2509001255
  • Open Access
  • Review

Processing, Microstructure and Performance of Aluminium Metal Matrix Composites for Engineering Applications—A Review

  • Penchal Reddy Matli 1, *,   
  • Manohar Guttikonda 2,   
  • Kotalo Rama Gopal 1,   
  • Siva Sankara Reddy Lingala 1

Received: 23 May 2025 | Revised: 09 Jul 2025 | Accepted: 11 Jul 2025 | Published: 05 Sep 2025

Abstract

Metal Matrix Composites (MMCs) stand at the forefront of materials science, offering a revolutionary blend of metallic matrix with a diverse array of reinforcements, tailored by type and geometry to deliver unparalleled physical, mechanical, thermal, and corrosion-resistant properties. These advanced materials have become the backbone of high-performance applications across industries such as aerospace, automotive, defense, electronics, and space exploration, where their exceptional strength, toughness, and adaptability meet the demands of cutting-edge engineering challenges. Researchers and engineers are working tirelessly to develop MMC production technologies in order to reduce costs and make them more affordable. This review delves into the state-of-the-art fabrication technologies shaping MMC production, from traditional casting and powder metallurgy to emerging hybrid processing methods. We explore how these advancements address longstanding challenges, such as cost barriers and material limitations, while unlocking new opportunities for customization and scalability. This study encourages readers to learn how MMCs are not only satisfying current demands but also opening the door for a future of stronger, smarter, and more sustainable technologies by showcasing recent innovations and their revolutionary effects on engineering and advanced manufacturing. 

