2602002995
  • Open Access
  • Review

Emerging DC-Generating TENG Mechanisms and Their IoT Applications

  • Sontyana Adonijah Graham 1,2,   
  • Andris Šutka 3,   
  • Ju-Hyuck Lee 1,4,*

Received: 29 Dec 2025 | Revised: 27 Jan 2026 | Accepted: 05 Feb 2026 | Published: 11 Feb 2026

Abstract

Direct-current triboelectric nanogenerator (DC-TENG) has emerged as a promising solution to power the rapidly expanding Internet of Things (IoT), by converting ambient mechanical energy directly into direct current (DC) output that is easier to store and manage than the alternating current (AC) signals of conventional TENGs. This review first introduces contact-electrification-based TENG fundamentals and maps how combinations with electrostatic induction, combined with various factors, lead to whether the output is AC, pulsed DC, or constant DC. Building on this foundation, emerging DC-generation mechanisms are organized into six classes: air-discharge dielectric breakdown, delay-switch and mechanical rectification, iontronic rectification, tribovoltaic junction, conductive dielectric, and ionic-dynamics/electrode-polarization effects. Their structural mechanism and their output relationships are clarified. Representative IoT applications domains of DC-TENGs are then highlighted, including human motion monitoring and wearable, smart agriculture and environmental monitoring, corrosion and cathodic protection, and electrochemical hydrogen generation, with emphasis on how DC characteristics simplify power management and enable self-powered sensing and communication. Finally, key challenges in materials, interfaces, device architecture, system integration, and standardization are summarized, and an outlook is provided on hybrid DC harvesters and co-designed electronics that could push DC-TENGs towards practical, large-scale IoT development.

References 

  • 1.

    Ahmed, A.; Hassan, I.; El-Kady, M.F.; et al. Integrated Triboelectric Nanogenerators in the Era of the Internet of Things. Adv. Sci. 2019, 6, 1802230. https://doi.org/10.1002/advs.201802230.

  • 2.

    Cao, X.; Xiong, Y.; Sun, J.; et al. Multidiscipline Applications of Triboelectric Nanogenerators for the Intelligent Era of Internet of Things. Nano-Micro Lett. 2023, 15, 14. https://doi.org/10.1007/s40820-022-00981-8.

  • 3.

    Zhao, X.; Askari, H.; Chen, J. Nanogenerators for Smart Cities in the Era of 5G and Internet of Things. Joule 2021, 5, 1391–1431. https://doi.org/10.1016/j.joule.2021.03.013.

  • 4.

    Shi, Q.; Sun, Z.; Zhang, Z.; et al. Triboelectric Nanogenerators and Hybridized Systems for Enabling Next-Generation IoT Applications. Research 2021, 2021, 6849171. https://doi.org/10.34133/2021/6849171.

  • 5.

    Kim, W.-G.; Kim, D.-W.; Tcho, I.-W.; et al. Triboelectric Nanogenerator: Structure, Mechanism, and Applications. ACS Nano 2021, 15, 258–287. https://doi.org/10.1021/acsnano.0c09803.

  • 6.

    Doganay, D.; Durukan, M.B.; Cugunlular, M.; et al. Triboelectric Nanogenerators from Fundamentals to Applications. Nano Energy 2025, 138, 110825. https://doi.org/10.1016/j.nanoen.2025.110825.

  • 7.

    Graham, S.A.; Chandrarathna, S.C.; Manchi, P.; et al. Triboelectric Charge Modulation to Understand the Electrification Process in Nanogenerators Combined with an Efficient Power Management System for IoT Applications. Nano Energy 2023, 111, 108413. https://doi.org/10.1016/j.nanoen.2023.108413.

  • 8.

    Dong, J.; Zhu, L.; Guo, P.; et al. A Bio-Inspired Total Current Nanogenerator. Energy Environ. Sci. 2023, 16, 1071–1081. https://doi.org/10.1039/D2EE02621J.

  • 9.

