. Speakable and Unspeakable in Quantum Mechanics; Cambridge University Press: Cambridge, UK, 1987.

  • 8.

    Clauser, J.F.; Horne, M.A.; Shimony, A.; et al. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 1969, 23, 880–884. https://doi.org/10.1103/PhysRevLett.23.880.

  • 9.

    Georgescu, I. How the Bell tests changed quantum physics. Nat. Rev. Phys. 2021, 3, 674–676. https://doi.org/10.1038/s42254-021-00365-8.

  • 10.

    Freedman, S.J.; Clauser, J.F. Experimental test of local hidden-variable theories. Phys. Rev. Lett. 1972, 28, 938–941. https://doi.org/10.1103/PhysRevLett.28.938.

  • 11.

    Aspect, A.; Grangier, P.; Roger, G. Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell’s Inequalities. Phys. Rev. Lett. 1982, 49, 91–94. https://doi.org/10.1103/PhysRevLett.49.91.

  • 12.

    Weihs, G.; Jennewein, T.; Simon, C.; et al. Violation of Bell’s inequality under strict Einstein locality conditions. Phys. Rev. Lett. 1998, 81, 5039–5043. https://doi.org/10.1103/PhysRevLett.81.5039.

  • 13.

    Aspect, A. Bell’s inequality test: More ideal than ever. Nature 1999, 390, 189–190. https://doi.org/10.1038/18296.

  • 14.

    Rowe, M.A.; Kielpinski, D.; Meyer, V.; et al. Experimental violation of a Bell’s inequality with efficient detection. Nature 2001, 409, 791–794. https://doi.org/10.1038/35057215.

  • 15.

    Hensen, B.; Bernien, H.; Dreau, A.E.; et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 2015, 526, 682–686. https://doi.org/10.1038/nature15759.

  • 16.

    Aspect, A. Closing the door on Einstein and Bohr’s quantum debate. Physics 2015, 8, 123. https://doi.org/10.1103/Physics.8.123. 

  • 17.

    Kochen, S. A Reconstruction of Quantum Mechanics. In Quantum (Un)Speakables II; Bertlmann, R., Zeilinger, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 201–235. https://doi.org/10.1007/978-3-319-38987-5_12. 

  • 18.

    Wiseman, H. Quantum physics: Death by experiment for local realism. Nature 2015, 526, 649–650. https://doi.org/10.1038/nature15631.

  • 19.

    Bell, J.S. On the Problem of Hidden Variables in Quantum Mechanics. Rev. Mod. Phys. 1966, 38, 447–452. https://doi.org/10.1103/RevModPhys.38.447.

  • 20.

    Kochen, S.; Specker, E.P. The problem of hidden variables in quantum mechanics. J. Math. Mech. 1967, 17, 59–87. https://doi.org/10.1512/iumj.1968.17.17004

  • 21.

    Redhead, M. Incompleteness, Nonlocality, and Realism: A Prolegomenon to the Philosophy of Quantum Mechanics; Clarendon Press: Oxford, UK, 1989.

  • 22.

    Mermin, N.D. Hidden variables and the two theorems of John Bell. Rev. Mod. Phys. 1993, 65, 803–815. https://doi.org/10.1103/RevModPhys.65.803.

  • 23.

    Peres, A. Two simple proofs of the Kochen-Specker theorem. J. Phys. A: Math. Gen. 1991, 24, 175–178. https://doi.org/10.1088/0305-4470/24/4/003

  • 24.

    Greenberger, D.M.; Horne, M.A.; Zeilinger, A. Going Beyond Bell’s Theorem. In Bell’s Theorem, Quantum Theory and Conceptions of the Universe; Kafatos, M., Ed.; Kluwer: Dordrecht, The Netherlands, 1989; p. 69. https://doi.org/10.1007/978-94-017-0849-4_10.

  • 25.

    Greenberger, D.M.; Horne, M.A.; Shimony, A.; et al. Bell’s theorem without inequalities. Am. J. Phys. 1990, 58, 1131–1143. https://doi.org/10.1119/1.16243. 

  • 26.

    Mermin, N.D. Quantum mysteries revisited. Am. J. Phys. 1990, 58, 731–734. https://doi.org/10.1119/1.16503.

  • 27.