References 

  • 1.
    Alam, M.A.; Ya, H.B.; Azeem, M.; et al. Advancements in aluminum matrix composites reinforced with carbides and graphene: A comprehensive review. Nanotechnol. Rev. 2023, 12, 2023011.
  • 2.
    Singh, B.; Kumar, I.; Saxena, K.K.; et al. A future prospects and current scenario of aluminium metal matrix composites characteristics. Alex. Eng. J. 2023, 76, 1–17.
  • 3.
    Seetharaman, S.; Gupta, M. Fundamentals of metal matrix composites. Encyclopaedia of Materials: Composites; Elsevier: London, UK, 2021; pp. 11–29.
  • 4.
    Wazeer, A.; Mukherjee, A.; Das, A.; et al. Mechanical Properties of Aluminium Metal Matrix Composites: Advancements, Opportunities and Perspective; Springer: Singapore, 2024; pp. 145–160.
  • 5.
    Rakesh, K.; Harsh, T.; Mohit; K.; et al. Corrosion and wear behavior of metal matrix composites. J. Future Eng. Technol. 2023, 18, 38.
  • 6.
    Sharma, S.; Goyal, A.; Bharadwaj, P.; et al. Application of metal matrix composite fabricated by reinforcement materials–A review. Mater. Today. Proc. 2023, in press.
  • 7.
    Sharath, B.N.; Pradeep, D.G.; Madhu, K.S. A review on the potential impact of age hardening on aluminium alloys and hybrid composites for engineering applications. Prog. Eng. Sci. 2024, 1, 100013.
  • 8.
    Seikh, Z.; Sekh, M.; Kunar, S.; et al. A study on various applications of aluminium metal matrix composites. AIP Conf. Proc. 2023, 2764, 070009.
  • 9.
    Mondal, S.; Paul, G.; Mondal, S.C.; et al. Fabrication of graphene reinforced aluminium metal matrix composites for advanced tool materials. J. Inst. Eng. India Ser. D 2024, in press.
  • 10.
    Rashid, A.L.; Ning, H.; Muhammad, J.; et al. State-of-the-art review on recently developed sustainable and green cooling/lubrication technologies in machining metal matrix composites (MMCs). Int. J. Precis. Eng. Manuf.-Green Technol. 2023, 10, 1637–1660.
  • 11.
    Pooja, K.; Tarannum, N.; Chaudhary, P. Metal matrix composites: Revolutionary materials for shaping the future. Discov. Mater. 2025, 5, 1–45.
  • 12.
    Markopoulos, A.P.; Pressas, I.S.; Papantoniou, I.G.; et al. Machining and Machining Modeling of Metal Matrix Composites—A Review. In Modern Manufacturing Engineering; Springer International Publishing: Cham, Switzerland, 2015; pp. 99–141.
  • 13.
    Reddy, K.V.; Manohar, G.; Reddy, C.R. Microstructural, mechanical and damping analysis of Al/Gr composites produced via friction stir processing: Effect of rotational speed. Can. Metall. Q. 2025, 1–10.
  • 14.
    Dey, A.; Pandey, K.M. Magnesium metal matrix composites-a review. Rev. Adv. Mater. Sci. 2015, 42, 58–67.
  • 15.
    Madhusudan, S.; Sarcar, M.M.M.; Bhargava, N.R.M.R. Fabrication and characterization of aluminium-copper composites. J. Alloys Compd. 2009, 471, 116–118.
  • 16.
    Monteiro, B.; Simões, S. Recent advances in hybrid nanocomposites for aerospace applications. Metals 2024, 14, 1283.
  • 17.
    Wu, Y.; Zhou, C.; Wu, R.; et al. Synergistic strengthening of Al–SiC composites by nano-spaced SiC-nanowires and the induced high-density stacking faults. Compos. Part B Eng. 2023, 250, 110458.
  • 18.
    Singh, N.K.; Balaguru, S. Fabrication and mechanical characterization of Al-Zn-Cu alloy/SiC/TiB2 hybrid reinforced metal matrix composite using top loaded bottom pouring stir casting method. Silicon 2024, 16, 45–59.
  • 19.
    Singh, N.K.; Sethuraman, B. Development and characterization of aluminium AA7075 hybrid composite foams (AHCFs) using SiC and TiB2 reinforcement. Int. J. Met. 2024, 18, 212–227.
  • 20.
    Baral, P.; Jaddi, S.; Wang, H.; et al. Al2O3/Al hybrid nanolaminates with superior toughness, strength and ductility. Nat. Commun. 2025, 16, 1355.
  • 21.
    Khalili, V.; Heidarzadeh, A.; Moslemi, S.; et al. Production of Al6061 matrix composites with ZrO2 ceramic reinforcementusing a low-cost stir casting technique: Microstructure, mechanical properties, and electrochemical behavior. J. Mater. Res. Technol. 2020, 9, 15072–15086.
  • 22.
    Dey, A.; Debnath, M.; Pandey, K.M. Analysis of effect of machining parameters during electrical discharge machining using taguchi-based multi-objective PSO. Int. J. Comp. Intel. Appl. 2017, 16, 1750010.
  • 23.
    Karabulut, Ş.; Karakoç, H.; Çıtak, R. Influence of B4C particle reinforcement on mechanical and machining properties of Al6061/B4C composites. Compos. Part B Eng. 2016, 101, 87–98.
  • 24.
    Damian, P. Conventional and Laser Assisted Machining of Composite A359/20SiCp. Procedia CIRP 2014, 14, 229–233.
  • 25.
    Szymański, M.; Przestacki, D.; Szymański, P. The Influence of Selected Laser Engraving Parameters on Surface Conditions of Hybrid Metal Matrix Composites. Materials 2023, 16, 6575.
