2602003031
  • Open Access
  • Review

Flexible Triboelectric Nanogenerators for Ocean Current Energy Harvesting: Mechanisms, Materials, Challenges, and Future Directions

  • Kefan Yang 1,   
  • Yi Zhang 1,   
  • Shengqing Zeng 1,   
  • Keqi Yang 2,   
  • Yunsheng Ma 2,   
  • Yixuan Zeng 1,   
  • Dapeng Zhang 1,3,*

Received: 30 Dec 2025 | Revised: 29 Jan 2026 | Accepted: 07 Feb 2026 | Published: 12 Feb 2026

Abstract

Marine environmental monitoring and other missions demand long-term power supply for equipment. Addressing the shortcomings of existing power supply methods, this paper focuses on flexible triboelectric nanogenerators (FOCE-TENG), a novel marine current energy harvesting technology, and reviews its latest research progress. This technology efficiently captures low-velocity marine current energy and is suitable for scenarios where traditional technologies struggle to operate. Drawing on interdisciplinary theories, the paper elucidates key aspects including flow-induced vibration mechanisms, power generation performance regulation, and testing systems. It demonstrates that optimizing structural design and materials can enhance efficiency and stability. While challenges remain, such as adapting to extreme environments, future technological advancements hold promise for engineering applications, enabling sustainable power supply for underwater equipment.

References 

  • 1.

    Davis, A.; Chang, H. Underwater Wireless Sensor Networks. In Proceedings of the 2012 Oceans, Hampton Roads, VA, USA, 14–19 October 2012. https://doi.org/10.1109/OCEANS.2012.6405141.

  • 2.

    Luo, J.; Chen, Y.; Wu, M.; et al. A Survey of Routing Protocols for Underwater Wireless Sensor Networks. IEEE Commun. Surv. Tutor. 2021, 23, 137–160. https://doi.org/10.1109/COMST.2020.3048190.

  • 3.

    Al Guqhaiman, A.; Otoom, M.; Aljaedi, A.; et al. A Survey on MAC Protocol Approaches for Underwater Wireless Sensor Networks. IEEE Sens. J. 2020, 21, 3916–3932. https://doi.org/10.1109/JSEN.2020.3024995.

  • 4.

    Huang, X.; Sun, S.; Yang, Q. Data Uploading Strategy for Underwater Wireless Sensor Networks. Sensors 2019, 19, 5265. https://doi.org/10.3390/s19235265.

  • 5.

    Yao, L.; Du, X. Sensor Coverage Strategy in Underwater Wireless Sensor Networks. Int. J. Comput. Commun. Control 2020, 15. https://doi.org/10.15837/ijccc.2020.2.3659.

  • 6.

    Jiang, P.; Liu, J.; Ruan, B.; et al. A New Node Deployment and Location Dispatch Algorithm for Underwater Sensor Networks. Sensors 2016, 16, 82. https://doi.org/10.3390/s16010082.

  • 7.

    Rodríguez García, D.; Montiel-Nelson, J.A.; Bautista, T.; et al. A New Method for Gaining the Control of Standalone Underwater Sensor Nodes Based on Power Supply Sensing. Sensors 2021, 21, 4660. https://doi.org/10.3390/s21144660.

  • 8.

    Lloret, J. Underwater Sensor Nodes and Networks. Sensors 2013, 13, 11782–11796. https://doi.org/10.3390/s130911782.

  • 9.

    Chang, J.; Shen, X.; Bai, W.; et al. Energy-Efficient Barrier Coverage Based on Nodes Alliance for Intrusion Detection in Underwater Sensor Networks. IEEE Sens. J. 2022, 22, 3766–3776. https://doi.org/10.1109/JSEN.2021.3140138.

  • 10.

    Jiang, P.; Liu, J.; Wu, F.; et al. Node Deployment Algorithm for Underwater Sensor Networks Based on Connected Dominating Set. Sensors 2016, 16, 388. https://doi.org/10.3390/s16030388.

  • 11.

    Shi, X. Design of a Cylindrical Permanent Magnet Linear Generator for Wave Power Generation. Master’s Thesis, Southeast University, Nanjing, China, 2012. (In Chinese)

  • 12.

    Zhang, Y.; Sheng, S.; You, Y.; et al. Research on Energy Conversion System of Floating Wave Energy Converter. China Ocean Eng. 2014, 28, 105–113. https://doi.org/10.1007/s13344-014-0008-5.

  • 13.

    Zou, S.; Robertson, B.; Roach, A.; et al. Wave Energy Converter Arrays: A Methodology to Assess Performance Considering the Disturbed Wave Field. Renew. Energy 2024, 229, 120719. https://doi.org/10.1016/j.renene.2024.120719.

  • 14.

    Zhang, D. Design and Experimental Study of a Thermally Driven Underwater Monitoring Platform System. Master’s Thesis, Tianjin University, Tianjin, China, 2006. (In Chinese)

  • 15.

    Liang, Z.; Wang, Y.; Zhang, D.; et al. Study on the Motion Characteristics of a Thermally Driven Vertical-Movement Underwater Monitoring Platform. J. Sol. Energy 2016, 37, 243–248. (In Chinese)

  • 16.

    Wang, Y. Performance Analysis and Experimental Study of a Thermally Driven Underwater Monitoring Platform. Master’s Thesis, Tianjin University, Tianjin, China, 2004. (In Chinese)

  • 17.

    Kim, T.H.; Setoguchi, T.; Takao, M.; et al. Study of Turbine with Self-Pitch-Controlled Blades for Wave Energy Conversion. Int. J. Therm. Sci. 2002, 41, 101–107. https://doi.org/10.1016/S1290-0729(01)01308-4.

  • 18.

    Zhao, T.; Jiang, Z.; Mo, G.; et al. Control of Separation Flows of Turbine-Blade-Tip Turbines by Splitter Blades. Proc. Inst. Mech. Eng. A 2024, 238, 985–998. https://doi.org/10.1177/09576509241252877.

  • 19.

    Zhang, F.; Song, H.; Liu, C.; et al. Study on the Film Cooling Effectiveness of Shaped Holes in the Suction Surface Gill Region of the Turbine Blade. Int. J. Therm. Sci. 2023, 184, 107977. https://doi.org/10.1016/j.ijthermalsci.2022.107977.

  • 20.

    Zhang, C.; Fu, X.; Wang, Z. Current Status and Prospects of Triboelectric Nanogenerators in Self-Driven Microsystems Research. Trans. Chin. Soc. Mech. Eng. 2019, 55, 89–101. (In Chinese)

  • 21.

    Wang, Z. Commercial Applications of Nanogenerators as Sustainable Power Sources and Active Sensors. Sci. China Chem. 2013, 43, 759–762. (In Chinese)

  • 22.

