2512002605
  • Open Access
  • Review

Structural Degradation and Interfacial Failure of LiNi0.8Co0.1Mn0.1O2 Cathode: A Review of Mechanisms and Modification Strategies

  • Yuhui He 1,†,   
  • Haodong Xie 1,†,   
  • Yupei Han 2,†,   
  • Weidong He 1,3,*

Received: 10 Nov 2025 | Revised: 16 Dec 2025 | Accepted: 23 Dec 2025 | Published: 31 Dec 2025

Abstract

The development of sustainable energy storage systems urgently demands rechargeable lithium-ion batteries with high specific capacity and enhanced safety. Among promising cathode candidates, LiNi0.8Co0.1Mn0.1O2 (NCM811) stands out for next-generation high-energy-density applications due to its high capacity and favorable cost. However, its commercial deployment is hindered by severe structural and interfacial degradation, leading to rapid capacity fading, mechanical failure, and safety risks. This review systematically examines the fundamental degradation mechanisms of NCM811, including residual lithium-induced side reactions, transition metal dissolution, lattice oxygen release, phase transitions, microcrack propagation, and thermal runaway. Furthermore, we comprehensively summarize and critically assess representative modification strategies, including bulk doping, microstructure design, surface coating, electrolyte engineering, and the adoption of solid-state electrolytes, in terms of their effectiveness in mitigating these degradation pathways and enhancing electrochemical stability. discuss future research directions aimed at integrating multiple stabilization approaches and advancing scalable, cost-effective synthesis and processing techniques to facilitate the practical implementation of high-performance NCM811 cathodes.

References 

  • 1.

    Yin, Y.C.; Yang, J.T.; Luo, J.D.; et al. A LaCl3-Based Lithium Superionic Conductor Compatible with Lithium Metal. Nature 2023, 616, 77–83.

  • 2.

    Zhou, L.; Zuo, T.-T.; Kwok, C.Y.; et al. High Areal Capacity, Long Cycle Life 4 V Ceramic All-Solid-State Li-Ion Batteries Enabled by Chloride Solid Electrolytes. Nat. Energy 2022, 7, 83–93.

  • 3.

    Kim, U.-H.; Park, G.-T.; Son, B.-K.; et al. Heuristic Solution for Achieving Long-Term Cycle Stability for Ni-Rich Layered Cathodes at Full Depth of Discharge. Nat. Energy 2020, 5, 860–869.

  • 4.

    Li, W.; Erickson, E.M.; Manthiram, A. High-Nickel Layered Oxide Cathodes for Lithium-Based Automotive Batteries. Nat. Energy 2020, 5, 26–34.

  • 5.

    Liu, W.; Oh, P.; Liu, X.; et al. Nickel-Rich Layered Lithium Transition-Metal Oxide for High-Energy Lithium-Ion Batteries. Angew. Chem. Int. Ed. 2015, 54, 4440–4457.

  • 6.

    Myung, S.-T.; Maglia, F.; Park, K.-J.; et al. Nickel-Rich Layered Cathode Materials for Automotive Lithium-Ion Batteries: Achievements and Perspectives. ACS Energy Lett. 2016, 2, 196–223.

  • 7.

    Yoon, M.; Dong, Y.; Hwang, J.; et al. Reactive Boride Infusion Stabilizes Ni-Rich Cathodes for Lithium-Ion Batteries. Nat. Energy 2021, 6, 362–371.

  • 8.

    Li, W.; Asl, H.Y.; Xie, Q.; et al. Collapse of LiNi1−x−yCoxMnyO2 Lattice at Deep Charge Irrespective of Nickel Content in Lithium-Ion Batteries. J. Am. Chem. Soc. 2019, 141, 5097–5101.

  • 9.

    Liu, J.; Bao, Z.; Cui, Y.; et al. Pathways for Practical High-Energy Long-Cycling Lithium Metal Batteries. Nat. Energy 2019, 4, 180–186.

  • 10.

    Manthiram, A. A Reflection on Lithium-Ion Battery Cathode Chemistry. Nat. Commun. 2020, 11, 1550.

  • 11.

    Hu, J.; Li, L.; Bi, Y.; et al. Locking Oxygen in Lattice: A Quantifiable Comparison of Gas Generation in Polycrystalline and Single Crystal Ni-Rich Cathodes. Energy Storage Mater. 2022, 47, 195–202.

  • 12.

    Teichert, P.; Jahnke, H.; Figgemeier, E. Degradation Mechanism of Monocrystalline Ni-Rich Li[NixMnyCoz]O2 (NMC) Active Material in Lithium Ion Batteries. J. Electrochem. Soc. 2021, 168, 090532.

  • 13.

    Hu, J.; Li, L.; Hu, E.; et al. Mesoscale-Architecture-Based Crack Evolution Dictating Cycling Stability of Advanced Lithium Ion Batteries. Nano Energy 2021, 79, 105420.

  • 14.

    Ryu, H.-H.; Namkoong, B.; Kim, J.-H.; et al. Capacity Fading Mechanisms in Ni-Rich Single-Crystal NCM Cathodes. ACS Energy Lett. 2021, 6, 2726–2734.

  • 15.

    Lin, Q.; Guan, W.; Zhou, J.; et al. Ni-Li Anti-Site Defect Induced Intragranular Cracking in Ni-Rich Layer-Structured Cathode. Nano Energy 2020, 76, 105021.

  • 16.

    Li, S.; Yao, Z.; Zheng, J.; et al. Direct Observation of Defect-Aided Structural Evolution in a Nickel-Rich Layered Cathode. Angew. Chem. Int. Ed. 2020, 59, 22092–22099.

  • 17.