  • 26.
    Arunprasand, T.R.; Nallasamy, P. Advancements in optimizing mechanical performance of 3d printed polymer matrix composites via microstructural refinement and processing enhancements: A comprehensive review. Mech. Adv. Compos. Struct. 2024, 1–19.
  • 27.
    Liu, Q.; Liu, J.; Ming, Z.; et al. Research progress on laser-assisted precision machining technology. Micromachines 2025, 16, 173.
  • 28.
    Mallick, M.A.; Gazi, A.S.; Seikh, Z.; et al. Eggshell in the production of composite materials: Recycle waste into valuable resources. J. Inst. Eng. India Ser. D 2025, 1–15.
  • 29.
    Kareem, A.; Qudeiri, J.A.; Abdudeen, A.; et al. A Review on AA 6061 Metal Matrix Composites Produced by Stir Casting. Materials 2021, 14, 175.
  • 30.
    Sun, Z.; Luo, Y.; Chen, C.; et al. Mechanical enhancement of carbon fiber-reinforced polymers: From interfacial regulating strategies to advanced processing technologies. Prog. Mater. Sci. 2024, 142, 101221.
  • 31.
    Singh, A.K.; Soni, S.; Rana, R.S. A critical review on synthesis of aluminum metallic composites through stir casting: Challenges and opportunities. Adv. Eng. Mater. 2020, 22, 2000322.
  • 32.
    Uday, K.N.; Rajamurugan, G. Effect of stir casting parameters and mono/hybrid reinforcements on aluminium metal matrix composite–A review. Proc. Inst. Mech. Eng. Pt. C J. Mech. Eng. Sci. 2021, 236, 4904–4920.
  • 33.
    Dilshad, A.G.; Ceren, B.; Merve, H. A review on processing, mechanical and wear properties of Al matrix composites reinforced with Al2O3, SiC, B4C and MgO by powder metallurgy method. J. Mater. Res. Technol. 2024, 31, 1132–1150.
  • 34.
    Alem, S.A.A.; Latifi, R.; Angizi, S.; et al. Microwave sintering of ceramic reinforced metal matrix composites and their properties: A review. Mater. Manuf. Process. 2020, 35, 303–327.
  • 35.
    Madeira, S.; Carvalho, O.; Carneiro, V.H.; et al. Damping capacity and dynamic modulus of hot pressed AlSi composites reinforced with different SiC particle sized. Compos. Part B Eng. 2016, 90, 399–405.
  • 36.
    Seikh, Z.; Sekh, M.; Mandal, G. et al.; Metal matrix composites processed through powder metallurgy: A brief overview. J. Inst. Eng. India Ser. D 2025, 106, 771–778.
  • 37.
    Surappa, M.K. Aluminium matrix composites: Challenges and opportunities. Sadhana 2003, 28, 319–334.
  • 38.
    Zhang, X.; Liao, L.; Ma, N.; et al. Mechanical properties and damping capacity of magnesium matrix composites. Compos. A Appl. Sci. Manuf. 2006, 37, 2011–2016.
  • 39.
    Zhang, J.; Perez, RJ.; Lavernia, E.J. Effect of SiC and graphite particulates on the damping behavior of metal matrix composites. Acta Metall. Mater. 1994, 42, 395–409.
  • 40.
    Xiao, P.; Gao, Y.; Yang, C.; et al. 2020. Strengthening and toughening mechanisms of Mg matrix composites reinforced with specific spatial arrangement of in-situ TiB2 nanoparticles. Compos. Part B Eng. 2020, 198, 108174.
  • 41.
    Reddy, P.V.; Kumar, G.S.; Krishnudu, D.M.; et al. Mechanical and wear performances of aluminium-based metal matrix composites: A Review. J. Bio. Tribo. Corros. 2020, 6, 1–16.
  • 42.
    Wan, B.; Liu, Y.; Chen, W.; et al. Effect of reinforcement types on the ball milling behavior and mechanical properties of 2024Al matrix composites. J. Mater. Res. Technol. 2003, 23, 268–283.
  • 43.
    Penchal Reddy, M.; Ubaid, F.; et al. Improved properties of Al-Si3N4 nanocomposites fabricated through microwave sintering and hot extrusion process. RSC Adv. 2017, 7, 34401–34410.
  • 44.
    Ma, X.; Zhao, Y.F.; Tian, W.J.; et al. A novel Al matrix composite reinforced by nano-AlNp network. Sci. Rep. 2016, 6, 1–8.
  • 45.
    Li, A.B.; Wang, G.S.; Zhang, X.X.; et al. Enhanced combination of strength and ductility in ultrafine-grained aluminum composites reinforced with high content intragranular nanoparticles. Mater. Sci. Eng. A 2019, 745, 10–19.
  • 46.
    Balcı, Ö.; Prashanth, KG.; Scudino, S.; et al. Effect of milling time and the consolidation process on the properties of Al matrix composites reinforced with Fe-based glassy particles. Metals 2015, 5, 669–685.
  • 47.
    Yuan, M.; Zhang, DC.; Tan, C.G.; et al. Microstructure and properties of Al-based metal matrix composites reinforced by Al60Cu20Ti15Zr5 glassy particles by high pressure hot pressing consolidation. Mater. Sci. Eng. A 2014, 590, 301–306.
  • 48.
    Kundu, P.; Kundu, S.; Mishra, A. Microstructure analysis of aluminium metal matrix alloy with silicon carbide. Inter. J. Curr. Eng. Tech. 2013, 3, 2167–2170.
  • 49.