    Yang, K.; Zeng, S.; Yang, K.; et al. From Multi-Field Coupling Behaviors to Self-Powered Monitoring: Triboelectric Nanogenerator Arrays for Deep-Sea Large-Scale Cages. J. Mar. Sci. Eng. 2025, 13, 2042. https://doi.org/10.3390/jmse13112042.

  • 23.

    Wang, W.; Chen, G.; Yan, J.; et al. Research on the Power Generation Performance of Solid–Liquid Triboelectric Nanogenerator Based on Surface Microstructure Modification. Nanomaterials 2025, 15, 872. https://doi.org/10.3390/nano15110872.

  • 24.

    Wang, W.; Yan, J.; Wang, X.; et al. Research on the Performance of a Liquid–Solid Triboelectric Nanogenerator Prototype Based on Multiphase Liquid. Micromachines 2025, 16, 78. https://doi.org/10.3390/mi16010078.

  • 25.

    Wang, Y.; Yang, Y.; Wang, Z.L. Triboelectric Nanogenerators as Flexible Power Sources. NPJ Flex. Electron. 2017, 1, 10. https://doi.org/10.1038/s41528-017-0007-8.

  • 26.

    Yang, B.; Li, H.; Wang, Z.; et al. High-Performance Triboelectric Nanogenerator Inspired by Bionic Jellyfish for Wave Energy Harvesting. Chem. Eng. J. 2025, 503, 158399. https://doi.org/10.1016/j.cej.2024.158399.

  • 27.

    Gao, Q.; Wang, J.; Li, H.; et al. High Performance Triboelectric Nanogenerator for Wave Energy Harvesting Through the Gas-Assisted Method. Chem. Eng. J. 2024, 493, 152730. https://doi.org/10.1016/j.cej.2024.152730.

  • 28.

    Mayer, M.; Xiao, X.; Yin, J.; et al. Advances in Bioinspired Triboelectric Nanogenerators. Adv. Electron. Mater. 2022, 8, 2200782. https://doi.org/10.1002/aelm.202200782.

  • 29.

    Li, W.; Pei, Y.; Zhang, C.; et al. Bioinspired Designs and Biomimetic Applications of Triboelectric Nanogenerators. Nano Energy 2021, 84, 105865. https://doi.org/10.1016/j.nanoen.2021.105865.

  • 30.

    Zhao, X.J.; Zhu, G.; Zhao, Z.H.; et al. High Durable Bio-Inspired Self-Cleaning Solid-Liquid Contact Triboelectric Nanogenerator for Water Wave Energy Harvesting. Nano Energy 2025, 139, 110971. https://doi.org/10.1016/j.nanoen.2025.110971.

  • 31.

    Zhang, Y.; Fu, S.C.; Chan, K.C.; et al. Boosting Power Output of Flutter-Driven Triboelectric Nanogenerator by Flexible Flagpole. Nano Energy 2021, 88, 106284. https://doi.org/10.1016/j.nanoen.2021.106284.

  • 32.

    GL RC Certifies Alstom Tidal Turbine Prototype. Marine Technology News 24 April 2013. Available online: https://www.marinetechnologynews.com/news/certifies-alstom-tidal-turbine-476908 (accessed on 24 April 2013).

  • 33.

    Yuan, P.; Chen, D.; Wang, S.; et al. Experimental Study on Energy Harvesting of Vortex-Induced Vibration Tidal Energy Conversion Device. J. Ocean Univ. China Nat. Sci. Ed. 2015, 45, 114–120. (In Chinese)

  • 34.

    Green Power: Stingray Completes First Trial. Int. Hydropower 2002, 6, 52. (In Chinese)

  • 35.

    Mutsuda, H.; Tanaka, Y.; Patel, R.; et al. A Painting Type of Flexible Piezoelectric Device for Ocean Energy Harvesting. Appl. Ocean Res. 2017, 68, 182–193. https://doi.org/10.1016/j.apor.2017.03.009.

  • 36.

    Cao, L.N.Y.; Xu, Z.; Wang, Z.L. Application of Triboelectric Nanogenerator in Fluid Dynamics Sensing: Past and Future. Nanomaterials 2022, 12, 3261. https://doi.org/10.3390/nano12193261.

  • 37.

    Jiang, F.; Zhan, L.; Lee, J.P.; et al. Triboelectric Nanogenerators Based on Fluid Medium: From Fundamental Mechanisms Toward Multifunctional Applications. Adv. Mater. 2024, 36, 2308197. https://doi.org/10.1002/adma.202308197.

  • 38.

    Yuan, Z.; Guo, L. Recent Advances in Solid–Liquid Triboelectric Nanogenerator Technologies, Affecting Factors, and Applications. Sci. Rep. 2024, 14, 10456. https://doi.org/10.1038/s41598-024-60823-y.

  • 39.

    Zhao, Z.; Wang, X.; Hu, Y.; et al. Investigation on the Tribological Properties and Electrification Performance of Grease-Lubricated Triboelectric Nanogenerators. Tribol. Int. 2024, 191, 109163. https://doi.org/10.1016/j.triboint.2023.109163.

  • 40.

    Dong, Y.; Feng, M.; Cheng, J.; et al. Ring-Shaped Single-Electrode Triboelectric Nanogenerator (RSE-TENG) for Energy Harvesting and Liquid Flow Rate Monitoring of Gas-Liquid Two-Phase Flow. Nano Energy 2024, 119, 109083. https://doi.org/10.1016/j.nanoen.2023.109083.

  • 41.

    Zhan, T.; Zou, H.; Zhang, H.; et al. Smart Liquid-Piston Based Triboelectric Nanogenerator Sensor for Real-Time Monitoring of Fluid Status. Nano Energy 2023, 111, 108419. https://doi.org/10.1016/j.nanoen.2023.108419.

  • 42.

    Li, H.; Zhang, Z.; Xu, P.; et al. A Vortex-Induced Vibration Device Based on MG-TENG and Research of Its Application in Ocean Current Energy Harvesting. Nano Energy 2024, 124, 109457. https://doi.org/10.1016/j.nanoen.2024.109457.

  • 43.

    Zhang, L.; Meng, B.; Tian, Y.; et al. Vortex-Induced Vibration Triboelectric Nanogenerator for Low Speed Wind Energy Harvesting. Nano Energy 2022, 95, 107029. https://doi.org/10.1016/j.nanoen.2022.107029.

  • 44.

    Wang, Y.; Chen, T.; Sun, S.; et al. A Humidity Resistant and High Performance Triboelectric Nanogenerator Enabled by Vortex-Induced Vibration for Scavenging Wind Energy. Nano Res. 2022, 15, 3246–3253. https://doi.org/10.1007/s12274-021-3968-9.