    Du, S.; Basset, P.; Guo, H.; et al. Power Management Technologies for Triboelectric Nanogenerators. MRS Bull. 2025, 50, 305–314. https://doi.org/10.1557/s43577-025-00860-8.

  • 10.

    Ma, W.; Sun, Y.; Wang, C.; et al. Mutual Promotion of Triboelectric Nanogenerators and Field-Effect Transistors towards the IoT. Nat. Rev. Electr. Eng. 2025, 2, 541–554. https://doi.org/10.1038/s44287-025-00193-3.

  • 11.

    Wu, Z.; Bi, M.; Cao, Z.; et al. Largely Enhanced Electrostatic Generator Based on a Bipolar Electret Charged by Patterned Contact Micro-Discharge and Optimized Substrates. Nano Energy 2020, 71, 104602. https://doi.org/10.1016/j.nanoen.2020.104602.

  • 12.

    Shan, C.; Li, K.; Cheng, Y.; et al. Harvesting Environment Mechanical Energy by Direct Current Triboelectric Nanogenerators. Nano-Micro Lett. 2023, 15, 127. https://doi.org/10.1007/s40820-023-01115-4.

  • 13.

    Zhao, Z.; Liu, D.; Li, Y.; et al. Direct-Current Triboelectric Nanogenerator Based on Electrostatic Breakdown Effect. Nano Energy 2022, 102, 107745. https://doi.org/10.1016/j.nanoen.2022.107745.

  • 14.

    Gbadam, G.S.; Park, H.; Lee, C.; et al. Direct Current Generation in Triboelectric Nanogenerators through Ionic Dynamics and Electrode Polarization Effects. Nat. Commun. 2025, 16, 9540. https://doi.org/10.1038/s41467-025-64582-w.

  • 15.

    Dai, K.; Liu, D.; Yin, Y.; et al. Transient Physical Modeling and Comprehensive Optimal Design of Air-Breakdown Direct-Current Triboelectric Nanogenerators. Nano Energy 2022, 92, 106742. https://doi.org/10.1016/j.nanoen.2021.106742.

  • 16.

    Ren, D.; Yang, L.; Zhang, X.; et al. Comprehensive Output Performance Optimization of Ternary Constant DC Triboelectric Nanogenerators via Dual-Phase Symmetric Step-Down Conversion. Energy Environ. Sci. 2025, 18, 9205–9216. https://doi.org/10.1039/D5EE02837J.

  • 17.

    Shi, X.; Wang, W.; Wang, J.; et al. Semiconductor-Based Direct Current Triboelectric Nanogenerators and Its Application. J. Semicond. 2024, 45, 121701. https://doi.org/10.1088/1674-4926/24080021.

  • 18.

    He, Y.; Tian, J.; Li, F.; et al. Evolution of Tribotronics: From Fundamental Concepts to Potential Uses. Micromachines 2024, 15, 1259. https://doi.org/10.3390/mi15101259.

  • 19.

    Zhang, C.; Wang, Z.L. Tribotronics—A New Field by Coupling Triboelectricity and Semiconductor. Nano Today 2016, 11, 521–536. https://doi.org/10.1016/j.nantod.2016.08.002.

  • 20.

    Wang, Z.L. From Contact Electrification to Triboelectric Nanogenerators. Rep. Prog. Phys. 2021, 84, 096502. https://doi.org/10.1088/1361-6633/ac0a50.

  • 21.

    Liu, D.; Yin, X.; Guo, H.; et al. A Constant Current Triboelectric Nanogenerator Arising from Electrostatic Breakdown. Sci. Adv. 2019, 5, eaav6437. https://doi.org/10.1126/sciadv.aav6437.

  • 22.

    Qi, C.; Deng, Y.; Zhi, J.; et al. Output Voltage Enhancement Strategies and Multi-Field Applications of Tribovoltaic Nanogenerators. ACS Nano 2025, 19, 35212–35236. https://doi.org/10.1021/acsnano.5c09940.

  • 23.