    Zhong, J.; Mingfang, Q.; Xuexi, Z.; Aibin, L. Enhancing strength and toughness of GNS/Al nanocomposites via a hybridization strategy. Mater. Des. 2024, 244, 113099.
  • 50.
    Shahin, M.; Munir, K.; Wen, C.; et al. Magnesium-based composites reinforced with graphene nanoplatelets as biodegradable implant materials. J. Alloys. Compd. 2020, 828, 154461.
  • 51.
    Penchal Reddy, M.; Shakoor, R.A.; Gururaj, P.; et al. Enhanced performance of nano-sized SiC reinforced Al metal matrix nanocomposites synthesized through microwave sintering and hot extrusion techniques. Prog. Nat. Sci. Mater. 2017, 27, 607–615.
  • 52.
    Akbari, M.K.; Mirzaee, O.; Baharvandi, H. Fabrication and study on mechanical properties and fracture behavior of nanometric Al2O3 particle-reinforced A356 composites focusing on the parameters of vortex method. Mater. Des. 2013, 46, 199–205.
  • 53.
    Xu, R.; Fan, G.; Tan, Z.; et al. Back stress in strain hardening of carbon nanotube/aluminum composites. Mater. Res. Lett. 2017, 6, 113–120.
  • 54.
    Bisht, A.; Srivastava, M.; Kumar, R.M.; et al. Strengthening mechanism in graphene nanoplatelets reinforced aluminum composite fabricated through spark plasma sintering. Mater. Sci. Eng. A 2017, 695, 20–28.
  • 55.
    Jeevan. V.; Rao, C.S.P.; Selvaraj, N. Compaction, sintering and mechanical properties of Al–SiCp composites. Int. J. Mech. Eng. Technol. 2012, 3, 565–573.
  • 56.
    Garbiec, D.; Jurczyk, M.; Levintant-Zayonts, N.; et al. Properties of Al–Al2O3 composites synthesized by spark plasma sintering method. Arch. Civ. Mech. Eng. 2015, 15, 933–939.
  • 57.
    Bhadauria, A.; Singh.; L.K.; Laha, T. Combined strengthening effect of nanocrystalline matrix and graphene nanoplatelet reinforcement on the mechanical properties of spark plasma sintered aluminum based nanocomposites. Mater. Sci. Eng. A 2019, 749, 14–26.
  • 58.
    Ma, P.; Jia, Y.; Gokuldoss, P.K.; et al. Effect of Al2O3 nanoparticles as reinforcement on the tensile behavior of Al-12Si composites. Metals 2017, 7, 359.
  • 59.
    Yang, S.; Gao, X.; Li, W.; et al. Effects of the graphene content on mechanical properties and corrosion resistance of aluminum matrix composite. J. Mater. Res. Technol. 2024, 28, 1900–1906.
  • 60.
    Steinman, A.E.; Corthay, S.; Firestein, K.L.; et al. Al-based composites reinforced with AlB2, AlN and BN phases: Experimental and theoretical studies. Mater. Des. 2018, 141, 88–98.
  • 61.
    Raju, P.R.M.; Rajesh, S.; Raju, K.S.R.; et al. Effect of reinforcement of nano Al2O3 on mechanical properties of Al2024 NMMCs, Mater. Today Proc. 2015, 2, 3712–3717.
  • 62.
    Dixon, J.; Ghannam, S. Strengthening of aluminum matrix nano composite using Al2O3-SiC. Eur. J. Appl. Econ. 2013, 10, 2668–3792.
  • 63.
    Khedera, A.R.I.; Marahleh GS.; Al-Jamea, D.M.K. Strengthening of aluminum by SiC, Al2O3 and MgO. Jordan J. Mech. Ind. Eng. 2011, 5, 533–541.
  • 64.
    Bhoi, N.K.; Singh, H.; Pratap, S. Developments in the aluminum metal matrix composites reinforced by micro/nano particles—A review. J. Comp. Mater. 2019, 54, 813–833.
  • 65.
    Trzaskoma, P.P.; McCafferty, E.; Crowe, C.R. Corrosion behavior of SiC/Al metal matrix composites. J. Electrochem. Soc. 1983, 130, 1804–1809.
  • 66.
    Mosleh-Shirazi, S.; Hua, G.; Akhlaghi, F.; et al. Interfacial valence electron localization and the corrosion resistance of Al-SiC nanocomposite. Sci. Rep. 2016, 5, 18154.
  • 67.
    Monticelli, C.; Zucchi, F.; Brunoro, G.; et al. Stress corrosion cracking behaviour of some aluminium-based metal matrix composites. Corros. Sci. 1997, 39, 1949–1963.
  • 68.
    Ahmad, Z.; Abdul Aleem, B.J. Degradation of aluminum metal matrix composites in salt water and its control. Mater. Des. 2002, 23, 173–180.
  • 69.
    Albiter, A.; Contreras, A.; Salazar, M.; et al. Corrosion behaviour of aluminium metal matrix composites reinforced with TiC processed by pressureless melt infiltration. J. Appl. Electrochem. 2006, 36, 303–308.
  • 70.
    Deuis, R.L.; Green, L.; Subramanian, C.; et al. Corrosion behavior of aluminum composite coatings. Corrosion 1997, 53, 880–890.
  • 71.
    Radhika, N.; Sam, M.; Sathishkumar, M.; et al. Periodic advancement of aluminium metal matrix composites: Tribo-mechanical performance, corrosion properties, challenges and future. Adv. Mater. Process. Technol. 2023, 10, 2397–2420.
Share this article:
How to Cite
Matli, P. R.; Guttikonda, M.; Gopal, K. R.; Lingala, S. S. R. Processing, Microstructure and Performance of Aluminium Metal Matrix Composites for Engineering Applications—A Review. Progress in Composite Materials 2025, 1 (1), 6. https://doi.org/10.53941/pcm.2025.100006.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.