  • 45.

    Wang, Y.; Liu, X.; Chen, T.; et al. An Underwater Flag-Like Triboelectric Nanogenerator for Harvesting Ocean Current Energy Under Extremely Low Velocity Condition. Nano Energy 2021, 90, 106503. https://doi.org/10.1016/j.nanoen.2021.106503.

  • 46.

    Shen, C.; Kang, X.; Zhang, R.; et al. The Influence of Vortex Shedding on the Flag Triboelectric Nanogenerators. Nano Energy 2025, 146, 111564. https://doi.org/10.1016/j.nanoen.2025.111564.

  • 47.

    Liu, Y.; Wang, P.; Ma, W.; et al. Fish-and Fish-School-Inspired Ocean Current Energy Harvester Array with Triboelectric Nanogenerator. Device 2025, 3, 100943. https://doi.org/10.1016/j.device.2025.100943.

  • 48.

    Wei, X.; Zhao, Z.; Zhang, C.; et al. All-Weather Droplet-Based Triboelectric Nanogenerator for Wave Energy Harvesting. ACS Nano 2021, 15, 13200–13208. https://doi.org/10.1021/acsnano.1c02790.

  • 49.

    Hutmacher, D.W.; Singh, H. Computational Fluid Dynamics for Improved Bioreactor Design and 3D Culture. Trends Biotechnol. 2008, 26, 166–172. https://doi.org/10.1016/j.tibtech.2007.11.012.

  • 50.

    Liu, W.; Wang, Z.; Wang, G.; et al. Integrated Charge Excitation Triboelectric Nanogenerator. Nat. Commun. 2019, 10, 1426. https://doi.org/10.1038/s41467-019-09464-8.

  • 51.

    Rodrigues CR, S.; Alves CA, S.; Puga, J.; et al. Triboelectric Driven Turbine to Generate Electricity from the Motion of Water. Nano Energy 2016, 30, 379–386. https://doi.org/10.1016/j.nanoen.2016.09.038.

  • 52.

    Xu, W.; Zhou, X.; Hao, C.; et al. SLIPS-TENG: Robust Triboelectric Nanogenerator with Optical and Charge Transparency Using a Slippery Interface. Natl. Sci. Rev. 2019, 6, 540–550. https://doi.org/10.1093/nsr/nwz025.

  • 53.

    Ritchie, R.O. The Conflicts Between Strength and Toughness. Nat. Mater. 2011, 10, 817–822. https://doi.org/10.1038/nmat3115.

  • 54.

    Shang, W.; Gu, G.Q.; Yang, F.; et al. A Sliding-Mode Triboelectric Nanogenerator with Chemical Group Grated Structure by Shadow Mask Reactive Ion Etching. ACS Nano 2017, 11, 8796–8803. https://doi.org/10.1021/acsnano.7b02866.

  • 55.

    Xu, Q.; Shang, C.; Ma, H.; et al. A Guided-Liquid-Based Hybrid Triboelectric Nanogenerator for Omnidirectional and High-Performance Ocean Wave Energy Harvesting. Nano Energy 2023, 109, 108240. https://doi.org/10.1016/j.nanoen.2023.108240.

  • 56.

    Sun, X.; Shang, C.; Ma, H.; et al. A Tube-Shaped Solid–Liquid-Interfaced Triboelectric–Electromagnetic Hybrid Nanogenerator for Efficient Ocean Wave Energy Harvesting. Nano Energy 2022, 100, 107540. https://doi.org/10.1016/j.nanoen.2022.107540.

  • 57.

    Li, Z.; Zhao, T.; Niu, B.; et al. A Hydrokinetic Turbine-Based Triboelectric-Electromagnetic Hybrid Generator for Ocean Current Energy Harvesting. Energy Convers. Manag. 2025, 326, 119473. https://doi.org/10.1016/j.enconman.2024.119473.

  • 58.

    Li, F.; Sun, S.; Wan, X.; et al. A Self-Powered Soft Triboelectric-Electrohydrodynamic Pump. Nat. Commun. 2025, 16, 1315. https://doi.org/10.1038/s41467-025-56679-z.

  • 59.

    Zhou, J.; Tao, Y.; Liu, W.; et al. A Portable and Integrated Traveling-Wave Electroosmosis Microfluidic Pumping System Driven by Triboelectric Nanogenerator. Nano Energy 2024, 127, 109736. https://doi.org/10.1016/j.nanoen.2024.109736.

  • 60.

    Deng, Z.; Xu, L.; Qin, H.; et al. Rationally Structured Triboelectric Nanogenerator Arrays for Harvesting Water‐Current Energy and Self‐Powered Sensing. Adv. Mater. 2022, 34, 2205064. https://doi.org/10.1002/adma.202205064.

  • 61.

    He, L.; Zhang, C.; Zhang, B.; et al. A Dual-Mode Triboelectric Nanogenerator for Wind Energy Harvesting and Self-Powered Wind Speed Monitoring. ACS Nano 2022, 16, 6244–6254. https://doi.org/10.1021/acsnano.1c11658.

  • 62.

    Ni, W.; Jiang, J.; Huang, H.; et al. Research on a Vortex-Induced Vibration Monitoring Sensor Technology Based on Triboelectric Nanogenerator. Energy 2025, 325, 136121. https://doi.org/10.1016/j.energy.2025.136121.

  • 63.

    Wang, C.; Guo, H.; Wang, P.; et al. An Advanced Strategy to Enhance TENG Output: Reducing Triboelectric Charge Decay. Adv. Mater. 2023, 35, 2209895. https://doi.org/10.1002/adma.202209895.

  • 64.

    Zeng, Q.; Wu, Y.; Tang, Q.; et al. A High-Efficient Breeze Energy Harvester Utilizing a Full-Packaged Triboelectric Nanogenerator Based on Flow-Induced Vibration. Nano Energy 2020, 70, 104524. https://doi.org/10.1016/j.nanoen.2020.104524.

  • 65.

    Song, R.; Hou, C.; Yang, C.; et al. Modeling, Validation, and Performance of Two Tandem Cylinder Piezoelectric Energy Harvesters in Water Flow. Micromachines 2021, 12, 872. https://doi.org/10.3390/mi12080872.

  • 66.

    Zhu, H.; Tang, T.; Zhou, T.; et al. High Performance Energy Harvesting from Flow-Induced Vibrations in Trapezoidal Oscillators. Energy 2021, 236, 121484. https://doi.org/10.1016/j.energy.2021.121484.

  • 67.

