2512002567
  • Open Access
  • Review

Analysis of Natural Antioxidants Using Electron Paramagnetic Resonance (EPR) Spectroscopy

  • Lutfun Nahar

Received: 18 Oct 2025 | Revised: 15 Dec 2025 | Accepted: 17 Dec 2025 | Published: 18 Dec 2025

Abstract

Electron Paramagnetic Resonance (EPR), also known as Electron Spin Resonance (ESR), is a modern spectroscopic technique that is used for the analysis of materials with unpaired electrons. EPR spectroscopy, focusing on electron spins, uses magnetic fields and microwaves to obtain chemical and structural information about the environment around an unpaired electron, providing detailed information on the structure and bonding of paramagnetic species. This spectroscopic technique has been used in the study of natural products, especially for evaluating free-radical-scavenging properties. EPR spectroscopy is expected to continue providing unique and complementary information about natural products, enhancing insights into their chemical properties, biological activities, and potential therapeutic applications. This review article critically evaluates recently published literature on the application of EPR in the assessment of antioxidant properties of various natural products, by retrieving relevant information from online databases, e.g., Google Scholar, Web of Science and PubMed.

References 

  • 1.

    Wang, B.; Fitzpatrick, J.R.; Brookfield, A.; et al. Electron paramagnetic resonance as a tool to determine the sodium charge storage mechanism of hard carbon. Nat. Commun. 2024, 15, 3013.

  • 2.

    Roessler, M.M.; Salvadori, E. Principles and applications of EPR spectroscopy in the chemical sciences. Chem. Soc. Rev. 2018, 47, 2534–2553.

  • 3.

    Sahu, I.D.; McCarrick, R.M.; Lorigan, G.A. Use of electron paramagnetic resonance to solve biochemical problems. Biochemistry 2013, 52, 5967–5984.

  • 4.

    Xu, D.-P.; Li, Y.; Meng, X.; et al. Natural antioxidants in foods and medicinal plants: Extraction, assessments and resources. Int. J. Mol. Sci. 2017, 18, 96.

  • 5.

    Nahar, L.; Sarker, S.D. Chemistry for Pharmacy Students: General, Organic and Natural Product Chemistry, 2nd ed.; John Wiley & Sons: London, UK, 2019.

  • 6.

    Pham-Huy, L.; He, H.; Pham-Huy, C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. 2008, 4, 89–96.

  • 7.

    Bartoszek, M.; Polak, J. Application of electron paramagnetic resonance spectroscopy for investigating antioxidant activity of selected herbs. J. AOAC Int. 2015, 98, 862–865.

  • 8.

    Di Prima, G.; De Caro, V.; Carsamone, C.; et al. EPR spectroscopy coupled with spin trapping as an alternative tool to assess and compare the oxidative stability of vegetable oils for cosmetics. Appl. Sci. 2024, 14, 10766.

  • 9.

    Azman, N.A.M.; Peiro, S.; Fajan, L.; et al. Radical scavenging of white tea and its flavonoid constituents by electron paramagnetic resonance (EPR) spectroscopy. J. Agric. Food Chem. 2014, 62, 5743–5748.

  • 10.

    Munteanu, I.G.; Apetrei, C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci. 2021, 22, 3380.

  • 11.

    Jaganjac, M.; Tisma, V.S.; Zarkovic, N. Short overview of some assays for the measurement of antioxidant activity of natural products and their relevance in dermatology. Molecules 2021, 26, 5301.

  • 12.

    Mladenova, R.; Solakov, N.; Loginovsak, K.; et al. Analysis of gamma-irradiation effect on radicals formation and on antiradical capacity of horse chestnut (Aesculus hippocastanum L.) seeds. Appl. Sci. 2025, 15, 3287.

  • 13.

    Zhdanova, N.V.; Lotosh, N.Y.; Kulikov, E.A.; et al. Interaction of astaxanthin with iron salts Fe2+ and Fe3+ in organic solvents. Mosc. Univ. Chem. Bull. 2025, 80, 311–320.

  • 14.

    Ambati, R.R.; Moi, P.S.; Ravi, S.; et al. Astaxanthine: Sources, extraction, stability, biological activities and commercial applications—A review. Mar. Drugs 2014, 12, 128–152.

  • 15.

    Georgiev, T.; Nikolova, G.; Dyakova, V.; et al. Antioxidant potential and oxidative stress modulation of Geranium macrorrhizum L. oil extract in gentamicin-induced nephrotoxicity. Pharmaceuticals 2025, 18, 1283.

  • 16.

    Mokra, D.; Joskova, M.; Mokry, J. Therapeutic effects of green tea polyphenol (‒)-epigallocatechin-3-gallate (EGCG) in relation to molecular pathways controlling inflammation, oxidative stress, and apoptosis. Int. J. Mol. Sci. 2022, 24, 340.

  • 17.

    Fu, M.L.; Zhang, L.L.; Killeen, R.; et al. Green tea polyphenol epigallocatechin gallate interactions with copper-serum albumin. Molecules 2025, 30, 320.

  • 18.

    Zhao, M.X.; Yang, Z.Y.; Rao, J.J.; et al. Effects of antioxidants on the oxidative stability of expeller-pressed high oleic soybean oil (EPHOSO) oleogel and cookie. Food Chem. 2025, 470, 142613.

  • 19.

    Lomankiewicz, D.; Pilawa, B.; Chodurek, E.; et al. Interactions of extracts from selected plant materials supporting the treatment of Alzheimer’s disease with free radicals-EPR and UV-Vis studies. Pharmaceuticals 2025, 18, 1421.