    Britala, L.; Marinaro, M.; Kucinskis, G. A Review of the Degradation Mechanisms of NCM Cathodes and Corresponding Mitigation Strategies. J. Energy Storage 2023, 73, 108875.

  • 18.

    Maleki Kheimeh Sari, H.; Li, X. Controllable Cathode–Electrolyte Interface of Li[Ni0.8Co0.1Mn0.1]O2 for Lithium Ion Batteries: A Review. Adv. Energy Mater. 2019, 9, 1901597.

  • 19.

    Zheng, Y.; Li, J.; Liu, Y.; et al. Challenges and Advancements in High-Nickel Layered Oxides Cathode Material for Lithium-Ion Batteries. Energy Environ. Mater. 2025, e70152. https://doi.org/10.1002/eem2.70152.

  • 20.

    Renfrew, S.E.; McCloskey, B.D. Residual Lithium Carbonate Predominantly Accounts for First Cycle CO2 and CO Outgassing of Li-Stoichiometric and Li-Rich Layered Transition-Metal Oxides. J. Am. Chem. Soc. 2017, 139, 17853–17860.

  • 21.

    Zhang, Y.; Katayama, Y.; Tatara, R.; et al. Revealing Electrolyte Oxidation via Carbonate Dehydrogenation on Ni-Based Oxides in Li-Ion Batteries by In Situ Fourier Transform Infrared Spectroscopy. Energy Environ. Sci. 2020, 13, 183–199.

  • 22.

    Kim, Y.; Park, H.; Warner, J.H.; et al. Unraveling the Intricacies of Residual Lithium in High-Ni Cathodes for Lithium-Ion Batteries. ACS Energy Lett. 2021, 6, 941–948.

  • 23.

    Chen, G.; Yang, H.; Liu, L.; et al. Conversion of Residual Lithium into Fast Lithium Ion Conductor Coating to Achieve High Cycle Life LiNi0.8Co0.15Al0.05O2 Cathode for Lithium Ion Battery. J. Mater. Sci. Mater. Electron. 2024, 35, 280.

  • 24.

    Karger, L.; Yao, R.; Seidel, K.; et al. Solving the Residual Lithium Problem by Substoichiometric Synthesis of Layered Ni-Rich Oxide Cathodes. ACS Energy Lett. 2024, 9, 5573–5575.

  • 25.

    Huang, T.Y.; Cai, Z.; Crafton, M.J.; et al. Chemical Origin of In Situ Carbon Dioxide Outgassing from a Cation-Disordered Rock Salt Cathode. Chem. Mater. 2024, 36, 6535–6546.

  • 26.

    Kaufman, L.A.; McCloskey, B.D. Surface Lithium Carbonate Influences Electrolyte Degradation via Reactive Oxygen Attack in Lithium-Excess Cathode Materials. Chem. Mater. 2021, 33, 4170–4176.

  • 27.

    Fang, Z.; Confer, M.P.; Wang, Y.; et al. Formation of Surface Impurities on Lithium-Nickel-Manganese-Cobalt Oxides in the Presence of CO2 and H2O. J. Am. Chem. Soc. 2021, 143, 10261–10274.

  • 28.

    Chen, Z.; Li, J.; Zeng, X.C. Unraveling Oxygen Evolution in Li-Rich Oxides: A Unified Modeling of the Intermediate Peroxo/Superoxo-like Dimers. J. Am. Chem. Soc. 2019, 141, 10751–10759.

  • 29.

    Teufl, T.; Strehle, B.; Müller, P.; et al. Oxygen Release and Surface Degradation of Li- and Mn-Rich Layered Oxides in Variation of the Li2MnO3 Content. J. Electrochem. Soc. 2018, 165, A2718–A2731.

  • 30.

    Eum, D.; Kim, B.; Kim, S.J.; et al. Voltage Decay and Redox Asymmetry Mitigation by Reversible Cation Migration in Lithium-Rich Layered Oxide Electrodes. Nat. Mater. 2020, 19, 419–427.

  • 31.

    Strehle, B.; Kleiner, K.; Jung, R.; et al. The Role of Oxygen Release from Li- and Mn-Rich Layered Oxides during the First Cycles Investigated by On-Line Electrochemical Mass Spectrometry. J. Electrochem. Soc. 2017, 164, A400–A406.

  • 32.

    Hong, J.; Gent, W.E.; Xiao, P.; et al. Metal-Oxygen Decoordination Stabilizes Anion Redox in Li-Rich Oxides. Nat. Mater. 2019, 18, 256–265.

  • 33.

    Sathiya, M.; Abakumov, A.M.; Foix, D.; et al. Origin of Voltage Decay in High-Capacity Layered Oxide Electrodes. Nat. Mater. 2015, 14, 230–238.

  • 34.

    Zheng, C.; Wang, Y.; Mao, H.; et al. Superexchange Interaction Regulates Ni/Mn Spin States Triggering Ni-t2g/O-2p Reductive Coupling Enabling Stable Lithium-Rich Cathode. Nat. Commun. 2025, 16, 3900.

  • 35.

    Hu, E.; Yu, X.; Lin, R.; et al. Evolution of Redox Couples in Li- and Mn-Rich Cathode Materials and Mitigation of Voltage Fade by Reducing Oxygen Release. Nat. Energy 2018, 3, 690–698.

  • 36.

    Yu, H.L.; Ibrahim, K.B.; Chi, P.W.; et al. Modulating the Voltage Decay and Cationic Redox Kinetics of Li-Rich Cathodes via Controlling the Local Electronic Structure. Adv. Funct. Mater. 2022, 32, 2112394.

  • 37.

    Liu, T.; Dai, A.; Lu, J.; et al. Correlation between Manganese Dissolution and Dynamic Phase Stability in Spinel-Based Lithium-Ion Battery. Nat. Commun. 2019, 10, 4721.