    Liu, D.; Zhou, L.; Wang, Z.L.; et al. Triboelectric Nanogenerator: From Alternating Current to Direct Current. iScience 2021, 24, 101932. https://doi.org/10.1016/j.isci.2020.101932.

  • 24.

    Pathak, M.; Kumar, R. Synchronous Inductor Switched Energy Extraction Circuits for Triboelectric Nanogenerator. IEEE Access 2021, 9, 76938–76954. https://doi.org/10.1109/ACCESS.2021.3082499.

  • 25.

    Zhang, J.; Gao, Y.; Liu, D.; et al. Discharge Domains Regulation and Dynamic Processes of Direct-Current Triboelectric Nanogenerator. Nat. Commun. 2023, 14, 3218. https://doi.org/10.1038/s41467-023-38815-9.

  • 26.

    Gao, Y.; Liu, D.; Zhou, L.; et al. A Robust Rolling-Mode Direct-Current Triboelectric Nanogenerator Arising from Electrostatic Breakdown Effect. Nano Energy 2021, 85, 106014. https://doi.org/10.1016/j.nanoen.2021.106014.

  • 27.

    Liu, J.; Miao, M.; Jiang, K.; et al. Sustained Electron Tunneling at Unbiased Metal-Insulator-Semiconductor Triboelectric Contacts. Nano Energy 2018, 48, 320–326. https://doi.org/10.1016/j.nanoen.2018.03.052.

  • 28.

    Liu, J.; Cheikh, M.I.; Bao, R.; et al. Tribo-tunneling DC Generator with Carbon Aerogel/Silicon Multi-nanocontacts. Adv. Electron. Mater. 2019, 5, 1900464. https://doi.org/10.1002/aelm.201900464.

  • 29.

    Wang, H.; Huang, S.; Kuang, H.; et al. Coexistence of Contact Electrification and Dynamic p–n Junction Modulation Effects in Triboelectrification. ACS Appl. Mater. Interfaces 2022, 14, 30410–30419. https://doi.org/10.1021/acsami.2c06374.

  • 30.

    Meng, J.; Lan, C.; Pan, C.; et al. Coupling of Tribovoltaic Effect and Tribo-Electrostatic Effect at Dynamic Semiconductor Heterojunction Interfaces. Nano Energy 2025, 133, 110395. https://doi.org/10.1016/j.nanoen.2024.110395.

  • 31.

    Xu, C.; Yu, J.; Huo, Z.; et al. Pursuing the Tribovoltaic Effect for Direct-Current Triboelectric Nanogenerators. Energy Environ. Sci. 2023, 16, 983–1006. https://doi.org/10.1039/D2EE04019K.

  • 32.

    Tian, J.; He, Y.; Li, F.; et al. A Comprehensive Review on the Mechanism of Contact Electrification. J. Mater. Chem. A 2025, 13, 2505–2536. https://doi.org/10.1039/D4TA07756C.

  • 33.

    Willatzen, M.; Zhang, Z.; Wang, Z.L. Theory of Tribovoltaics: Direct Current Generation at a p-n Semiconductor Interface. PRX Energy 2024, 3, 013009. https://doi.org/10.1103/PRXEnergy.3.013009.

  • 34.

    Ren, L.; Yu, A.; Wang, W.; et al. Pn Junction Based Direct-Current Triboelectric Nanogenerator by Conjunction of Tribovoltaic Effect and Photovoltaic Effect. Nano Lett. 2021, 21, 10099–10106. https://doi.org/10.1021/acs.nanolett.1c03922.

  • 35.

    Zhang, Z.; Gong, L.; Luan, R.; et al. Tribovoltaic Effect: Origin, Interface, Characteristic, Mechanism & Application. Adv. Sci. 2024, 11, 2305460. https://doi.org/10.1002/advs.202305460.

  • 36.

    Kim, T.; Kim, D.Y.; Yun, J.; et al. Direct-Current Triboelectric Nanogenerator via Water Electrification and Phase Control. Nano Energy 2018, 52, 95–104. https://doi.org/10.1016/j.nanoen.2018.07.045.

