2512002449
  • Open Access
  • Article

In-Silico and Functional Characterisation of Nematode Galectin-3 and Galectin-9

  • Elizabeth Mullens 1,   
  • Gemma Zerna 2,   
  • Farah Ahmady-Nield 1, 3,   
  • Travis Beddoe 2,   
  • David Piedrafita 4,   
  • Sarah Preston 1, *

Received: 03 Nov 2025 | Revised: 28 Nov 2025 | Accepted: 04 Dec 2025 | Published: 19 Dec 2025

Abstract

The search for novel treatments for chronic inflammatory conditions has led to an increased interest in gastrointestinal nematodes and the molecules they produce to evade the human immune system. Galectins are carbohydrate-binding proteins that are potent, multifunctional signalling proteins for the immune system, and form a large component of the excretory/secretory molecules nematodes produce during infection. The aim of this research was to determine if Necator americanus (New World Hookworm) and Trichuris trichiura (Human Whipworm), produced functional galectin homologues of human galectin-3 and -9 which interacted with host cells. Protein databases for N. americanus and T. trichiura were analysed for significant sequence and structural similarity to human galectin-3 and -9. Four proteins were expressed using Escherichia coli (E. coli) and purified by lactose affinity purification. Recombinant Hookworm-galectin-3 (rHW-gal-3) was capable of agglutinating horse red blood cells (RBCs) at >59.5 µg/mL, and increased proliferation in the human epithelial HCA-7 CRC colon carcinoma cell line, at test concentrations >1.25 µL/mL, compared to untreated cells (p-value < 0.05). Recombinant Whipworm-galectin-9 (rWW-gal-9) binding was visualised on HCA-7 CRC cells but had no-effect on proliferation. Recombinant Whipworm-gal-3 (rWW-gal-3) and Hookworm-gal-9 (rHW-gal-9) did not bind or significantly alter the proliferation of HCA-7 CRC cells but possessed carbohydrate binding evidence through lactose affinity purification. In-vitro results suggest that synthetic nematode galectin molecules, selected through in-silico comparison to human galectin-3 and galectin-9, had carbohydrate binding activity, and that some were capable of binding and interfering with host cell processes. This research furthers our understanding of nematode-host interaction.

References 

  • 1.

    Barnig, C.; Bezema, T.; Calder, P.C.; et al. Activation of resolution pathways to prevent and fight chronic inflammation: Lessons from asthma and inflammatory bowel disease. Front. Immunol. 2019, 10, 1699.

  • 2.

    Furman, D.; Campisi, J.; Verdin, E.; et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832.

  • 3.

    Wylezinski, L.S.; Gray, J.D.; Polk, J.B.; et al. Illuminating an invisible epidemic: A systemic review of the clinical and economic benefits of early diagnosis and treatment in inflammatory disease and related syndromes. J. Clin. Med. 2019, 8, 493.

  • 4.

    Dyndor, K.; Golec, K.; Ruchala, M.; et al. Organ and prenatal toxicity of nonsteroidal anti-inflammatory drugs. Curr. Issues Pharm. Med. Sci. 2015, 28, 200–203.

  • 5.

    Ryan, S.M.; Ruscher, R.; Johnston, W.A.; et al. Novel antiinflammatory biologics shaped by parasite–host coevolution. Proc. Natl. Acad. Sci. USA 2022, 119, e2202795119.

  • 6.

    Fleming, J.O.; Weinstock, J.V. Clinical trials of helminth therapy in autoimmune diseases: Rationale and findings. Parasite Immunol. 2015, 37, 277–292.

  • 7.

    Ryan, S.M.; Eichenberger, R.M.; Ruscher, R.; et al. Harnessing helminth-driven immunoregulation in the search for novel therapeutic modalities. PLoS Pathog. 2020, 16, e1008508.

  • 8.

    Gazzinelli-Guimaraes, P.H.; Nutman, T.B. Helminth parasites and immune regulation. F1000Res 2018, 7, 1685.

  • 9.

    Pierce, D.R.; McDonald, M.; Merone, L.; et al. Effect of experimental hookworm infection on insulin resistance in people at risk of Type 2 Diabetes: A randomized, placebo-controlled trial. medRxiv 2023. https://doi.org/10.1101/2023.03.16.23287372.

  • 10.

    Croese, J.; Gaze, S.T.; Loukas, A. Changed gluten immunity in celiac disease by Necator americanus provides new insights into autoimmunity. Int. J. Parasitol. 2013, 43, 275–282.

  • 11.

    Harnett, W. Secretory products of helminth parasites as immunomodulators. Mol. Biochem. Parasitol. 2014, 195, 130–136.

  • 12.