  • 38.

    Gent, W.E.; Lim, K.; Liang, Y.; et al. Coupling between Oxygen Redox and Cation Migration Explains Unusual Electrochemistry in Lithium-Rich Layered Oxides. Nat. Commun. 2017, 8, 2091.

  • 39.

    Zhan, C.; Wu, T.; Lu, J.; et al. Dissolution, Migration, and Deposition of Transition Metal Ions in Li-Ion Batteries Exemplified by Mn-Based Cathodes-a Critical Review. Energy Environ. Sci. 2018, 11, 243–257.

  • 40.

    McColl, K.; House, R.A.; Rees, G.J.; et al. Transition Metal Migration and O2 Formation Underpin Voltage Hysteresis in Oxygen-Redox Disordered Rock Salt Cathodes. Nat. Commun. 2022, 13, 5275.

  • 41.

    Zheng, J.; Ye, Y.; Liu, T.; et al. Ni/Li Disordering in Layered Transition Metal Oxide: Electrochemical Impact, Origin, and Control. Acc. Chem. Res. 2019, 52, 2201–2209.

  • 42.

    Qian, G.; Zhang, J.; Chu, S.-Q.; et al. Understanding the Mesoscale Degradation in Nickel-Rich Cathode Materials through Machine-Learning-Revealed Strain-Redox Decoupling. ACS Energy Lett. 2021, 6, 687–693.

  • 43.

    Zhang, X.; Zhao, W.; Li, R.; et al. Moisture-Scavenging Electrolyte for High-Temperature Stable Lithium-Ion Batteries. Energy Storage Mater. 2025, 80, 104409.

  • 44.

    Gan, Q.; Qin, N.; Li, Z.; et al. Surface Spinel Reconstruction to Suppress Detrimental Phase Transition for Stable LiNi0.8Co0.1Mn0.1O2 Cathodes. Nano Res. 2022, 16, 513–520.

  • 45.

    Cheng, X.; Liu, X.; Zhao, L.; et al. Pre-Deoxidation of Layered Ni-Rich Cathodes to Construct a Stable Interface with Electrolyte for Long Cycling Life. Adv. Funct. Mater. 2022, 33, 2211171.

  • 46.

    Zheng, C.; Zhang, J.; Mao, H.; et al. Entropic Design of Anionic Site to Improve Anionic Redox Stability in Lithium-Rich Cathode. Adv. Mater. 2024, 36, e2413785.

  • 47.

    Tan, X.; Chen, Z.; Liu, T.; et al. Imitating Architectural Mortise-Tenon Structure for Stable Ni-Rich Layered Cathodes. Adv. Mater. 2023, 35, e2301096.

  • 48.

    Huang, Q.; Zhang, X.; Lv, X.; et al. Electrochemical Aging Protocol Governed Capacity Losses and Structure Degradations in Layered LiNi0.8Co0.1Mn0.1O2 Oxides. Small 2023, 19, 2302086.

  • 49.

    Yuan, Q.; Zhao, F.; Wang, W.; et al. Overcharge Failure Investigation of Lithium-Ion Batteries. Electrochim. Acta 2015, 178, 682–688.

  • 50.

    Xu, C.; Reeves, P.J.; Jacquet, Q.; et al. Phase Behavior during Electrochemical Cycling of Ni-Rich Cathode Materials for Li-Ion Batteries. Adv. Energy Mater. 2020, 11, 2003404.

  • 51.

    Wang, L.; Su, Q.; Han, B.; et al. Unraveling the Degradation Mechanism of LiNi0.8Co0.1Mn0.1O2 at the High Cut-Off Voltage for Lithium Ion Batteries. J. Energy Chem. 2023, 77, 428–437.

  • 52.

    Xu, J.; Hu, E.; Nordlund, D.; et al. Understanding the Degradation Mechanism of Lithium Nickel Oxide Cathodes for Li-Ion Batteries. ACS Appl. Mater. Interfaces 2016, 8, 31677–31683.

  • 53.

    Liang, C.; Jiang, L.; Wei, Z.; et al. Insight into the Structural Evolution and Thermal Behavior of LiNi0.8Co0.1Mn0.1O2 Cathode under Deep Charge. J. Energy Chem. 2022, 65, 424–432.

  • 54.

    Wu, F.; Liu, N.; Chen, L.; et al. Improving the Reversibility of the H2H3 Phase Transitions for Layered Ni-Rich Oxide Cathode towards Retarded Structural Transition and Enhanced Cycle Stability. Nano Energy 2019, 59, 50–57.

  • 55.

    Wu, F.; Liu, N.; Chen, L.; et al. The Nature of Irreversible Phase Transformation Propagation in Nickel-Rich Layered Cathode for Lithium-Ion Batteries. J. Energy Chem. 2021, 62, 351–358.

  • 56.

    Han, G.-M.; Kim, Y.-S.; Ryu, H.-H.; et al. Structural Stability of Single-Crystalline Ni-Rich Layered Cathode upon Delithiation. ACS Energy Lett. 2022, 7, 2919–2926.

  • 57.

    Kondrakov, A.O.; Schmidt, A.; Xu, J.; et al. Anisotropic Lattice Strain and Mechanical Degradation of High- and Low-Nickel NCM Cathode Materials for Li-Ion Batteries. J. Phys. Chem. C 2017, 121, 3286–3294.

  • 58.

    Ryu, H.-H.; Park, N.-Y.; Noh, T.-C.; et al. Microstrain Alleviation in High-Energy Ni-Rich NCMA Cathode for Long Battery Life. ACS Energy Lett. 2020, 6, 216–223.

  • 59.