  • 37.

    Zhang, S.; Li, W.; Li, G.; et al. High Performance DC-TENG Based on Coupling of Mismatched Number of Triboelectric Units and Electrodes with Mechanical Switches for Metal Surface Anti-Corrosion. Nano Energy 2024, 130, 110093. https://doi.org/10.1016/j.nanoen.2024.110093.

  • 38.

    Luo, J.; Xu, L.; Tang, W.; et al. Direct-Current Triboelectric Nanogenerator Realized by Air Breakdown Induced Ionized Air Channel. Adv. Energy Mater. 2018, 8, 1800889. https://doi.org/10.1002/aenm.201800889.

  • 39.

    Yoon, H.J.; Kang, M.; Seung, W.; et al. Microdischarge-Based Direct Current Triboelectric Nanogenerator via Accumulation of Triboelectric Charge in Atmospheric Condition. Adv. Energy Mater. 2020, 10, 2000730. https://doi.org/10.1002/aenm.202000730.

  • 40.

    Zhang, S.; Liu, P.; Zhu, H.; et al. A Highly Efficient Self-Powered Air Purification System Based on High-Voltage-Applicable DC Triboelectric Nanogenerator. Nano Energy 2025, 139, 110947. https://doi.org/10.1016/j.nanoen.2025.110947.

  • 41.

    He, W.; Shan, C.; Wu, H.; et al. Capturing Dissipation Charge in Charge Space Accumulation Area for Enhancing Output Performance of Sliding Triboelectric Nanogenerator. Adv. Energy Mater. 2022, 12, 2201454. https://doi.org/10.1002/aenm.202201454.

  • 42.

    Jin, B.; Gao, Y.; Liu, D.; et al. Regulation of Discharge Domains and Dynamic Processes in Direct-Current Triboelectric Nanogenerators. Chem. Eng. J. 2025, 512, 166519. https://doi.org/10.1016/j.cej.2025.166519.

  • 43.

    Qiao, G.; Wang, J.; Yu, X.; et al. A Bidirectional Direct Current Triboelectric Nanogenerator with the Mechanical Rectifier. Nano Energy 2021, 79, 105408. https://doi.org/10.1016/j.nanoen.2020.105408.

  • 44.

    Wu, H.; Wang, S.; Wang, Z.; et al. Achieving Ultrahigh Instantaneous Power Density of 10 MW/m² by Leveraging the Opposite-Charge-Enhanced Transistor-like Triboelectric Nanogenerator (OCT-TENG). Nat. Commun. 2021, 12, 5470. https://doi.org/10.1038/s41467-021-25753-7.

  • 45.

    Du, Y.; Fu, S.; Shan, C.; et al. A Novel Design Based on Mechanical Time-Delay Switch and Charge Space Accumulation for High Output Performance Direct-Current Triboelectric Nanogenerator. Adv. Funct. Mater. 2022, 32, 2208783. https://doi.org/10.1002/adfm.202208783.

  • 46.

    Zhang, R.; Wang, S.; Yeh, M.-H.; et al. A Streaming Potential/Current-Based Microfluidic Direct Current Generator for Self-Powered Nanosystems. Adv. Mater. 2015, 27, 6482–6487. https://doi.org/10.1002/adma.201502477.

  • 47.

    Chi, J.; Liu, C.; Che, L.; et al. Harvesting Water-Evaporation-Induced Electricity Based on Liquid–Solid Triboelectric Nanogenerator. Adv. Sci. 2022, 9, 2201586. https://doi.org/10.1002/advs.202201586.

  • 48.

    Zhang, Z.; Jiang, D.; Zhao, J.; et al. Tribovoltaic Effect on Metal–Semiconductor Interface for Direct-Current Low-Impedance Triboelectric Nanogenerators. Adv. Energy Mater. 2020, 10, 1903713. https://doi.org/10.1002/aenm.201903713.

  • 49.