    Abdelkefi, A.; Hajj, M.R.; Nayfeh, A.H. Phenomena and Modeling of Piezoelectric Energy Harvesting from Freely Oscillating Cylinders. Nonlinear Dyn. 2012, 70, 1377–1388. https://doi.org/10.1007/s11071-012-0540-x.

  • 68.

    Wang, Y.; Liu, X.; Wang, Y.; et al. Research on Underwater Energy Harvesting Technology Based on Flexible Triboelectric Nanogenerators. J. Underw. Unmanned Syst. 2022, 30, 543–549. (In Chinese)

  • 69.

    Jiao, P.; Wang, Z.L.; Alavi, A.H. Maximizing Triboelectric Nanogenerators by Physics‐Informed AI Inverse Design. Adv. Mater. 2024, 36, 2308505. https://doi.org/10.1002/adma.202308505.

  • 70.

    Xie, B.; Guo, Y.; Chen, Y.; et al. Advances in Graphene-Based Electrode for Triboelectric Nanogenerator. Nano-Micro Lett. 2025, 17, 17. https://doi.org/10.1007/s40820-024-01530-1.

  • 71.

    Liu, P.B.; Yang, J.; Wei, D.P.; et al. Current Research on Electrode Materials for Flexible Transparent Nanogenerators. Funct. Mater. 2017, 48, 1019–1028. (In Chinese)

  • 72.

    Lu, P.; Liao, X.; Guo, X.; et al. Gel-Based Triboelectric Nanogenerators for Flexible Sensing: Principles, Properties, and Applications. Nano-Micro Lett. 2024, 16, 206. https://doi.org/10.1007/s40820-024-01432-2.

  • 73.

    Zhang, D.; Shi, J.; Si, Y.; et al. Multi-Grating Triboelectric Nanogenerator for Harvesting Low-Frequency Ocean Wave Energy. Nano Energy 2019, 61, 132–140. https://doi.org/10.1016/j.nanoen.2019.04.046.

  • 74.

    Cui, S.; Zhou, L.; Liu, D.; et al. Improving Performance of Triboelectric Nanogenerators by Dielectric Enhancement Effect. Matter 2022, 5, 180–193. https://doi.org/10.1016/j.matt.2021.10.019.

  • 75.

    Zhang, S.L.; Xu, M.; Zhang, C.; et al. Rationally Designed Sea Snake Structure Based Triboelectric Nanogenerators for Effectively and Efficiently Harvesting Ocean Wave Energy with Minimized Water Screening Effect. Nano Energy 2018, 48, 421–429. https://doi.org/10.1016/j.nanoen.2018.03.062.

  • 76.

    Xiao, Y.; Liu, J.C.; Lv, X.L.; et al. Fabrication of CNT/PDMS Dielectric Layer Microstructures and Friction Nanogenerators. Trans. Chin. Soc. Mech. Eng. 2021, 57, 177–185. (In Chinese) 

  • 77.

    Guo, Y.B.; Chen, Z.X.; Wang, H.Z.; et al. Research Progress on Triboelectric Nanogenerators Based on Inorganic Filler Composite Films. J. Inorg. Mater. 2021, 36, 919–928. (In Chinese)

  • 78.

    Li, S.; Wang, J.; Wang, Z. Recent Advances in Fluid Energy Harvesting Using Triboelectric Nanogenerators. Acta Mech. Sin. 2021, 53, 2910–2927. (In Chinese)

  • 79.

    Kang, X.; Pan, C.; Chen, Y.; et al. Boosting Performances of Triboelectric Nanogenerators by Optimizing Dielectric Properties and Thickness of Electrification Layer. RSC Adv. 2020, 10, 17752–17759. https://doi.org/10.1039/D0RA02181D.

  • 80.

    Wang, G.; Xi, Y.; Xuan, H.; et al. Hybrid Nanogenerators Based on Triboelectrification of a Dielectric Composite Made of Lead-Free ZnSnO3 Nanocubes. Nano Energy 2015, 18, 28–36. https://doi.org/10.1016/j.nanoen.2015.09.012.

  • 81.

    Kim, M.; Park, D.; Alam, M.M.; et al. Remarkable Output Power Density Enhancement of Triboelectric Nanogenerators via Polarized Ferroelectric Polymers and Bulk MoS2 Composites. ACS Nano 2019, 13, 4640–4646. https://doi.org/10.1021/acsnano.9b00750.

  • 82.

    Huang, T.; Yu, H.; Wang, H.; et al. Hydrophobic SiO2 Electret Enhances the Performance of Poly (Vinylidene Fluoride) Nanofiber-Based Triboelectric Nanogenerator. J. Phys. Chem. C 2016, 120, 26600–26608. https://doi.org/10.1021/acs.jpcc.6b07382.

  • 83.

    Mendel, N.; Wu, H.; Mugele, F. Electrowetting‐Assisted Generation of Ultrastable High Charge Densities in Composite Silicon Oxide–Fluoropolymer Electret Samples for Electric Nanogenerators. Adv. Funct. Mater. 2021, 31, 2007872. https://doi.org/10.1002/adfm.202007872.

  • 84.

    Bo, Z.; Meijia, R.; Wenjian, H.; et al. Study on Temperature-Humidity Controlling Performance of Zeolite-Based Composite and Its Application for Light Quality Energy-Conserving Building Envelope. Alexandria Eng. J. 2023, 69, 311–321. https://doi.org/10.1016/j.aej.2023.01.032.

  • 85.

    Li, H.; Guo, Z.; Kuang, S.; et al. Nanocomposite Electret with Surface Potential Self-Recovery from Water Dipping for Environmentally Stable Energy Harvesting. Nano Energy 2019, 64, 103913. https://doi.org/10.1016/j.nanoen.2019.103913.

  • 86.

    Bhagat, N.; Saxena, V.; Singh, A.; et al. Fabrication of Solution Processable Perovskite Solar Cells Under High Humid Conditions via Optimization of TiO2 Compact Layer. Int. J. Mod. Phys. B 2024, 38, 2450250. https://doi.org/10.1142/S0217979224502503.

  • 87.

    Wang, D.; Zhang, D.; Tang, M.; et al. Ethylene Chlorotrifluoroethylene/Hydrogel-Based Liquid-Solid Triboelectric Nanogenerator Driven Self-Powered MXene-Based Sensor System for Marine Environmental Monitoring. Nano Energy 2022, 100, 107509. https://doi.org/10.1016/j.nanoen.2022.107509.

  • 88.

    Zhang, M.; Xia, L.; Dang, S.; et al. A Flexible Single-Electrode-Based Triboelectric Nanogenerator Based on Double-Sided Nanostructures. AIP Adv. 2019, 9, 075221. https://doi.org/10.1063/1.5114884.