    Stear, M.; Preston, S.; Piedrafita, D.; et al. The Immune Response to Nematode Infection. Int. J. Mol. Sci. 2023, 24, 2283.

  • 13.

    Goodridge, H.S.; Marshall, F.A.; Wilson, E.H.; et al. In vivo exposure of murine dendritic cell and macrophage bone marrow progenitors to the phosphorylcholine‐containing filarial nematode glycoprotein ES‐62 polarizes their differentiation to an anti‐inflammatory phenotype. Immunology 2004, 113, 491–498.

  • 14.

    Kim, J.Y.; Cho, M.K.; Choi, S.H.; et al. Inhibition of dextran sulfate sodium (DSS)-induced intestinal inflammation via enhanced IL-10 and TGF-β production by galectin-9 homologues isolated from intestinal parasites. Mol. Biochem. Parasitol. 2010, 174, 53–61.

  • 15.

    Karabowicz, J.; Długosz, E.; Bąska, P.; et al. Nematode Orthologs of Macrophage Migration Inhibitory Factor (MIF) as Modulators of the Host Immune Response and Potential Therapeutic Targets. Pathogens 2022, 11, 258.

  • 16.

    Brinchmann, M.F.; Patel, D.M.; Iversen, M.H. The role of galectins as modulators of metabolism and inflammation. Mediat. Inflamm. 2018, 2018, 9186940.

  • 17.

    Donskow-Łysoniewska, K.; Maruszewska-Cheruiyot, M.; Stear, M. The interaction of host and nematode galectins influences the outcome of gastrointestinal nematode infections. Parasitology 2021, 148, 648–654.

  • 18.

    Varki, A.; Cummings, R.D.; Esko, J.D.; et al. Essentials of Glycobiology [Internet]; Cold Spring Harbor Laboratory Press: Woodbury, NY, USA, 2015.

  • 19.

    Mukai, K.; et al. IgE and Mast Cells in Host Defense against Parasites and Venoms. In Seminars in Immunopathology; Springer: Berlin/Heidelberg, Germany, 2016; Volume 38, pp. 581–603.

  • 20.

    Albert-Bayo, M.; Paracuellos, I.; González-Castro, A.M.; et al. Intestinal mucosal mast cells: Key modulators of barrier function and homeostasis. Cells 2019, 8, 135.

  • 21.

    Zhu, C.; Anderson, A.C.; Schubart, A.; et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat. Immunol. 2005, 6, 1245–1252.

  • 22.

    Wu, C.; Thalhamer, T.; Franca, R.F.; et al. Galectin-9-CD44 interaction enhances stability and function of adaptive regulatory T cells. Immunity 2014, 41, 270–282.

  • 23.

    Chen, X.; Song, C.H.; Liu, Z.Q.; et al. Intestinal epithelial cells express galectin‐9 in patients with food allergy that plays a critical role in sustaining allergic status in mouse intestine. Allergy 2011, 66, 1038–1046.

  • 24.

    Nagae, M.; Nishi, N.; Murata, T.; et al. Crystal structure of the galectin-9 N-terminal carbohydrate recognition domain from Mus musculus reveals the basic mechanism of carbohydrate recognition. J. Biol. Chem. 2006, 281, 35884–35893.

  • 25.

    Yoshida, H.; Teraoka, M.; Nishi, N.; et al. X-ray structures of human galectin-9 C-terminal domain in complexes with a biantennary oligosaccharide and sialyllactose. J. Biol. Chem. 2010, 285, 36969–36976.

  • 26.

    Saraboji, K.; Håkansson, M.; Genheden, S.; et al. The carbohydrate-binding site in galectin-3 is preorganized to recognize a sugarlike framework of oxygens: Ultra-high-resolution structures and water dynamics. Biochemistry 2012, 51, 296–306.

  • 27.

    Díaz-Alvarez, L.; Ortega, E. The many roles of galectin-3, a multifaceted molecule, in innate immune responses against pathogens. Mediat. Inflamm. 2017, 2017, 9247574.

  • 28.

    Farhadi, S.A.; Liu, R.; Becker, M.W.; et al. Physical tuning of galectin-3 signaling. Proc. Natl. Acad. Sci. USA 2021, 118, e2024117118.

  • 29.

    Chen, H.Y.; Sharma, B.B.; Yu, L.; et al. Role of galectin-3 in mast cell functions: Galectin-3-deficient mast cells exhibit impaired mediator release and defective JNK expression. J. Immunol. 2006, 177, 4991–4997.

  • 30.

    Donskow-Łysoniewska, K.; Maruszewska-Cheruiyot, M.; Krawczak-Wójcik, K.; et al. Nematode galectin binds IgE and modulates mast cell activity. Vet. Parasitol. 2022, 311, 109807.

  • 31.