    Lee, W.; Choi, M.; Kim, M.; et al. Pinning Effects of Heavy Elements for the Structural Stability of Ni-Based Layered Oxides. ACS Energy Lett. 2025, 10, 4527–4534.

  • 60.

    Zheng, S.; Hong, C.; Guan, X.; et al. Correlation between Long Range and Local Structural Changes in Ni-Rich Layered Materials During Charge and Discharge Process. J. Power Sources 2019, 412, 336–343.

  • 61.

    Tang, J.; Zhao, B.; Wang, Z.; et al. Atomic-Resolution In Situ Exploration of the Phase Transition Triggered Failure in a Single-Crystalline Ni-Rich Cathode. ACS Appl. Mater. Interfaces 2024, 16, 16075–16085.

  • 62.

    Shishvan, S.S.; Fleck, N.A.; McMeeking, R.M.; et al. Cracking and Associated Volumetric Expansion of NMC811 Secondary Particles. J. Power Sources 2023, 588, 233745.

  • 63.

    Pegel, H.; von Kessel, O.; Heugel, P.; et al. Volume and Thickness Change of NMC811|SiOx-Graphite Large-Format Lithium-Ion Cells: From Pouch Cell to Active Material Level. J. Power Sources 2022, 537, 231443.

  • 64.

    Ma, H.; Cai, S.; Song, R.; et al. Evolution of Interfacial Electro-Chemo-Mechanics in High-Energy-Density NCM811||Si/C-Composite Lithium-Ion Pouch Cells. Chem. Eng. J. 2025, 511, 162081.

  • 65.

    Wang, X.; Song, Y.; Cui, H.; et al. Insight into the Electrochemical Behaviors of NCM811|SiO-Gr Pouch Battery through Thickness Variation. Energy Environ. Mater. 2023, 6, e12401.

  • 66.

    Park, K.-J.; Hwang, J.-Y.; Ryu, H.-H.; et al. Degradation Mechanism of Ni-Enriched NCA Cathode for Lithium Batteries: Are Microcracks Really Critical? ACS Energy Lett. 2019, 4, 1394–1400.

  • 67.

    Lim, J.M.; Hwang, T.; Kim, D.; et al. Intrinsic Origins of Crack Generation in Ni-Rich LiNi0.8Co0.1Mn0.1O2 Layered Oxide Cathode Material. Sci. Rep. 2017, 7, 39669.

  • 68.

    Heenan, T.M.M.; Wade, A.; Tan, C.; et al. Identifying the Origins of Microstructural Defects Such as Cracking within Ni-Rich NMC811 Cathode Particles for Lithium-Ion Batteries. Adv. Energy Mater. 2020, 10, 2002655.

  • 69.

    Shen, W.; Li, K.; Huang, J.; et al. Core-Shell NCM Cathode Particles Mechanical Failure: Particle Cracking and Interfacial Debonding. ACS Appl. Energy Mater. 2024, 7, 6384–6399.

  • 70.

    Nam, G.W.; Park, N.-Y.; Park, K.-J.; et al. Capacity Fading of Ni-Rich NCA Cathodes: Effect of Microcracking Extent. ACS Energy Lett. 2019, 4, 2995–3001.

  • 71.

    Park, N.-Y.; Park, G.-T.; Kim, S.-B.; et al. Degradation Mechanism of Ni-Rich Cathode Materials: Focusing on Particle Interior. ACS Energy Lett. 2022, 7, 2362–2369.

  • 72.

    Meng, X.H.; Lin, T.; Mao, H.; et al. Kinetic Origin of Planar Gliding in Single-Crystalline Ni-Rich Cathodes. J. Am. Chem. Soc. 2022, 144, 11338–11347.

  • 73.

    Wei, Z.; Fang, Z.; Liang, C.; et al. Deciphering the Synergistic Mechanism for Thermal Stability Improvement in Ni-Rich Single-Crystal Cathode Materials via LiNbO3 Coating and Nb5+ Surface Doping. Innov. Energy 2025, 2, 100083.

  • 74.

    Wu, Y.; Zhang, W.; Rui, X.; et al. Thermal Runaway Mechanism of Composite Cathodes for All-Solid-State Batteries. Adv. Energy Mater. 2025, 15, 2405183.

  • 75.

    Cui, Z.; Manthiram, A. Thermal Stability and Outgassing Behaviors of High-Nickel Cathodes in Lithium-Ion Batteries. Angew. Chem. Int. Ed. 2023, 62, e202307243.

  • 76.

    Wang, Y.; Feng, X.; Huang, W.; et al. Challenges and Opportunities to Mitigate the Catastrophic Thermal Runaway of High-Energy Batteries. Adv. Energy Mater. 2023, 13, 2203841.

  • 77.

    Lee, E.; Muhammad, S.; Kim, T.; et al. Tracking the Influence of Thermal Expansion and Oxygen Vacancies on the Thermal Stability of Ni-Rich Layered Cathode Materials. Adv. Sci. 2020, 7, 1902413.

  • 78.

    Zhou, G.; Liu, Y.; Li, Y.; et al. Experimental Study on the Thermal Runaway Acceleration Mechanism and Characteristics of NCM811 Lithium-Ion Battery with Critical Thermal Load Induced by Nail Penetration. J. Clean. Prod. 2024, 434, 140121.

  • 79.

    Shin, Y.; Ahn, K.; Lee, C.; et al. A Self-Discharging Reaction Mediated by Imide Salt Enables the Prevention of Explosive Thermal Runaway in High-Ni Material/Graphite Full Cells. J. Mater. Chem. A Mater. 2023, 11, 23556–23565.

  • 80.

    Lu, Z.; Liu, D.; Dai, K.; et al. Tailoring Solvation Chemistry in Carbonate Electrolytes for All-Climate, High-Voltage Lithium-Rich Batteries. Energy Storage Mater. 2023, 57, 316–325.

