- 1.
Wong, W.L.E.; Gupta, M. Development of Mg/Cu Nanocomposites Using Microwave Assisted owder Metallurgy Technique. In Proceedings of the ASME 2005 International Mechanical Engineering Congress and Exposition, Orlando, FL, USA, 5–11 November 2005.
- 2.
Gupta, M.; Wong, W.L.E. Magnesium-Based Nanocomposites: Lightweight Materials of the Future. Mater. Charact. 2015, 105, 30–46.
- 3.
Tun, K.S.; Jayaramanavar, P.; Nguyen, Q.B.; Chan, J.; Kwok, R.; Gupta, M. Investigation into Tensile and Compressive Responses of Mg-ZnO Composites. Mater. Sci. Technol. 2012, 28, 582–588.
https://doi.org/10.1179/1743284711Y.0000000108.
- 4.
Ahmad, I.R.; Jing, X.; Shu, D.W. Effect of Temperature on the Mechanical Behaviour of Magnesium Alloy AZ91D in the Range between −30 °C and 250 °C. Int. J. Mech. Sci. 2014, 86, 34–45.
https://doi.org/10.1016/j.ijmecsci.2014.04.010.
- 5.
Gupta, S.; Parande, G.; Gupta, M. Comparison of Shallow (−20 °C) and Deep Cryogenic Treatment (−196 °C) to Enhance the Properties of a Mg/2wt.% CeO2 Nanocomposite. Technologies 2024, 12, 14.
https://doi.org/10.3390/technologies12020014.
- 6.
- 7.
Hassan, S.F.; Gupta, M. Development of Ductile Magnesium Composite Materials Using Titanium as Reinforcement. J. Alloys Compd. 2002, 345, 246–251.
- 8.
Kainer, K.U. Magnesium Alloys and Technologies; Wiley-VCH: Hoboken, NJ, USA, 2003; ISBN 352730570X.
- 9.
Eugene, W.W.L.; Gupta, M. Enhancing Thermal Stability, Modulus and Ductility of Magnesium Using Molybdenum as Reinforcement. Adv. Eng. Mater. 2005, 7, 250–256.
https://doi.org/10.1002/adem.200400137.
- 10.
Lloyd, D.J. Particle Reinforced Aluminium and Magnesium Matrix Composites; Int. Mater. Rev. 1994, 39, 1–23.
- 11.
Nie, K.B.; Wang, X.J.; Deng, K.K.; Hu, X.S.; Wu, K. Magnesium Matrix Composite Reinforced by Nanoparticles—A Review. J. Magnes. Alloys 2021, 9, 57–77.
- 12.
Wong, W.L.E.; Gupta, M. Development of High Performance Mg/SiC Composites Containing Nano-Size SiC Using Microwave Assisted Rapid Sintering. Am. Soc. Mech. Eng. Aerosp. Div. 2005, 70, 511–515.
https://doi.org/10.1115/IMECE2005-82501.
- 13.
Gupta, S.; Parande, G.; Tun, K.S.; Gupta, M. Enhancing the Physical, Thermal, and Mechanical Responses of a Mg/2wt.%CeO2 Nanocomposite Using Deep Cryogenic Treatment. Metals 2023, 13, 660.
https://doi.org/10.3390/met13040660.
- 14.
Parande, G.; Manakari, V.; Meenashisundaram, G.K.; Gupta, M. Enhancing the Hardness/Compression/Damping Response of Magnesium by Reinforcing with Biocompatible Silica Nanoparticulates; Int. J. Mater. Res. 2016, 107, 1–9.
https://doi.org/10.3139/146.111435.
- 15.
- 16.
Sankaranarayanan, S.; Pranav Nayak, U.; Sabat, R.K.; Suwas, S.; Almajid, A.; Gupta, M. Nano-ZnO Particle Addition to Monolithic Magnesium for Enhanced Tensile and Compressive Response. J. Alloys Compd. 2014, 615, 211–219.
https://doi.org/10.1016/j.jallcom.2014.06.163.
- 17.
Kalsi, N.S.; Sehgal, R.; Sharma, V.S. Cryogenic Treatment of Tool Materials: A Review. Mater. Manuf. Process. 2010, 25, 1077–1100.
- 18.
- 19.
- 20.
Jiang, Y.; Chen, D.; Chen, Z.; Liu, J. Effect of Cryogenic Treatment on the Microstructure and Mechanical Properties of AZ31 Magnesium Alloy. Mater. Manuf. Process. 2010, 25, 837–841.
https://doi.org/10.1080/10426910903496862.
- 21.
Huang, H.; Zhang, J. Microstructure and Mechanical Properties of AZ31 Magnesium Alloy Processed by Multi-Directional Forging at Different Temperatures. Mater. Sci. Eng. A 2016, 674, 52–58.
https://doi.org/10.1016/j.msea.2016.07.052.
- 22.
Sonar, T.; Lomte, S.; Gogte, C. Cryogenic Treatment of Metal-A Review; Mater. Today: Proc. 2018, 5, 5219–25228.
- 23.
Pahaul, A.; Johanes, M.; Gupta, M. A First-Time Addition of Selenium to a Mg-Based Metal Matrix Composite for Biomedical Purposes. J. Compos. Sci. 2024, 8, 81.
https://doi.org/10.3390/jcs8030081.
- 24.
- 25.
Wan, D.; Hu, Y.; Ye, S.; Li, Z.; Li, L.; Huang, Y. Effect of Alloying Elements on Magnesium Alloy Damping Capacities at Room Temperature. Int. J. Miner. Metall. Mater. 2019, 26, 760–765.
https://doi.org/10.1007/s12613-019-1789-6.
- 26.
Zhang, J.; Gungor, M.N.; Lavernia, E.J. The Effect of Porosity on the Microstructural Damping Response of 6061 Aluminium Alloy. J. Materials Science, 1993, 28, 1515–1524.
- 27.
Li, Q.; Jiang, G.; Dong, J.; Hou, J.; He, G. Damping Behavior and Energy Absorption Capability of Porous Magnesium. J. Alloys Compd. 2016, 680, 522–530.
- 28.
- 29.
- 30.
Mirza, F.A.; Chen, D.L. A Unified Model for the Prediction of Yield Strength in Particulate-Reinforced Metal Matrix Nanocomposites. Materials 2015, 8, 5138–5153.
https://doi.org/10.3390/ma8085138.
- 31.
Radford, D.D.; Willmott, G.R.; Walley, S.M. Failure Mechanism in Ductile and Brittle Materials During Taylor Impact. J. Phys. IV Fr. 2003, 110, 687.
- 32.
Chen, Y.; Cao, F.; Deng, C.; Zhang, Y. Effect of compression loading speeds on the room temperature mechanical properties of as-extruded AZ31 magnesium alloy. Phys. Conf. Ser. 2022, 2174, 012065.
https://doi.org/10.1088/1742-6596/2174/1/012065.