  • 20.

    Stachelska, M.A.; Karpinski, P.; Kruszewski, B. A comprehensive review of biological properties of flavonoids and their role in the prevention of metabolic, cancer and neurodegenerative diseases. Appl. Sci. 2025, 15, 10840.

  • 21.

    Kocharyan, G.; Sahakyan, A.D.; Manukyan, Z.H.; et al. The kinetic EPR method with pulse reagent injection as an efficient approach for direct determination of antiradical capacities of polyphenolic compounds. Appl. Magn. Reson. 2025, 56, 985–993.

  • 22.

    Qin, X.L.; Lu, Y.; Luo, Y.W.; et al. Alfalfa flavonoids mitigate Salmonella-induced colitis via the Keap1-Nrf2 and TLR4/NF-κB/COX-2 pathways. Food Front. 2025, 6, 1867–1886.

  • 23.

    Steklac, M.; Malcek, M.; Gajdos, P.; et al. Antioxidant effect, DNA-binding, and transport of the flavonoid acacetin influenced by the presence of redox-active Cu(II) ion: Spectroscopic and in silico study. J. Inorg. Biochem. 2025, 264, 112802.

  • 24.

    Bozhuyuk, F.M.; Ozdal, M. Characterization of melanin from the fungus Scolecobasidium musae and its antioxidant and photoprotective properties. Arch. Microbiol. 2025, 207, 77.

  • 25.

    Guo, L.; Li, W.; Gu, Z.; et al. Recent advances and progress on melanin: From source to application. Int. J. Mol. Sci. 2023, 24, 4360.

  • 26.

    Kopuncova, M.; Sadecka, J.; Tobolkova, B.; et al. Effect of pasteurization and storage on the quality of pineapple juice processed in an inert atmosphere. J. Food Compos. Anal. 2025, 142, 107435.

  • 27.

    Glavinic, U.; Nakarad, D.; Stevanovic, J.; et al. Chemical composition and antioxidant activity of prokupac grape pomace extract: Implications for redox modulation in honey bee cells. Antioxidant 2025, 14, 751.

  • 28.

    Avdovic, E.; Dimic, D.; Nakarada, D.; et al. Evaluation of bioactive properties of ultrasound-assisted extracts from prokupac grape skins for functional foods. Antioxidants 2025, 14, 733.

  • 29.

    Quan, L.; Zhou, E.C.; Guo, X.W.; et al. Antioxidant activity of herbal medicine Pyrrosia lingua evaluated by electron paramagnetic resonance spectroscopy. Anal. Methods 2025, 17, 476–484.

  • 30.

    Orsolic, N.; Jembrek, M.J. Royal jelly: Biological action and health benefits. Int. J. Mol. Sci. 2024, 25, 6023.

  • 31.

    Aleksieva, K.I.; Mladenova, R.B.; Solakov, N.Y.; et al. Gamma radiation effects on free radicals, antioxidant activity, phenolic and flavonoid content in royal jelly. Radiat. Phys. Chem. 2025, 226, 112231.

  • 32.

    Petkova-Parlapanska, K.; Stefanov, I.; Ananiev, J.; et al. Sambucus nigra-lyophilized fruit extract attenuated acute redox-homeostatic imbalance via mutagenic and oxidative stress modulation in mice model on gentamicin-induced nephrotoxicity. Pharmaceuticals 2025, 18, 85.

  • 33.

    Markic, F.; Kraljic, K.; Stulic, V.; et al. Improving the extraction of tomato seed oil and the retention of bioactive substances using pulsed electric field technology. Future Foods 2025, 12, 100706.

  • 34.

    Fielding, A.J. Applications of electron paramagnetic resonance spectroscopy in natural product research. J. Nat. Prod. Disc. 2022, 1, 725.

  • 35.

    Prisner, T.; Rohrer, M.; MacMillan, F. Pulsed EPR spectroscopy: Biological applications. Annu. Rev. Phys. Chem. 2001, 52, 279–313.

  • 36.

    White, C.J.; Elliot, C.T.; White, J.R. Micro-electron spin resonance (ESR/EPR) spectroscopy. SPIE 2010, 7680, 128–138. https://doi.org/10.1117/12.849682.

  • 37.

    Rubinson, K.A. Resonators for low-field in vivo EPR. In In Vivo EPR (ESR): Theory and Application; Berliner, L.J., Ed.; Springer: Berlin, Germany, 2003; pp. 73–97.

  • 38.

    Lurie, D.J.; Mader, K. Monitoring drug delivery processes by EPR and related techniques—principles and applications. Adv. Drug Deliv. Rev. 2005, 57, 1171–1190.

  • 39.

    Wu, J. The enhanced permeability and retention (EPR) effect: The significance of the concept and methods to enhance its application. J. Personalised Med. 2021, 11, 771.

  • 40.

    Tao, L.; Stich, T.A.; Fugate, C.J.; et al. EPR-derived structure of a paramagnetic intermediate generated by biotin synthase BioB. J. Am. Chem. Soc. 2018, 140, 12947–12963

  • 41.

    Stich, T.A.; Myers, W.K.; Britt, R.D. Paramagnetic intermediates generated by radical S-adenosylmethionine (SAM) enzymes. Acc. Chem. Res. 2014, 47, 2235–2243.

Share this article:
How to Cite
Nahar, L. Analysis of Natural Antioxidants Using Electron Paramagnetic Resonance (EPR) Spectroscopy. Natural Products Analysis 2025, 1 (1), 100009. https://doi.org/10.53941/npa.2025.100009.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.