    Shi, K.; Chai, B.; Zou, H.; et al. Direct-Current Triboelectric Nanogenerators Based on Contact–Separation Mode and Conductive–Adhesive Interface. Adv. Funct. Mater. 2024, 34, 2400204. https://doi.org/10.1002/adfm.202400204.

  • 50.

    Ouyang, Y.; Wang, Z.L.; Wei, D. Ionic Rectification via Electrical Double Layer Modulation at Hydrogel Interfaces. RSC Appl. Interfaces 2025, 2, 873–896. https://doi.org/10.1039/D5LF00098J.

  • 51.

    Li, X.; Wang, Z.L.; Wei, D. Nanogenerators via Dynamic Regulation of Electrical Double Layer. Nano Trends 2024, 7, 100062. https://doi.org/10.1016/j.nwnano.2024.100062.

  • 52.

    Wei, Y.; Li, X.; Gu, Y.; et al. Probing Electrical Double Layer via Triboelectric Charge Transfer. Nat. Commun. 2026, 17, 402. https://doi.org/10.1038/s41467-025-67094-9.

  • 53.

    Ouyang, Y.; Li, X.; Li, S.; et al. Opto-Iontronic Coupling in Triboelectric Nanogenerator. Nano Energy 2023, 116, 108796. https://doi.org/10.1016/j.nanoen.2023.108796.

  • 54.

    Liu, G.; Fan, B.; Qi, Y.; et al. Ultrahigh-Current-Density Tribovoltaic Nanogenerators Based on Hydrogen Bond-Activated Flexible Organic Semiconductor Textiles. ACS Nano 2025, 19, 6771–6783. https://doi.org/10.1021/acsnano.4c11010.

  • 55.

    Luo, Q.; Xiao, K.; Zhang, J.; et al. Direct-Current Triboelectric Nanogenerators Based on Semiconductor Structure. ACS Appl. Electron. Mater. 2022, 4, 4212–4230. https://doi.org/10.1021/acsaelm.2c00758.

  • 56.

    Rahman, M.T.; Kim, Y.-S.; Rahman, M.S.; et al. Bimetallic Nanoporous Carbon-Based Direct-Current Triboelectric Nanogenerators for Biomechanical Energy Harvesting and Sensing. Chem. Eng. J. 2025, 519, 164938. https://doi.org/10.1016/j.cej.2025.164938.

  • 57.

    Wang, J.; Wang, X.; Lee, J.P.; et al. Nanogenerators Developed Based on Different Physics Effects. MRS Bull. 2025, 50, 271–281. https://doi.org/10.1557/s43577-024-00857-9.

  • 58.

    Kim, M.P.; Lee, Y.; Hur, Y.H.; et al. Molecular Structure Engineering of Dielectric Fluorinated Polymers for Enhanced Performances of Triboelectric Nanogenerators. Nano Energy 2018, 53, 37–45. https://doi.org/10.1016/j.nanoen.2018.08.048.

  • 59.

    Kim, M.P.; Um, D.-S.; Shin, Y.-E.; et al. High-Performance Triboelectric Devices via Dielectric Polarization: A Review. Nanoscale Res. Lett. 2021, 16, 35. https://doi.org/10.1186/s11671-021-03492-4.

  • 60.

    Dong, J.; Xu, C.; Zhu, L.; et al. A High Voltage Direct Current Droplet-Based Electricity Generator Inspired by Thunderbolts. Nano Energy 2021, 90, 106567. https://doi.org/10.1016/j.nanoen.2021.106567.

  • 61.

    Liu, T.; Mo, W.; Zou, X.; et al. Liquid–Solid Triboelectric Probes for Real-Time Monitoring of Sucrose Fluid Status. Adv. Funct. Mater. 2023, 33, 2304321. https://doi.org/10.1002/adfm.202304321.

  • 62.

    Guan, Q.; Zhu, Z.; Song, Y.; et al. A Multifunctional Self-Charging System Based on a Compatible Electrode. ACS Appl. Mater. Interfaces 2025, 17, 55318–55327. https://doi.org/10.1021/acsami.5c11100.