  • 81.

    Wang, Y.; Ren, D.; Feng, X.; et al. Thermal runaway Modeling of large Format High-Nickel/Silicon-Graphite Lithium-Ion Batteries Based on Reaction Sequence and Kinetics. Appl. Energy 2022, 306, 117943.

  • 82.

    Huang, Y.; Xu, Y.; Zhang, P.; et al. In-Depth Study of Gas-Solid Jet and Formation Mechanisms During Thermal Runaway in Ternary Lithium-Ion Batteries. Energy 2025, 324, 135982.

  • 83.

    Li, H.; Shen, H.; Li, M.; et al. A Simplified Mathematical Modeling Approach for Thermal Runaway of LiNi0.8Co0.1Mn0.1O2 Pouch Cells Based on Thermal Runaway Experimental Data. J. Energy Storage 2024, 90, 111829.

  • 84.

    Lu, J.; Yan, C.; Min, X.; et al. Nb/Al Codoping Strategy for Nickel-Rich Cathodes to Improve Rate and Cycle Performance of Lithium-Ion Batteries. Energy Fuels 2025, 39, 7057–7068.

  • 85.

    Zheng, J.; Zhao, S.; Guan, W.; et al. Tungsten-Doping Enables Excellent Kinetics and High Stability of Cobalt-Free Ultrahigh-Nickel Single-Crystal Cathode. Energy Storage Mater. 2025, 78, 104251.

  • 86.

    Park, N.Y.; Cho, G.; Kim, S.B.; et al. Multifunctional Doping Strategy to Develop High-Performance Ni-Rich Cathode Material. Adv. Energy Mater. 2023, 13, 2204291.

  • 87.

    Weigel, T.; Schipper, F.; Erickson, E.M.; et al. Structural and Electrochemical Aspects of LiNi0.8Co0.1Mn0.1O2 Cathode Materials Doped by Various Cations. ACS Energy Lett. 2019, 4, 508–516.

  • 88.

    Yang, R.; Xie, J.; Li, J.; et al. Synergistic Modification and Mechanism of Tungsten and Niobium to Enhance the Performance of Nickel-Rich Layered Cathode Materials. Small 2025, 21, e2409426.

  • 89.

    Wang, W.; Zhou, Y.; Zhang, B.; et al. Optimized In Situ Doping Strategy Stabling Single-Crystal Ultrahigh-Nickel Layered Cathode Materials. ACS Nano 2024, 18, 8002–8016.

  • 90.

    Ou, X.; Liu, T.; Zhong, W.; et al. Enabling High Energy Lithium Metal Batteries via Single-Crystal Ni-Rich Cathode Material Co-Doping Strategy. Nat. Commun. 2022, 13, 2319.

  • 91.

    Lee, S.-B.; Park, N.-Y.; Park, G.-T.; et al. Doping Strategy in Developing Ni-Rich Cathodes for High-Performance Lithium-Ion Batteries. ACS Energy Lett. 2024, 9, 740–747.

  • 92.

    Liao, H.; Tang, Y.; Ma, W.; et al. Exceptional Layered Cathode Stability at 4.8 V via Supersaturated High-Valence Cation Design. Nat. Energy 2025, 10, 1107–1115.

  • 93.

    Chakraborty, A.; Bano, A.; Kunnikuruvan, S.; et al. Doping Strategies in Ni-Rich NCM Cathode Materials for Next-Generation Li-Ion Batteries: A Systematic Computational Study. ACS Appl. Energy Mater. 2025, 8, 10445–10457.

  • 94.

    Cao, B.; Fang, H.T.; Li, D.; et al. Single-Crystalline LiNi0.8Co0.1Mn0.1O2 Stabilized by F-Doping-Induced Superlattice for 4.8 V lithium-Ion Batteries. Chem. Eng. J. 2024, 496, 153821.

  • 95.

    Li, F.; Liu, Z.; Liao, C.; et al. Gradient Boracic Polyanion Doping-Derived Surface Lattice Modulation of High-Voltage Ni-Rich Layered Cathodes for High-Energy-Density Li-Ion Batteries. ACS Energy Lett. 2023, 8, 4903–4914.

  • 96.

    Yang, J.; Mao, G.; Yao, T.; et al. Fluorination from Surface to Bulk Stabilizing High Nickel Cathode Materials with Outstanding Electrochemical Performance. Angew. Chem. Int. Ed. 2025, 64, e202420413.

  • 97.

    Lou, Y.; Lin, Z.; Shen, J.; et al. Simultaneous Regulating the Surface, Interface, and Bulk via Phosphating Modification for High-Performance Li-Rich Layered Oxides Cathodes. Adv. Mater. 2025, 37, e2416136.

  • 98.

    Li, C.; Kan, W.H.; Xie, H.; et al. Inducing Favorable Cation Antisite by Doping Halogen in Ni-Rich Layered Cathode with Ultrahigh Stability. Adv. Sci. 2019, 6, 1801406.

  • 99.

    Binder, J.O.; Culver, S.P.; Pinedo, R.; et al. Investigation of Fluorine and Nitrogen as Anionic Dopants in Nickel-Rich Cathode Materials for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2018, 10, 44452–44462.

  • 100.

    Yang, G.; Pan, K.; Lai, F.; et al. Integrated Co-Modification of PO43− Polyanion Doping and Li2TiO3 Coating for Ni-Rich layered LiNi0.6Co0.2Mn0.2O2 Cathode material of Lithium-Ion Batteries. Chem. Eng. J. 2021, 421, 129964.

  • 101.

    Zhang, Q.; Liu, K.; Li, C.; et al. The Surface Triple-Coupling on Single Crystalline Cathode for Lithium Ion Batteries. Nano Energy 2021, 86, 106096.