  • 89.

    Dan, H.; Li, H.; Yang, Y. Flexible Ferroelectric Materials-Based Triboelectric Nanogenerators for Mechanical Energy Harvesting. Front. Mater. 2022, 9, 939173. https://doi.org/10.3389/fmats.2022.939173.

  • 90.

    Rocha-Ortiz, G.; Gonzalez-Gutierrez, A.G.; Casillas-Santana, N.; et al. Innovative Dielectric Polyaniline Composites for Performance Triboelectric Nanogenerators. J. Solid State Electrochem. 2025, 29, 3237–3251. https://doi.org/10.1007/s10008-024-06122-y.

  • 91.

    Li, Y.; Luo, Y.; Deng, H.; et al. Advanced Dielectric Materials for Triboelectric Nanogenerators: Principles, Methods, and Applications. Adv. Mater. 2024, 36, 2314380. https://doi.org/10.1002/adma.202314380.

  • 92.

    Zhao, Z.; Zhou, L.; Li, S.; et al. Selection Rules of Triboelectric Materials for Direct-Current Triboelectric Nanogenerator. Nat. Commun. 2021, 12, 4686. https://doi.org/10.1038/s41467-021-25046-z.

  • 93.

    Moradi, F.; Karimzadeh, F.; Kharaziha, M. Rational Micro/Nano-Structuring for High-Performance Triboelectric Nanogenerator. J. Alloys Compd. 2023, 960, 170693. https://doi.org/10.1016/j.jallcom.2023.170693.

  • 94.

    Feng, L.; Wu, Y.; Qu, J.; et al. Advancing Liquid-Solid Triboelectric Nanogenerators via Micro/Nano-Structured Interface Engineering. Compos. B Eng. 2025, 309, 113081. https://doi.org/10.1016/j.compositesb.2025.113081.

  • 95.

    Zhang, B.; Shen, A.; Jing, Y.; et al. Flexible Nanostructured Polymer Materials Based Triboelectric Nanogenerators for Self‐Powered Environmental Sensing. Small Methods 2025, 9, e01241. https://doi.org/10.1002/smtd.202501241.

  • 96.

    Tcho, I.W.; Kim, W.G.; Jeon, S.B.; et al. Surface Structural Analysis of a Friction Layer for a Triboelectric Nanogenerator. Nano Energy 2017, 42, 34–42. https://doi.org/10.1016/j.nanoen.2017.10.037.

  • 97.

    Ru, C.; Yin, J.; Xu, L. Biomimetic Strawberry-Structured Micro/Nano Fibers as Positive Friction Layers for High-Performance Triboelectric Nanogenerators. Biomacromolecules 2025, 26, 7097–7107. https://doi.org/10.1021/acs.biomac.5c01403.

  • 98.

    Zhao, L.; Zheng, Q.; Ouyang, H.; et al. A Size-Unlimited Surface Microstructure Modification Method for Achieving High Performance Triboelectric Nanogenerator. Nano Energy 2016, 28, 172–178. https://doi.org/10.1016/j.nanoen.2016.08.024.

  • 99.

    Zhao, L.; Su, W.; Yang, X.; et al. Effect of Interface Microstructures on the Performance of Droplet-Based Triboelectric Nanogenerator. Energy Mater. Adv. 2026, 1, 0231. https://doi.org/10.34133/energymatadv.0231.

  • 100.

    Chen, H.; Wang, J.; Ning, A. Optimization of a Rolling Triboelectric Nanogenerator Based on the Nano–Micro Structure for Ocean Environmental Monitoring. ACS Omega 2021, 6, 21059–21065. https://doi.org/10.1021/acsomega.1c02709.

  • 101.

    Gokhool, S.; Bairagi, S.; Kumar, C.; et al. Reflections on Boosting Wearable Triboelectric Nanogenerator Performance via Interface Optimisation. Results Eng. 2023, 17, 100808. https://doi.org/10.1016/j.rineng.2022.100808.

  • 102.

    Lin, Z.-H.; Kim, S.-J.; Wang, Z.; et al. Advancements in Solid–Liquid Triboelectric Nanogenerators. MRS Bull. 2025, 50, 491–502. https://doi.org/10.1557/s43577-025-00868-0.

  • 103.

    Zhang, J.; Wu, C.; Mo, X.; et al. Triboelectric Nanogenerators as a Probe for Studying Charge Transfer at Liquid–Solid Interface. MRS Bull. 2025, 50, 327–335. https://doi.org/10.1557/s43577-024-00847-x.

  • 104.

    Xiang, T.; Chen, X.; Sun, H.; et al. Advances in Liquid-Solid Triboelectric Nanogenerators and Its Applications. J. Mater. Sci. Technol. 2025, 214, 153–169. https://doi.org/10.1016/j.jmst.2024.07.013.

  • 105.

    Wang, K.; Wang, X.; Sun, Y.; et al. Macroscopic Liquid Superlubric Triboelectric Nanogenerator: An In-Depth Understanding of Solid-Liquid Interfacial Charge Behavior. Nano Energy 2024, 129, 110038. https://doi.org/10.1016/j.nanoen.2024.110038.

  • 106.

    Li, X.; Zhang, D.; Zhang, D.; et al. Solid-Liquid Triboelectric Nanogenerator Based on Vortex-Induced Resonance. Nanomaterials 2023, 13, 1036. https://doi.org/10.3390/nano13061036.

  • 107.

    Chen, P.; Zhang, Z.; Ye, C.; et al. A Self‐Sustainable, Ultrarobust and High‐Power‐Density Triboelectric Nanogenerator for In Situ Powering of Marine Internet of Things. Adv. Mater. 2025, 37, e11283. https://doi.org/10.1002/adma.202511283.

  • 108.

    Wang, Y.; Liu, X.; Wang, Y.; et al. Flexible Seaweed-Like Triboelectric Nanogenerator as a Wave Energy Harvester Powering Marine Internet of Things. ACS Nano 2021, 15, 15700–15709. https://doi.org/10.1021/acsnano.1c05127.

  • 109.

    Gai, Y.; Jin, B.; Wang, E.; et al. Adaptive Dual Turbine Triboelectric Nanogenerator Toward Self-Powered Marine Buoy. Nano Energy 2025, 144, 111356. https://doi.org/10.1016/j.nanoen.2025.111356.

  • 110.

    Triboelectric Nanogenerators (Adv. Funct. Mater. 41/2019). Adv. Funct. Mater. 2019, 29, 1970287. https://doi.org/10.1002/adfm.201970287.

  • 111.