    Mermin, N.D. Simple unified form for the major no-hidden-variables theorems. Phys. Rev. Lett. 1990, 65, 3373–3376. https://doi.org/10.1103/PhysRevLett.65.3373.

  • 28.

    Pan, J.; Bouwmeester, D.; Daniell, M.; et al. Experimental test of quantum nonlocality in three-photon GHZ entanglement. Nature 2000, 403, 515–519. https://doi.org/10.1038/35000514.

  • 29.

    Scully, M.; Zubairy, M. Quantum Optics; Cambridge University Press: Cambridge, UK, 1997; Chapter 18, p. 529. https://doi.org/10.1017/CBO9780511813993.

  • 30.

    Khrennikov, A. Get Rid of Nonlocality from Quantum Physics. Entropy 2019, 21, 806. https://doi.org/10.3390/e21080806.

  • 31.

    Nieuwenhuizen, T.M. Is the Contextuality Loophole Fatal for the Derivation of Bell Inequalities? Found. Phys. 2011, 41, 580–591. https://doi.org/10.1007/s10701-010-9461-z.

  • 32.

    Zukowski, M.; Brukner, C. Quantum non-locality—It ain’t necessarily so… J. Phys. A: Math. Theor. 2014, 47, 424009. https://doi.org/10.1088/1751-8113/47/42/424009.

  • 33.

    Griffiths, B.R. Nonlocality claims are inconsistent with Hilbert-space quantum mechanics. Phys. Rev. A 2020, 101, 022117. https://doi.org/10.1103/PhysRevA.101.022117.

  • 34.

    Kupczynski, M. Is the Moon There If Nobody Looks: Bell Inequalities and Physical Reality. In Towards a Local Realist View of the Quantum Phenomenon; Casado, A., Cetto, A.M., Hess, K., et al., Eds.; Frontiers Media SA: Lausanne, Switzerland, 2021; pp. 66–78.

  • 35.

    Hance, J.R.; Hossenfelder, S. Bell’s theorem allows local theories of quantum mechanics. Nat. Phys. 2022, 18, 1382. https://doi.org/10.1038/s41567-022-01831-5

  • 36.

    Mermin, N. Physics: QBism puts the scientist back into science. Nature 2014, 507, 421–423. https://doi.org/10.1038/507421a.

  • 37.

    Pusey, M.; Barrett, J.; Rudolph, T. On the reality of the quantum state. Nat. Phys. 2012, 8, 475–478. https://doi.org/10.1038/nphys2309.

  • 38.

    Trimmer, J.D. The Present Situation in Quantum Mechanics: A Translation of Schrödinger’s “Cat Paradox” Paper. Proc. Am. Philos. Soc. 1980, 124, 323–338.

  • 39.

    Wigner, E.P. Remarks on the Mind-Body Question. In Philosophical Reflections and Syntheses; Mehra, J., Ed.; Springer: Berlin/Heidelberg, Germany, 1995; pp. 247–260. https://doi.org/10.1007/978-3-642-78374-6_20.

  • 40.

    Frauchiger, D.; Renner, R. Quantum theory cannot consistently describe the use of itself. Nat. Commun. 2018, 9, 3711. https://doi.org/10.1038/s41467-018-05739-8.

  • 41.

    Bong, K.W.; Utreras-Alarcón, A.; Ghafari, F.; et al. A strong no-go theorem on the Wigner’s friend paradox. Nat. Phys. 2020, 16, 1199–1205. https://doi.org/10.1038/s41567-020-0990-x.

  • 42.

    Zeh, H.D. On the Interpretation of Measurement in Quantum Theory. Found. Phys. 1970, 1, 69–76. https://doi.org/10.1007/BF00708656.

  • 43.

    Zurek, W.H. Pointer Basis of Quantum Apparatus: Into what Mixture does the Wave Packet Collapse? Phys. Rev. D 1981, 24, 1516–1525. https://doi.org/10.1103/PhysRevD.24.1516.

  • 44.

    Zurek, W.H. Environment-Induced Superselection Rules. Phys. Rev. D 1982, 26, 1862–1880. https://doi.org/10.1103/PhysRevD.26.1862. 

  • 45.

    Zurek, W.H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 2003, 75, 715–775. https://doi.org/10.1103/RevModPhys.75.715.