  • 102.

    Qiu, L.; Xiang, W.; Tian, W.; et al. Polyanion and Cation Co-Doping Stabilized Ni-Rich Ni-Co-Al Material as Cathode with Enhanced Electrochemical Performance for Li-Ion Battery. Nano Energy 2019, 63, 103818.

  • 103.

    Zhang, R.; Wang, C.; Zou, P.; et al. Compositionally Complex Doping for Zero-Strain Zero-Cobalt Layered Cathodes. Nature 2022, 610, 67–73.

  • 104.

    Yang, B.; Zhou, L.; Hu, X.; et al. Enhancing the Electrochemical Performances of LiNi0.8Co0.15Al0.05O2 Cathode Material by Anion/Cation Co-Doping. Ionics 2021, 27, 1491–1499.

  • 105.

    Shen, J.; Cao, Z.; Li, Z.; et al. Regulating Anion-Cation Band Centers to Inhibit Oxygen Escape and Phase Transition for Stable Single-Crystalline Ultrahigh-Ni Layered Cathodes. Adv. Funct. Mater. 2025, 35, 2502419.

  • 106.

    Wei, Z.; Liang, C.; Jiang, L.; et al. Probing the Thermal Degradation Mechanism of Polycrystalline and Single-Crystal LiNi0.8Co0.1Mn0.1O2 Cathodes from the Perspective of Oxygen Vacancy Diffusion. Energy Storage Mater. 2023, 56, 495–505.

  • 107.

    Heo, B.; Kim, M.; Hwang, C.; et al. Interfacial Stability Enhancement in Single-Crystal NCM Cathodes through Electronic Structure Optimization. Mater. Today 2025, 90, 322–333.

  • 108.

    Zhou, H.; Ge, P.; Li, J.; et al. Homogenizing Phase-Component Regeneration of Spent NCM811 into Single-Crystal NCM622 with Enhanced Structural and Electrochemical Stability. Energy Storage Mater. 2025, 82, 104572.

  • 109.

    Gao, H.; Yan, Q.; Tran, D.; et al. Upcycling of Spent LiNi0.33Co0.33Mn0.33O2 to Single-Crystal Ni-Rich Cathodes Using Lean Precursors. ACS Energy Lett. 2023, 8, 4136–4144.

  • 110.

    Wang, Y.; Qiu, L.; Deng, Y.; et al. Facet-Stacking Coupling Accelerates Grain Growth During Synthesis of Single-Crystal Ni-Rich Cathodes. Adv. Funct. Mater. 2025, e16097. https://doi.org/10.1002/adfm.202516097.

  • 111.

    Kim, J.; Seo, J.-K.; Lee, B.-J.; et al. The Dual Role of Zirconium in Single-Crystal Ni-Rich Cathodes as a Promoter for Grain Growth and a Pillar for Structural Stability for High-Voltage Lithium-Ion Batteries. Energy Storage Mater. 2025, 83, 104718.

  • 112.

    Zhang, T.; Qin, Z.; Long, X.; et al. Stable Molten Salts Mediated Growth of Single-Crystalline LiNi0.8Co0.1Mn0.1O2 with High Voltage Tolerance. Adv. Funct. Mater. 2025, 35, 2500608.

  • 113.

    Li, J.; Li, H.; Stone, W.; et al. Synthesis of Single Crystal LiNi0.5Mn0.3Co0.2O2 for Lithium Ion Batteries. J. Electrochem. Soc. 2017, 164, A3529–A3537.

  • 114.

    Wu, B.; Yi, R.; Xu, Y.; et al. Unusual Li2O Sublimation Promotes Single-Crystal Growth and Sintering. Nat. Energy 2025, 10, 605–615.

  • 115.

    Sun, H.H.; Dolocan, A.; Weeks, J.A.; et al. Stabilization of a Highly Ni-Rich Layered Oxide Cathode through Flower-Petal Grain Arrays. ACS Nano 2020, 14, 17142–17150.

  • 116.

    Liu, T.; Yu, L.; Liu, J.; et al. Ultrastable Cathodes Enabled by Compositional and Structural Dual-Gradient Design. Nat. Energy 2024, 9, 1252–1263.

  • 117.

    Wu, W.; Chen, S.; Wang, S.; et al. Micro-structure Regulation and Evolution of Hydroxide Precursor for Radially Aligned Ni-Rich Cathode with Superior Performance. Chem. Eng. J. 2025, 512, 162403.

  • 118.

    Park, G.-T.; Park, N.-Y.; Noh, T.-C.; et al. High-Performance Ni-Rich LiNi0.9−xCo0.1AlxO2 Cathodes via Multi-Stage Microstructural Tailoring from Hydroxide Precursor to the Lithiated Oxide. Energy Environ. Sci. 2021, 14, 5084–5095.

  • 119.

    Wang, S.; Zhou, X.; Zhao, T.; et al. Precise Regulation of Particle Orientation for Ni-Rich Cathodes with Ultra-Long Cycle Life. Nano Energy 2024, 129, 110008.

  • 120.

    Wang, L.; Zhu, B.; Xiao, D.; et al. Grain Morphology and Microstructure Control in High-Stable Ni-Rich Layered Oxide Cathodes. Adv. Funct. Mater. 2023, 33, 2212849.

  • 121.

    Park, N.-Y.; Han, S.-M.; Ryu, J.-H.; et al. Tailoring Primary Particle Size Distribution to Suppress Microcracks in Ni-Rich Cathodes via Controlled Grain Coarsening. ACS Energy Lett. 2024, 9, 3595–3604.

  • 122.