    Gao, L.; Xu, X.; Han, H.; et al. A Broadband Hybrid Blue Energy Nanogenerator for Smart Ocean IoT Network. Nano Energy 2024, 127, 109697. https://doi.org/10.1016/j.nanoen.2024.109697.

  • 112.

    Wang, Z.L.; Jiang, T.; Xu, L. Toward the Blue Energy Dream by Triboelectric Nanogenerator Networks. Nano Energy 2017, 39, 9–23. https://doi.org/10.1016/j.nanoen.2017.06.035.

  • 113.

    Hao, Y.; Wu, C.; Zang, K.; et al. Research Advances of Triboelectric Nanogenerators for Blue Energy: Research Status, Challenges and Future Outlook. Nano Energy 2025, 142, 111223. https://doi.org/10.1016/j.nanoen.2025.111223.

  • 114.

    Li, H.; Wang, J.; Liang, L.; et al. Design of an Efficient Blue Energy Harvesting System Based on Triboelectric Nanogenerators with Frequency Upconversion and Networking Strategies. Nano Energy 2025, 140, 110993. https://doi.org/10.1016/j.nanoen.2025.110993.

  • 115.

    He, J.; Wang, X.; Nan, Y.; et al. Research Progress of Triboelectric Nanogenerators for Ocean Wave Energy Harvesting. Small 2025, 21, 2411074. https://doi.org/10.1002/smll.202411074.

  • 116.

    Wang, W.; Yang, D.; Yan, X.; et al. Triboelectric Nanogenerators: The Beginning of Blue Dream. Front. Chem. Sci. Eng. 2023, 17, 635–678. https://doi.org/10.1007/s11705-022-2271-y.

  • 117.

    Cheng, T.; Shao, J.; Wang, Z.L. Triboelectric Nanogenerators. Nat. Rev. Methods Primers 2023, 3, 39. https://doi.org/10.1038/s43586-023-00220-3.

  • 118.

    Shao, J.; Yang, Y.; Yang, O.; et al. Designing Rules and Optimization of Triboelectric Nanogenerator Arrays. Adv. Energy Mater. 2021, 11, 2100065. https://doi.org/10.1002/aenm.202100065.

  • 119.

    Chen, Z.; Ye, R.; Lee, W.; et al. Magnetization‐Induced Self‐Assembling of Bendable Microneedle Arrays for Triboelectric Nanogenerators. Adv. Electron. Mater. 2019, 5, 1800785. https://doi.org/10.1002/aelm.201800785.

  • 120.

    Liu, W.; Xu, L.; Bu, T.; et al. Torus Structured Triboelectric Nanogenerator Array for Water Wave Energy Harvesting. Nano Energy 2019, 58, 499–507. https://doi.org/10.1016/j.nanoen.2019.01.088.

  • 121.

    Lv, S.; Zhang, X.; Huang, T.; et al. Interconnected Array Design for Enhancing the Performance of an Enclosed Flexible Triboelectric Nanogenerator. Nano Energy 2021, 89, 106476. https://doi.org/10.1016/j.nanoen.2021.106476.

  • 122.

    Sun, Z.; Yang, W.; Chen, P.; et al. Effects of PDMS Base/Agent Ratios and Texture Sizes on the Electrical Performance of Triboelectric Nanogenerators. Adv. Mater. Interfaces 2022, 9, 2102139. https://doi.org/10.1002/admi.202102139.

  • 123.

    Zou, Y.; Xu, J.; Chen, K.; et al. Triboelectric Nanogenerators: Advances in Nanostructures for High‐Performance Triboelectric Nanogenerators. Adv. Mater. Technol. 2021, 6, 2170016. https://doi.org/10.1002/admt.202170016.

  • 124.

    Zhao, D.; Yu, X.; Wang, Z.; et al. Universal Equivalent Circuit Model and Verification of Current Source for Triboelectric Nanogenerator. Nano Energy 2021, 89, 106335. https://doi.org/10.1016/j.nanoen.2021.106335.

  • 125.

    Cha, K.; In, S.; Chung, S.H.; et al. Improving Electrical Performance and Lifespan of Liquid-Based Triboelectric Nanogenerator via Charge-Inducing Structure. Adv. Funct. Mater. 2025, 35, 2505695. https://doi.org/10.1002/adfm.202505695.

  • 126.

    Kim, W.G.; Kim, D.W.; Tcho, I.W.; et al. Triboelectric Nanogenerator: Structure, Mechanism, and Applications. ACS Nano 2021, 15, 258–287. https://doi.org/10.1021/acsnano.0c09803.

  • 127.

    Liu, W.; Xu, L.; Liu, G.; et al. Network Topology Optimization of Triboelectric Nanogenerators for Effectively Harvesting Ocean Wave Energy. iScience 2020, 23, 101848. https://doi.org/10.1016/j.isci.2020.101848.

  • 128.

    Liu, W.; Xu, L.; Liu, G.; et al. Output Characteristics of Series-Parallel Triboelectric Nanogenerators. Nanotechnology 2023, 34, 155403. https://doi.org/10.1088/1361-6528/aca599.

  • 129.

    Liang, X.; Liu, S.; Yang, H.; et al. Triboelectric Nanogenerators for Ocean Wave Energy Harvesting: Unit Integration and Network Construction. Electronics 2023, 12, 225. https://doi.org/10.3390/electronics12010225.

  • 130.

    Liang, X.; Jiang, T.; Liu, G.; et al. Triboelectric Nanogenerator Networks Integrated with Power Management Module for Water Wave Energy Harvesting. Adv. Funct. Mater. 2019, 29, 1807241. https://doi.org/10.1002/adfm.201807241.

  • 131.

    Xie, L.; Zhai, N.; Liu, Y.; et al. Hybrid Triboelectric Nanogenerators: From Energy Complementation to Integration. Research 2021, 2021, 9143762. https://doi.org/10.34133/2021/9143762.

  • 132.

    Ahmed, A.; Hassan, I.; El‐Kady, M.F.; et al. Integrated Triboelectric Nanogenerators in the Era of the Internet of Things. Adv. Sci. 2019, 6, 1802230. https://doi.org/10.1002/advs.201802230.

  • 133.

    Wang, J.; Zhang, H.; Xie, Y.; et al. Smart Network Node Based on Hybrid Nanogenerator for Self-Powered Multifunctional Sensing. Nano Energy 2017, 33, 418–426. https://doi.org/10.1016/j.nanoen.2017.01.055.

  • 134.

    Li, H.; Liang, C.; Ning, H.; et al. O-ring-Modularized Triboelectric Nanogenerator for Robust Blue Energy Harvesting in All-Sea Areas. Nano Energy 2022, 103, 107812. https://doi.org/10.1016/j.nanoen.2022.107812.