  • 46.

    Schlosshauer, M. Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 2005, 76, 1267–1305. https://doi.org/10.1103/RevModPhys.76.1267.

  • 47.

    Schlosshauer, M. Quantum decoherence. Phys. Rep. 2019, 831, 1–57. https://doi.org/10.1016/j.physrep.2019.10.001.

  • 48.

    Cucchietti, F.M.; Paz, J.P.; Zurek, W.H. Decoherence from spin environments. Phys. Rev. A 2005, 72, 052113. https://doi.org/10.1103/PhysRevA.72.052113.

  • 49.

    Myatt, C.J.; King, B.E.; Turchette, Q.A.; et al. Decoherence of quantum superpositions through coupling to engineered reservoirs. Nature 2000, 403, 269–273. https://doi.org/10.1038/35002001.

  • 50.

    Hornberger, K.; Uttenthaler, S.; Brezger, B.; et al. Collisional decoherence observed in matter wave interferometry. Phys. Rev. Lett. 2003, 90, 160401. https://doi.org/10.1103/PhysRevLett.90.160401.

  • 51.

    Martinis, J.M.; Cooper, K.B.; McDermott, R.; et al. Decoherence in Josephson qubits from dielectric loss. Phys. Rev. Lett. 2005, 95, 210503. https://doi.org/10.1103/PhysRevLett.95.210503.

  • 52.

    Basso, M.L.W.; Morgado, J.M.; Céleri, L.C. Quantum Detailed Fluctuation Theorem in Curved Spacetimes: The Observer Dependent Nature of Entropy Production. Phys. Rev. Lett. 2025, 134, 050406. https://doi.org/10.1103/PhysRevLett.134.050406.

  • 53.

    Chiarelli, P. Quantum-to-Classical Coexistence: Wavefunction Decay Kinetics, Photon Entanglement, and Q-Bits. Symmetry 2023, 15, 2210. https://doi.org/10.3390/sym15122210.

  • 54.

    Chiarelli, S.; Chiarelli, P. Stochastic Quantum Hydrodynamic Model from the Dark Matter of Vacuum Fluctuations: The Langevin-Schrödinger Equation and the Large-Scale Classical Limit. Open Access Libr. J. 2020, 7, e6659. https://doi.org/10.4236/oalib.1106659.

  • 55.

    Penrose, R. On the Gravitization of Quantum Mechanics 1: Quantum State Reduction. Found. Phys. 2014, 44, 557–575. https://doi.org/10.1007/s10701-013-9770-0.

  • 56.

    Diósi, L. The gravity-related decoherence master equation from hybrid dynamics. J. Phys. Conf. Ser. 2011, 306, 012006. https://doi.org/10.1088/1742-6596/306/1/012006.

  • 57.

    Landau, L.J. Experimental tests of general quantum theories. Lett. Math. Phys. 1987, 14, 33–40. https://doi.org/10.1007/BF00403467.

  • 58.

    Landau, L.J. On the violation of Bell’s inequality in quantum theory. Phys. Lett. A 1987, 120, 54–56. https://doi.org/10.1016/0375-9601(87)90075-2.

  • 59.

    Tsirelson, B.S. Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 1980, 4, 93–100. https://doi.org/10.1007/BF00417500.

  • 60.

    Hensen, B.; Kalb, N.; Blok, M.S.; et al. Loophole-free Bell test using electron spins in diamond: Second experiment and additional analysis. Sci. Rep. 2016, 6, 30289. https://doi.org/10.1038/srep30289.

  • 61.

    Giustina, M.; Versteegh, M.A.M.; Wengerowsky, S.; et al. Significant-Loophole-Free Test of Bell’s Theorem with Entangled Photons. Phys. Rev. Lett. 2015, 115, 250401. https://doi.org/10.1103/PhysRevLett.115.250401.

  • 62.

    Chekhovich, E.A.; Ulhaq, A.; Zallo, E.; et al. Measurement of the spin temperature of optically cooled nuclei and GaAs hyperfine constants in GaAs/AlGaAs quantum dots. Nat. Mater. 2017, 16, 982–986.

  • 63.

    Prokof’ev, N.V.; Stamp, P.C.E. Theory of the spin bath. Rep. Prog. Phys. 2000, 63, 669–726. https://doi.org/10.1088/0034-4885/63/4/204.