    Guo, W.; Yu, H.; Wang, M.; et al. Compositional Gradient Design of Ni-Rich Co-Poor Cathodes Enhanced Cyclability and Safety in High-Voltage Li-Ion Batteries. ACS Nano 2025, 19, 8371–8380.

  • 123.

    Park, G.-T.; Ryu, H.-H.; Noh, T.-C.; et al. Microstructure-Optimized Concentration-Gradient NCM Cathode for Long-Life Li-Ion Batteries. Mater. Today 2022, 52, 9–18.

  • 124.

    Kim, S.; Thind, A.S.; Mohanty, S.K.; et al. High-Nickel Cathodes with Mechanical and Interfacial Robustness via Tailored Concentration Gradients for Stable Li-Ion Batteries. ACS Energy Lett. 2025, 10, 3600–3609.

  • 125.

    Zheng, J.; Jiang, H.; Xu, X.; et al. In Situ Partial-Cyclized Polymerized Acrylonitrile-Coated NCM811 Cathode for High-Temperature 100 degrees C Stable Solid-State Lithium Metal Batteries. Nano-Micro Lett. 2025, 17, 195.

  • 126.

    Xu, X.; Chu, S.; Xu, S.; et al. Integrating Prelithiation and Interface Protection to Achieve High-Energy All-Solid-State Batteries. Angew. Chem. Int. Ed. 2025, 64, e202415891.

  • 127.

    Lee, J.; Nam, K.; Ku, B.; et al. 2D Phosphorene-Decorated Ni-Rich Layered Cathodes for High-Power and High-Energy Li-Ion Batteries. Adv. Funct. Mater. 2025, e11385. https://doi.org/10.1002/adfm.202511385.

  • 128.

    Yuan, K.; Tu, T.; Shen, C.; et al. Self-Ball Milling Strategy to Construct High-Entropy Oxide Coated LiNi0.8Co0.1Mn0.1O2 with Enhanced Electrochemical Performance. J. Adv. Ceram. 2022, 11, 882–892.

  • 129.

    Zheng, J.; Xu, X.; Zhao, J.; et al. Design of Dual-Conducting Interface in Composite Cathode by semi-Cyclized Polyacrylonitrile Soft Coating for Practical Solid-State Lithium-Metal Batteries. Energy Storage Mater. 2025, 74, 103976.

  • 130.

    Xu, Q.; Li, X.; Kheimeh Sari, H.M.; et al. Surface Engineering of LiNi0.8Co0.1Mn0.1O2 towards Boosting Lithium Storage: Bimetallic Oxides Versus Monometallic Oxides. Nano Energy 2020, 77, 105034.

  • 131.

    Liang, J.; Zhu, Y.; Li, X.; et al. A Gradient Oxy-Thiophosphate-Coated Ni-Rich Layered Oxide Cathode for Stable All-Solid-State Li-Ion Batteries. Nat. Commun. 2023, 14, 146.

  • 132.

    Li, Y.; Li, J.; Zeng, Z.; et al. Surface-Reconstructed High-Nickel Cathodes for Ultrastable 4.5 V Tolerant Sulfide-Based All-Solid-State Batteries. ACS Energy Lett. 2025, 10, 2203–2211.

  • 133.

    Lin, Z.; Zhang, L.; Li, Y.; et al. In Situ Construction of an Electron-Withdrawing Polymer Coating Layer on NCM811 Interface for High-Performance Lithium-Ion Batteries. Energy Storage Mater. 2024, 73, 103876.

  • 134.

    Ding, H.; Su, Y.; Wang, X.; et al. Enhancing the Cycling Stability of Nickel-Rich Oxide Cathode Materials through a Multifunctional CeO2 Coating. J. Colloid Interface Sci. 2025, 687, 118–130.

  • 135.

    Chu, Y.; Mu, Y.; Gu, H.; et al. Invoking Interfacial Engineering Boosts Structural Stability Empowering Exceptional Cyclability of Ni-Rich Cathode. Adv. Mater. 2024, 36, e2405628.

  • 136.

    Wang, L.; Ding, G.; Yang, Z.; et al. Synergistic Construction of Uniform LiAlO2 Coating on LiNi0.8Co0.1Mn0.1O2 Cathode Materials by Acid Etching and Polyvinylpyrrolidone Cross-Linking Approaches for High-Performance Li-Ion Batteries. J. Alloys Compd. 2024, 990, 174411.

  • 137.

    Chen, Z.; Nguyen, H.D.; Zarrabeitia, M.; et al. Lithium Phosphonate Functionalized Polymer Coating for High-Energy LiNi0.8Co0.1Mn0.1O2 with Superior Performance at Ambient and Elevated Temperatures. Adv. Funct. Mater. 2021, 31, 2105343.

  • 138.

    Xu, G.-L.; Liu, Q.; Lau, K.K.S.; et al. Building Ultra Conformal Protective Layers on both Secondary and Primary Particles of Layered Lithium Transition Metal Oxide Cathodes. Nat. Energy 2019, 4, 484–494.

  • 139.

    Chu, Y.; Mu, Y.; Zou, L.; et al. Thermodynamically Stable Dual-Modified LiF&FeF3 layer Empowering Ni-Rich Cathodes with Superior Cyclabilities. Adv. Mater. 2023, 35, e2212308.

  • 140.

    Li, S.; Zhao, L.; Tan, J.; et al. Suppressing Stress-Induced Structural Degradation in LiNi0.9Co0.05Mn0.05O2 by High-Modulus Heterogeneous Coating. Nano Energy 2025, 143, 111294.

  • 141.

    Luo, J.; Guo, B.; Li, N.; et al. Conductive Binary Li Borate Glass Coating for Improved Ni-Rich Positive Electrode in Sulfide-Based All-Solid-State Li Batteries. Nat. Commun. 2025, 16, 9462.