  • 63.

    Fu, S.; He, W.; Wu, H.; et al. High Output Performance and Ultra-Durable DC Output for Triboelectric Nanogenerator Inspired by Primary Cell. Nano-Micro Lett. 2022, 14, 155. https://doi.org/10.1007/s40820-022-00973-8.

  • 64.

    Lei, K.; Liu, C.; Wang, Y.; et al. Research on a Dual-Effect DC Ocean Energy Harvesting System Combining the Ternary Dielectric Effect and the Seebeck Effect. Adv. Sustainable Syst. 2025, 9, e00591. https://doi.org/10.1002/adsu.202500591.

  • 65.

    Kang, Y.; Wu, H.; Yi, H.; et al. Surface Non-Equilibrium State Induced by Unipolar Charge Collection for Constructing Constant Current Power Generation. Adv. Funct. Mater. 2025, 35, 2505503. https://doi.org/10.1002/adfm.202505503.

  • 66.

    Lee, M.-H. Wearable Strain Sensor and Flexible Direct-Current Nanogenerator Made by Medical Mask Wastes and PEDOT: PSS-Based Conductive Inks. Sustain. Mater. Technol. 2025, 44, e01400. https://doi.org/10.1016/j.susmat.2025.e01400.

  • 67.

    Kim, J.; Yoo, J.; Seo, H.; et al. Magnetically Driven Triboelectric Nanogenerator for a Wireless, Versatile Energy Transfer System. Sci. Adv. 2025, 11, eadu5919. https://doi.org/10.1126/sciadv.adu5919.

  • 68.

    Zhao, Z.; Wang, J. Advances in Interfacial Electrostatic Energy Harvesting via Direct Current Triboelectric Nanogenerators. Adv. Energy Mater. 2025, 15, 2502544. https://doi.org/10.1002/aenm.202502544.

  • 69.

    Guo, X.; You, J.; Wei, D.; et al. A Generalized Model for Tribovoltaic Nanogenerator. Appl. Phys. Rev. 2024, 11, 021406. https://doi.org/10.1063/5.0196998.

  • 70.

    Callaty, C.; Rodrigues, C.; Ventura, J. Triboelectric Nanogenerators in Harsh Conditions: A Critical Review. Nano Energy 2025, 140, 110661. https://doi.org/10.1016/j.nanoen.2025.110661.

  • 71.

    Zhao, J.; Shi, Y. Boosting the Durability of Triboelectric Nanogenerators: A Critical Review and Prospect. Adv. Funct. Mater. 2023, 33, 2213407. https://doi.org/10.1002/adfm.202213407.

  • 72.

    Somkuwar, V.U.; Garg, H.; Maurya, S.K.; et al. Influence of Relative Humidity and Temperature on the Performance of Knitted Textile Triboelectric Nanogenerator. ACS Appl. Electron. Mater. 2024, 6, 931–939. https://doi.org/10.1021/acsaelm.3c01442.

  • 73.

    Manojkumar, K.; Muthuramalingam, M.; Hajra, S.; et al. Direct Current Triboelectric Nanogenerator Nexus: Fundamentals to Applications in Self-Powered Systems. Nano Energy 2025, 147, 111148. https://doi.org/10.1016/j.nanoen.2025.111148.

  • 74.

    Yin, X.; Chen, Z.; Chen, H.; et al. Optimization Strategy of Triboelectric Nanogenerators for High Humidity Environment Service Performance. EcoMat 2024, 6, e12493. https://doi.org/10.1002/eom2.12493.

  • 75.

    Graham, S.A.; Chandrarathna, S.C.; Patnam, H.; et al. Harsh Environment–Tolerant and Robust Triboelectric Nanogenerators for Mechanical-Energy Harvesting, Sensing, and Energy Storage in a Smart Home. Nano Energy 2021, 80, 105547. https://doi.org/10.1016/j.nanoen.2020.105547.

  • 76.