  • 135.

    Harmon, W.; Bamgboje, D.; Guo, H.; et al. Self-Driven Power Management System for Triboelectric Nanogenerators. Nano Energy 2020, 71, 104642. https://doi.org/10.1016/j.nanoen.2020.104642.

  • 136.

    Qin, H.; Gu, G.; Shang, W.; et al. A Universal and Passive Power Management Circuit with High Efficiency for Pulsed Triboelectric Nanogenerator. Nano Energy 2020, 68, 104372. https://doi.org/10.1016/j.nanoen.2019.104372.

  • 137.

    Xi, F.; Pang, Y.; Li, W.; et al. Universal Power Management Strategy for Triboelectric Nanogenerator. Nano Energy 2017, 37, 168–176. https://doi.org/10.1016/j.nanoen.2017.05.027.

  • 138.

    Cheng, X.; Miao, L.; Song, Y.; et al. High Efficiency Power Management and Charge Boosting Strategy for a Triboelectric Nanogenerator. Nano Energy 2017, 38, 438–446. https://doi.org/10.1016/j.nanoen.2017.05.063.

  • 139.

    Zi, Y.; Guo, H.; Wang, J.; et al. An Inductor-Free Auto-Power-Management Design Built-in Triboelectric Nanogenerators. Nano Energy 2017, 31, 302–310. https://doi.org/10.1016/j.nanoen.2017.05.025.

  • 140.

    Niu, S.; Zhou, Y.S.; Wang, S.; et al. Simulation Method for Optimizing the Performance of an Integrated Triboelectric Nanogenerator Energy Harvesting System. Nano Energy 2014, 8, 150–156. https://doi.org/10.1016/j.nanoen.2014.05.018.

  • 141.

    Liang, X.; Jiang, T.; Feng, Y.; et al. Triboelectric Nanogenerator Network Integrated with Charge Excitation Circuit for Effective Water Wave Energy Harvesting. Adv. Energy Mater. 2020, 10, 2002123. https://doi.org/10.1002/aenm.202002123.

  • 142.

    Liu, L.; Guo, X.; Lee, C. Promoting Smart Cities into the 5G Era with Multi-Field Internet of Things (IoT) Applications Powered with Advanced Mechanical Energy Harvesters. Nano Energy 2021, 88, 106304. https://doi.org/10.1016/j.nanoen.2021.106304.

  • 143.

    Delgado-Alvarado, E.; Morales-Gonzalez, E.A.; Gonzalez-Calderon, J.A.; et al. Recent Advances of Hybrid Nanogenerators for Sustainable Ocean Energy Harvesting: Performance, Applications, and Challenges. Technologies 2025, 13, 336. https://doi.org/10.3390/technologies13080336.

  • 144.

    Liu, Y.; Hu, C. Triboelectric Nanogenerators Based on Elastic Electrodes. Nanoscale 2020, 12, 20118–20130. https://doi.org/10.1039/D0NR04868B.

  • 145.

    Liu, L.; Shi, Q.; Ho, J.S.; et al. Study of Thin Film Blue Energy Harvester Based on Triboelectric Nanogenerator and Seashore IoT Applications. Nano Energy 2019, 66, 104167. https://doi.org/10.1016/j.nanoen.2019.104167.

  • 146.

    Ye, Z.; Liu, S.; Wang, W.; et al. Full-Response Triboelectric Nanogenerator Modeling and Sensing Framework: Zero State and Zero Input in Synergy. Device 2025, 3, 100872. https://doi.org/10.1016/j.device.2025.100872.

  • 147.

    Song, Y.; Wang, N.; Wang, Y.; et al. Direct Current Triboelectric Nanogenerators. Adv. Energy Mater. 2020, 10, 2002756. https://doi.org/10.1002/aenm.202002756.

  • 148.

    Wu, C.; Huang, H.; Li, R.; et al. Research on the Potential of Spherical Triboelectric Nanogenerator for Collecting Vibration Energy and Measuring Vibration. Sensors 2020, 20, 1063. https://doi.org/10.3390/s20041063.

  • 149.

    Zhang, S.; Shi, Z.; Yuan, X.; et al. Fish Schooling Effect Triboelectric Nanogenerators Array. Nano Energy 2025, 142, 111263. https://doi.org/10.1016/j.nanoen.2025.111263.

  • 150.

    Kaur, N.; Pal, K. Triboelectric Nanogenerators for Mechanical Energy Harvesting. Energy Technol. 2018, 6, 958–997. https://doi.org/10.1002/ente.201700639.

  • 151.

    Zhang, H.; Li, Y.; Jiang, W.; et al. Marine Environment Numerical Simulation of Morphological Planning of Land Reclamation. Proc. Inst. Mech. Eng. M 2022, 236, 996–1011. https://doi.org/10.1177/14750902221079478.

  • 152.

    Rusu, E.; Măcuță, S. Numerical Modelling of Longshore Currents in Marine Environment. Environ. Eng. Manag. J. 2009, 8, 147–151. https://doi.org/10.30638/eemj.2009.022.

  • 153.

    Ji, J.; Zhou, L.; Liu, B.; et al. Experimental and Numerical Analysis of a Bottom-Supported Aquaculture Platform in Uniform Flow. Ocean Eng. 2024, 311, 118859. https://doi.org/10.1016/j.oceaneng.2024.118859.

  • 154.

    Nejad, J.V.N.; Kheradmand, S. The Effect of Fluctuating Boundary on Flow Field and Performance Parameters of Cyclone Separator. Powder Technol. 2021, 390, 401–416. https://doi.org/10.1016/j.powtec.2021.05.055.

  • 155.

    Tan, P.; Sha, Y.; Bai, X.; et al. A Performance Test and Internal Flow Field Simulation of a Vortex Pump. Appl. Sci. 2017, 7, 1273. https://doi.org/10.3390/app7121273.

  • 156.

    Yang, C.; Lu, Z.; Hao, Z.; et al. Numerical Simulation and Design Optimization of a Circulating Water Channel on Hydrodynamic Flow Performance. J. Mar. Sci. Technol. 2024, 29, 493–507. https://doi.org/10.1007/s00773-024-01003-5.

  • 157.

    Gucheng, Z.; Zuogang, C.; Yi, D. A Numerical Investigation on Hydrodynamic Characteristics of the Circulating Water Channel. Ocean Eng. 2021, 236, 109564. https://doi.org/10.1016/j.oceaneng.2021.109564.

  • 158.

    Zhang, L.; Shan, X.; Xie, T. Enhancing Flow Field Performance of a Small Circulating Water Channel Based on Porous Grid Plate. Appl. Sci. 2020, 10, 5103. https://doi.org/10.3390/app10155103.