  • 64.

    Khaetskii, A.V.; Loss, D.; Glazman, L. Electron spin decoherence in quantum dots due to interaction with nuclei. Phys. Rev. Lett. 2002, 88, 186802. https://doi.org/10.1103/PhysRevLett.88.186802.

  • 65.

    Cywiński, Ł.; Witzel, W.M.; Das Sarma, S. Pure quantum dephasing of a solid-state electron spin qubit in a nuclear spin bath. Phys. Rev. B 2009, 79, 245314. https://doi.org/10.1103/PhysRevB.79.245314.

  • 66.

    Dobrovitski, V.V.; Feiguin, A.E.; Awschalom, D.D.; Hanson, R. Decoherence dynamics of a single spin versus spin ensemble. Phys. Rev. B 2008, 77, 245212. https://doi.org/10.1103/PhysRevB.77.245212.

  • 67.

    Zurek, W.H. Decoherence and the transition from quantum to classical—revisited. Los Alamos Sci. 2002, 27, 86–109.

  • 68.

    Luchnikov, I.A.; Vintskevich, S.V.; Ouerdane, H.; Filippov, S.N. Simulation Complexity of Open Quantum Dynamics: Connection with Tensor Networks. Phys. Rev. Lett. 2019, 122, 160401. https://doi.org/10.1103/PhysRevLett.122.160401.

  • 69.

    de Vega, I.; Alonso, D. Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 2017, 89, 015001. https://doi.org/10.1103/RevModPhys.89.015001.

  • 70.

    Mikhailov, V.A.; Troshkin, N.V. Non-Markovian dynamics of a two-level system in a bosonic bath and a Gaussian fluctuating environment with finite correlation time. Phys. Rev. A 2021, 103, 012208. https://doi.org/10.1103/PhysRevA.103.012208.

  • 71.

    Joos, E.; Zeh, H.D. The emergence of classical properties through interaction with the environment. Z. Phys. B Condens. Matter 1985, 59, 223–243. https://doi.org/10.1007/BF01725541.

  • 72.

    Unruh, W.G.; Zurek, W.H. Reduction of a wave packet in quantum Brownian motion. Phys. Rev. D 1989, 40, 1071–1094. https://doi.org/10.1103/PhysRevD.40.1071.

  • 73.

    Zurek, W.H. Decoherence and the Transition from Quantum to Classical. Phys. Today 1991, 44, 36–44. https://doi.org/10.1063/1.881293.

  • 74.

    Bohr, N. The Quantum Postulate and the Recent Development of Atomic Theory. Nature 1928, 121, 580–590. https://doi.org/10.1038/121580a0.

  • 75.

    Peres, A. Quantum Theory: Concepts and Methods; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002. https://doi.org/10.1007/0-306-47120-5.

  • 76.

    D’Ariano, G.M.; Paris, M.G.A.; Sacchi, M.F. Quantum Tomography. Adv. Imaging Electron Phys. 2003, 128, 205–308. https://doi.org/10.1016/S1076-5670(03)80065-4.

  • 77.

    D’Ariano, G.M.; Paris, M.G.A.; Sacchi, M.F. Chapter 2, Quantum Tomographic Methods. In Quantum State Estimation; Lecture Notes in Physics; Paris, M.G.A., Řeháček, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 649.

  • 78.

    James, D.F.V.; Kwiat, P.G.; Munro, W.J.; et al. Measurement of qubits. Phys. Rev. A 2001, 64, 052312. https://doi.org/10.1103/PhysRevA.64.052312.

  • 79.

    Lundeen, J.S.; Sutherland, B.; Patel, A.; et al. Direct measurement of the quantum wavefunction. Nature 2011, 474, 188–191. https://doi.org/10.1038/nature10120.

  • 80.

    Wang, Z.L. Nanogenerators and piezotronics: From scientific discoveries to technology breakthroughs. MRS Bull. 2023, 48, 1014–1025. https://doi.org/10.1557/s43577-023-00576-7.

Share this article:
How to Cite
Wang, E. X. Decoherence as a Local and Realistic Account of the EPR Paradox. Nanoenergy Communications 2026, 1 (1), 2.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.