    Bauters, L.; Naalden, D.; Gheysen, G. The distribution of lectins across the phylum nematoda: A genome-wide search. Int. J. Mol. Sci. 2017, 18, 91.

  • 32.

    Ilic, N.; Bojic-Trbojevic, Z.; Lundström-Stadelmann, B.; et al. Immunomodulatory components of Trichinella spiralis excretory-secretory products with lactose-binding specificity. EXCLI J. 2022, 21, 793.

  • 33.

    Lu, M.M.; Tian, X.W.; Yang, X.C.; et al. The N- and C-terminal carbohydrate recognition domains of Haemonchus contortus galectin bind to distinct receptors of goat PBMC and contribute differently to its immunomodulatory functions in host-parasite interactions. Parasites Vectors 2017, 10, 409.

  • 34.

    Logan, J.; Pearson, M.S.; Manda, S.S.; et al. Comprehensive analysis of the secreted proteome of adult Necator americanus hookworms. PLoS Negl. Trop. Dis. 2020, 14, e0008237.

  • 35.

    Foth, B.J.; Tsai, I.J.; Reid, A.J.; et al. Whipworm genome and dual-species transcriptome analyses provide molecular insights into an intimate host-parasite interaction. Nat. Genet. 2014, 46, 693–700.

  • 36.

    Mitreva, M.; Abubucker, S.; Martin, J.; et al. Direct Submission-Genome of Necator Americanus; National Library of Medicine (The Genome Institute, Washington University School of Medicine): St. Louis, MO, USA, 2013.

  • 37.

    Altschul, S.F.; Gish, W.; Miller, W.; et al. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410.

  • 38.

    Bateman, A.; Martin, M.-J.; Orchard, S.; et al. UniProt: The universal protein knowledgebase in 2023. Nucleic Acids Res. 2022, 51, D480–D489.

  • 39.

    UniProt Consortium. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489.

  • 40.

    Camacho, C.; Coulouris, G.; Avagyan, V. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421.

  • 41.

    Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027.

  • 42.

    Waterhouse, A.M.; Procter, J.B.; Martin DM, A.; et al. Jalview Version 680 2—A multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25, 1189–1681.

  • 43.

    Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; et al. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589.

  • 44.

    Hoang, D.T.; Chernomor, O.; Von Haeseler, A.; et al. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018, 35, 518–522.

  • 45.

    Nguyen, L.-T.; Schmidt, H.A.; Von Haeseler, A.; et al. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274.

  • 46.

    Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020, 37, 1530–1534.

  • 47.

    Jumper, J.; Evans, R.; Pritzel, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589.

  • 48.

    Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 2021, 30, 70–82.

  • 49.

    Rehbein, P.; Berz, J.; Kreisel, P.; et al. “CodonWizard”—An intuitive software tool with graphical user interface for customizable codon optimization in protein expression efforts. Protein Expr. Purif. 2019, 160, 84–93.

  • 50.

    Sakthivel, D.; Littler, D.; Shahine, A.; et al. Cloning, expression, purification and crystallographic studies of galectin-11 from domestic sheep (Ovis aries). Struct. Biol. Cryst. Commun. 2015, 71, 993–997.

  • 51.

    Sambrook, J.; Russell, D.W. The Hanahan Method for Preparation and Transformation of Competent E. coli: High-efficiency Transformation. CSH Protoc 2006, 2006, pdb. prot3942.

  • 52.

    Wu, S.C.; Paul, A.; Ho, A.; et al. Generation and Use of Recombinant Galectins. Curr. Protoc. 2021, 1, e63.

  • 53.

    Mouradov, D.; Sloggett, C.; Jorissen, R.N.; et al. Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer. Cancer Res. 2014, 74, 3238–3247.

  • 54.

    RStudio Team. RStudio: Integrated Development for R; RStudio Team: Boston, MA, USA, 2020.

  • 55.

    Prato, C.A.; Carabelli, J.; Cattaneo, V.; et al. Purification of Recombinant Galectins Expressed in Bacteria. STAR Protoc. 2020, 1, 100204.

  • 56.

    R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023.

  • 57.

    Xu, S.; Chen, M.; Feng, T.; et al. Use ggbreak to Effectively Utilize Plotting Space to Deal with Large Datasets and Outliers. Front. Genet. 2021, 12, 774846.

  • 58.

    Aphalo, P.J. ggpmisc: Miscellaneous Extensions to ‘ggplot2’ 2025. Available online: https://cran.r-project.org/web/packages/ggpmisc/ggpmisc.pdf (accessed on 22 October 2025).

  • 59.

    Aphalo, P.J. ggpp: Grammar Extensions to ‘ggplot2’ 2024. Available online: https://github.com/aphalo/ggpp (accessed on 22 October 2025).

  • 60.

    Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. 2023. Available online: https://CRAN.R-project.org/package=ggpubr (accessed on 22 October 2025).

  • 61.

    Wilke, C.O.; Wiernik, B.M. ggtext: Improved Text Rendering Support for ‘ggplot2’ 2022. Available online: https://CRAN.R-project.org/package=ggtext (accessed on 22 October 2025).

  • 62.

    Xie, Y. knitr: A Comprehensive Tool for Reproducible Research in R; Chapman and Hall/CRC: Boca Raton, FL, USA, 2014.

  • 63.

    Schauberger, P.; Walker, A. Openxlsx: Read, Write and Edit xlsx Files 2025. Available online: https://CRAN.R-project.org/package=openxlsx (accessed on 22 October 2025).

  • 64.

    Lemon, J. Plotrix: A package in the red light district of R. R News 2006, 6, 8–12.

  • 65.

    Xie, Y.; Allaire, J.J.; Grolemund, G. R Markdown: The Definitive Guide. Chapman and Hall/CRC: Boca Raton, FL, USA, 2018.

  • 66.

    Allaire, J.J.; Xie, Y.; Dervieux, C.; et al. rmarkdown: Dynamic Documents for R. 2024. Available online: https://CRAN.R-project.org/package=rmarkdown (accessed on 22 October 2025).

  • 67.

    Xie, Y.; Dervieux, C.; Riederer, E. R Markdown Cookbook. Chapman and Hall/CRC: Boca Raton, FL, USA, 2020.

  • 68.

    Kassambara, A. Rstatix: Pipe-Friendly Framework for Basic Statistical Tests 2023. Available online: https://cir.nii.ac.jp/crid/1360864422589421952 (accessed on 22 October 2025).

  • 69.

    Johnston, B. standard: Simplified Fitting and Use of Standard Curves 2025. Available online: https://bradyajohnston.github.io/standard/index.html (accessed on 22 October 2025).

  • 70.

    Wickham, H.; Averick, M.; Bryan, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686.

  • 71.

    Ha, M.S.; Han, C.W.; Jeong, M.S.; et al. Structures of W77F/W212F and W77F/W212F Toxascaris leonine galectin complex with glucose. Carbohydr. Res. 2025, 558, 109657.

  • 72.

    Loghry, H.J.; Sondjaja, N.A.; Minkler, S.J.; et al. Secreted filarial nematode galectins modulate host immune cells. Front. Immunol. 2022, 13, 952104.

  • 73.

    Dixon, H.; Johnston, C.; Else, K. Antigen selection for future anti‐Trichuris vaccines: A comparison of cytokine and antibody responses to larval and adult antigen in a primary infection. Parasite Immunol. 2008, 30, 454–461.

  • 74.

    Hafidi, N.N.; Swan, J.; Faou, P.; et al. Teladorsagia Circumcincta Galectin-Mucosal Interactome in Sheep. Vet. Sci. 2021, 8, 216.

  • 75.

    Ditgen, D.; Anandarajah, E.M.; Reinhardt, A.; et al. Comparative characterization of two galectins excreted-secreted from intestine-dwelling parasitic versus free-living females of the soil-transmitted nematode Strongyloides. Mol. Biochem. Parasitol. 2018, 225, 73–83.

  • 76.

    Klementowicz, J.E.; Travis, M.A.; Grencis, R.K. Trichuris muris: A model of gastrointestinal parasite infection. Semin. Immunopathol. 2012, 34, 815–828.

  • 77.

    Ma, K.N.; Zhang, Y.; Zhang, Z.Y.; et al. Trichinella spiralis galectin binding to toll-like receptor 4 induces intestinal inflammation and mediates larval invasion of gut mucosa. Vet. Res. 2023, 54, 113.

  • 78.

    Gasson, R.; Roper, J.A.; Slack, R.J. A Quantitative Human Red Blood Cell Agglutination Assay for Characterisation of Galectin Inhibitors. Int. J. Mol. Sci. 2024, 25, 6756.

  • 79.

    Xu, J.; Yang, F.; Yang, D.Q.; et al. Molecular characterization of Trichinella spiralis galectin and its participation in larval invasion of host’s intestinal epithelial cells. Vet. Res. 2018, 49, 79.

  • 80.

    Foth, B.J.; Tsai, I.J.; Reid, A.J.; et al. The whipworm genome and dual-species transcriptomics of an intimate host-pathogen interaction. Nat. Genet. 2014, 46, 693–700.

Share this article:
How to Cite
Mullens, E.; Zerna, G.; Ahmady-Nield, F.; Beddoe, T.; Piedrafita, D.; Preston, S. In-Silico and Functional Characterisation of Nematode Galectin-3 and Galectin-9. Parasitological Science 2025, 1 (1), 4.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.