  • 159.

    Liu, H.; Zhou, Y.; Ren, X.; et al. Numerical Modeling and Application of the Effects of Fish Movement on Flow Field in Recirculating Aquaculture System. Ocean Eng. 2023, 285, 115432. https://doi.org/10.1016/j.oceaneng.2023.115432.

  • 160.

    Jaeger, A.; Coll, C.; Posselt, M.; et al. Using Recirculating Flumes and a Response Surface Model to Investigate the Role of Hyporheic Exchange and Bacterial Diversity on Micropollutant Half-Lives. Environ. Sci. Process. Impacts 2019, 21, 2093–2108. https://doi.org/10.1039/C9EM00327D.

  • 161.

    Ni, W.; Tian, G.; Yang, C.; et al. Simultaneous Energy Utilization and Vibration Suppression Study of a Rolling-Structured Triboelectric Nanogenerator for the Vortex-Induced Vibration of a Cylinder. Ocean Eng. 2023, 288, 115976. https://doi.org/10.1016/j.oceaneng.2023.115976.

  • 162.

    Zhang, S.; Jing, Z.; Wang, X.; et al. Soft-Bionic-Fishtail Structured Triboelectric Nanogenerator Driven by Flow-Induced Vibration for Low-Velocity Water Flow Energy Harvesting. Nano Res. 2023, 16, 466–472. https://doi.org/10.1007/s12274-022-4715-6.

  • 163.

    Kim, H.; Zhou, Q.; Kim, D.; et al. Flow-Induced Snap-Through Triboelectric Nanogenerator. Nano Energy 2020, 68, 104379. https://doi.org/10.1016/j.nanoen.2019.104379.

  • 164.

    Ahmed, A. Self-Powered Wireless Sensing Platform for Monitoring Marine Life Based on Harvesting Hydrokinetic Energy of Water Currents. J. Mater. Chem. A 2022, 10, 1992–1998. https://doi.org/10.1039/D1TA04861A.

  • 165.

    Han, J.; Shui, Y.; Nie, L.; et al. Unsteady Flow Control Mechanisms of a Bio-Inspired Flexible Flap with the Fluid–Structure Interaction. Phys. Fluids 2023, 35. https://doi.org/10.1063/5.0145805.

  • 166.

    Chao, T.; Can, S.; Li-bo, Q.I.; et al. Theory and Applications of Coupled Fluid-Structure Interactions of Ships in Waves and Ocean Acoustic Environment. J. Hydrodyn. 2016, 28, 923–936. https://doi.org/10.1016/S1001-6058(16)60694-7.

  • 167.

    Huang, Y.; Xiao, Q.; Idarraga, G.; et al. Bio-Inspired Adaptive Flexible Tube Wave Energy Converters: Resonant Fluid–Structure Interaction and Power Extraction. Phys. Fluids 2025, 37, 0531104. https://doi.org/10.1063/5.0270834.

  • 168.

    Yu, G.; Wen, J.; Li, H.; et al. Vibration-Coupled TENGs from Weak to Ultra-Strong Induced by Vortex for Harvesting Low-Grade Airflow Energy. Nano Energy 2024, 119, 109062. https://doi.org/10.1016/j.nanoen.2023.109062.

  • 169.

    Ren, Z.; Wang, Z.; Liu, Z.; et al. Energy Harvesting from Breeze Wind (0.7–6 m s−1) Using Ultra-Stretchable Triboelectric Nanogenerator. Adv. Energy Mater. 2020, 10, 2001770. https://doi.org/10.1002/aenm.202001770.

  • 170.

    Leclercq, T.; de Langre, E. Vortex-Induced Vibrations of Cylinders Bent by the Flow. J. Fluids Struct. 2018, 80, 77–93. https://doi.org/10.1016/j.jfluidstructs.2018.03.008.

  • 171.

    Kwak, S.S.; Kim, S.M.; Ryu, H.; et al. Butylated Melamine Formaldehyde as a Durable and Highly Positive Friction Layer for Stable, High Output Triboelectric Nanogenerators. Energy Environ. Sci. 2019, 12, 3156–3163. https://doi.org/10.1039/c9ee01267b.

  • 172.

    Wang, J.; Geng, L.; Ding, L.; et al. The State-of-the-Art Review on Energy Harvesting from Flow-Induced Vibrations. Appl. Energy 2020, 267, 114902. https://doi.org/10.1016/j.apenergy.2020.114902.

  • 173.

    Li, H.; Wen, J.; Ou, Z.; et al. Leaf‐Like TENGs for Harvesting Gentle Wind Energy at An Air Velocity as Low as 0.2 m s−1. Adv. Funct. Mater. 2023, 33, 2212207. https://doi.org/10.1002/adfm.202212207.

  • 174.

    Jiang, Y.; Liang, X.; Jiang, T.; et al. Advances in Triboelectric Nanogenerators for Blue Energy Harvesting and Marine Environmental Monitoring. Engineering 2024, 33, 204–224. https://doi.org/10.1016/j.eng.2023.05.023.

  • 175.

    Wu, Y.; Wang, X.; Yang, L.; et al. Pressurized Well-Inspired Triboelectric Nanogenerators for Harvesting Water Wave Energy Toward Marine Environmental Applications. J. Mater. Chem. A 2025, 13, 27125–27135. https://doi.org/10.1039/D4TA09110H.

  • 176.

    Shankaregowda, S.A.; Nanjegowda, C.B.; Guan, S.; et al. A Robust Triboelectric Nanogenerator Resistant to Humidity and Temperature in Ambient Environment. Phys. Status Solidi RRL 2023, 17, 2200489. https://doi.org/10.1002/pssr.202200489.

  • 177.

    Wu, M.; Guo, W.; Dong, S.; et al. A Hybrid Triboelectric Nanogenerator for Enhancing Corrosion Prevention of Metal in Marine Environment. NPJ Mater. Degrad. 2022, 6, 73. https://doi.org/10.1038/s41529-022-00272-y.

  • 178.

    Somkuwar, V.U.; Garg, H.; Maurya, S.K.; et al. Influence of Relative Humidity and Temperature on the Performance of Knitted Textile Triboelectric Nanogenerator. ACS Appl. Electron. Mater. 2024, 6, 931–939. https://doi.org/10.1021/acsaelm.3c01442.

Share this article:
How to Cite
Yang, K.; Zhang, Y.; Zeng, S.; Yang, K.; Ma, Y.; Zeng, Y.; Zhang, D. Flexible Triboelectric Nanogenerators for Ocean Current Energy Harvesting: Mechanisms, Materials, Challenges, and Future Directions. Nanoenergy Communications 2026, 1 (1), 4.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.