    Peng, J.; Kang, S.D.; Snyder, G.J. Optimization Principles and the Figure of Merit for Triboelectric Generators. Sci. Adv. 2017, 3, eaap8576. https://doi.org/10.1126/sciadv.aap8576.

  • 77.

    Lee, Y.-S.; Jeon, S.; Kim, D.; et al. High Performance Direct Current-Generating Triboelectric Nanogenerators Based on Tribovoltaic p-n Junction with ChCl-Passivated CsFAMA Perovskite. Nano Energy 2023, 106, 108066. https://doi.org/10.1016/j.nanoen.2022.108066.

  • 78.

    Xia, X.; Fu, J.; Zi, Y. A Universal Standardized Method for Output Capability Assessment of Nanogenerators. Nat. Commun. 2019, 10, 4428. https://doi.org/10.1038/s41467-019-12465-2.

  • 79.

    Li, Z.; Yang, C.; Zhang, Q.; et al. Standardized Volume Power Density Boost in Frequency-Up Converted Contact-Separation Mode Triboelectric Nanogenerators. Research 2023, 6, 0237. https://doi.org/10.34133/research.0237.

  • 80.

    Li, Q.; Fu, S.; Yang, H.; et al. Achieving Ultrahigh DC-Power Triboelectric Nanogenerators by Lightning Rod-Inspired Field Emission Modeling. Research 2024, 7, 0437. https://doi.org/10.34133/research.0437.

  • 81.

    You, Z.; Wang, S.; Li, Z.; et al. High Current Output Direct-Current Triboelectric Nanogenerator Based on Organic Semiconductor Heterojunction. Nano Energy 2022, 91, 106667. https://doi.org/10.1016/j.nanoen.2021.106667.

  • 82.

    Luo, Q.; Xiao, K.; Li, M.; et al. Metal-Semiconductor Direct-Current Triboelectric Nanogenerator Based on Depletion Mode u-GaN/AlGaN/AlN/GaN HEMT. Appl. Phys. Lett. 2023, 123, 063901. https://doi.org/10.1063/5.0158240.

  • 83.

    Zhang, W.; Gui, Y.; Yang, Y.; et al. A Hybrid Nanogenerator Based on Wind Energy Harvesting for Powering Self-Driven Sensing Systems. J. Cleaner Prod. 2023, 429, 139550. https://doi.org/10.1016/j.jclepro.2023.139550.

  • 84.

    Nan, Y.; Wang, X.; Xu, H.; et al. Customizing Alternating and Direct Current Dual-Mode Solid-Liquid Triboelectric Nanogenerator. Nano Energy 2025, 137, 110812. https://doi.org/10.1016/j.nanoen.2025.110812.

  • 85.

    Zhu, Z.; Wang, M.; Wang, A.; et al. Improved Self-Sensing Harsh-Impact Absorber Merging Compression-Torsion Metamaterial with Active Magnetorheological Effects. Nano Energy 2025, 139, 110921. https://doi.org/10.1016/j.nanoen.2025.110921.

  • 86.

    Xia, J.; Li, H.; Song, Y.; et al. “Triboelectric Immunotherapy” Powered Osteogenesis and Osteoimmune Reprogramming for Graft-Free Repair of Bone Defects. Chem. Eng. J. 2025, 506, 171006. https://doi.org/10.1016/j.cej.2025.171006.

  • 87.

    Wang, S.; Lu, F.; Guan, W.; et al. Energy Harvesting from Clothing. Nanoscale 2025, 17, 7986–7996. https://doi.org/10.1039/D4NR03719G.

  • 88.

    Zhang, C.; Zhao, J.; Zhang, Z.; et al. Tribotronics: An Emerging Field by Coupling Triboelectricity and Semiconductors. Int. J. Extreme Manuf. 2023, 5, 042002. https://doi.org/10.1088/2631-7990/ace669.

Share this article:
How to Cite
Graham, S. A.; Šutka, A.; Lee, J.-H. Emerging DC-Generating TENG Mechanisms and Their IoT Applications. Nanoenergy Communications 2026, 1 (1), 3.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.