  • 142.

    Ma, Y.; Teo, J.H.; Walther, F.; et al. Advanced Nanoparticle Coatings for Stabilizing Layered Ni-Rich Oxide Cathodes in Solid-State Batteries. Adv. Funct. Mater. 2022, 32, 2111829.

  • 143.

    Liu, C.; Li, D.; Zhao, S.; et al. Atomic Layer Deposition of a Thin TiO2 Layer on Nickel-Rich Cathode NCM83 for Improved Cycling Stability. J. Mater. Chem. A Mater. 2025, 13, 21748–21759.

  • 144.

    Huang, K.; Xie, T.; Yang, H.; et al. Plasma-Assisted Sputter Li3PO4 Coating on NCM955 Cathodes Enhancing High-Temperature Cycling Performances. J. Alloys Compd. 2024, 976, 173232.

  • 145.

    Wang, X.; Ren, D.; Liang, H.; et al. Ni Crossover Catalysis: Truth of Hydrogen Evolution in Ni-Rich Cathode-based Lithium-Ion Batteries. Energy Environ. Sci. 2023, 16, 1200–1209.

  • 146.

    Huang, J.; Liu, J.; He, J.; et al. Optimizing Electrode/Electrolyte Interphases and Li-Ion Flux/Solvation for Lithium-Metal Batteries with Qua-Functional Heptafluorobutyric Anhydride. Angew. Chem. Int. Ed. 2021, 60, 20717–20722.

  • 147.

    Yang, J.; Liu, X.; Wang, Y.; et al. Electrolytes Polymerization-Induced Cathode-Electrolyte-Interphase for High Voltage Lithium-Ion Batteries. Adv. Energy Mater. 2021, 11, 2101956.

  • 148.

    Jiang, G.; Liu, J.; He, J.; et al. Hydrofluoric Acid-Removable Additive Optimizing Electrode Electrolyte Interphases with Li+ Conductive Moieties for 4.5 V Lithium Metal Batteries. Adv. Funct. Mater. 2023, 33, 2214422.

  • 149.

    Jia, R.; Dai, H.; Tu, X.; et al. Hexabutylcyclohexane-1,2,3,4,5,6-hexaimine Additive-Assisted Commercial Ester Electrolyte for 4.7 V Highly-Stable Li-Metal Batteries. Adv. Energy Mater. 2023, 13, 2302747.

  • 150.

    Kang, G.; Cao, Y.; Liu, Q.; et al. Efficient Screening of Electrolyte Additives for High-Temperature, High-Voltage Lithium Batteries via Fukui Functions. Adv. Funct. Mater. 2025, e22713. https://doi.org/10.1002/adfm.202522713.

  • 151.

    Kim, J.; Lee, D.G.; Lee, J.H.; et al. Concurrent Electrode-Electrolyte Interfaces Engineering via Nano-Si3N4 Additive for High-Rate, High-Voltage Lithium Metal Batteries. Energy Environ. Sci. 2025, 18, 3148–3159.

  • 152.

    Sudoh, T.; Ikeda, S.; Shigenobu, K.; et al. Li-Ion Transport and Solution Structure in Sulfolane-Based Localized High-Concentration Electrolytes. J. Phys. Chem. C 2023, 127, 12295–12303.

  • 153.

    Chen, S.; Zheng, J.; Mei, D.; et al. High-Voltage Lithium-Metal Batteries Enabled by Localized High-Concentration Electrolytes. Adv. Mater. 2018, 30, e1706102.

  • 154.

    Ren, X.; Zou, L.; Cao, X.; et al. Enabling High-Voltage Lithium-Metal Batteries under Practical Conditions. Joule 2019, 3, 1662–1676.

  • 155.

    Chen, S.; Zheng, J.; Yu, L.; et al. High-Efficiency Lithium Metal Batteries with Fire-Retardant Electrolytes. Joule 2018, 2, 1548–1558.

  • 156.

    Lin, S.; Hua, H.; Lai, P.; et al. A Multifunctional Dual-Salt Localized High-Concentration Electrolyte for Fast Dynamic High-Voltage Lithium Battery in Wide Temperature Range. Adv. Energy Mater. 2021, 11, 2101775.

  • 157.

    Zhang, B.H.; Chen, P.P.; Hou, Y.L.; et al. Localized High-Concentration Sulfone Electrolytes with High-Voltage Stability and Flame Retardancy for Ni-Rich Lithium Metal Batteries. Small 2024, 20, e2402123.

  • 158.

    Chen, Y.; Zhao, Y.; Wang, A.; et al. Cosolvent Occupied Solvation Tuned Anti-Oxidation Therapy toward Highly Safe 4.7 V-Class NCM811 Batteries. Energy Environ. Sci. 2024, 17, 6113–6126.

  • 159.

    Zhao, Y.; Zhou, T.; Baster, D.; et al. Targeted Functionalization of Cyclic Ether Solvents for Controlled Reactivity in High-Voltage Lithium Metal Batteries. ACS Energy Lett. 2023, 8, 3180–3187.

  • 160.

    Weber, R.; Genovese, M.; Louli, A.J.; et al. Long Cycle Life and Dendrite-Free Lithium Morphology in Anode-Free Lithium Pouch Cells Enabled by a Dual-Salt Liquid Electrolyte. Nat. Energy 2019, 4, 683–689.

  • 161.

    Zhong, S.; Dong, L.; Yuan, B.; et al. Stabilizing High-Nickel Cathodes via Interfacial Hydrogen Bonding Effects Using a Hydrofluoric Acid-Scavenging Separator. Engineering 2024, 39, 117–126.

  • 162.

    Seo, J.-Y.; Lee, Y.-H.; Kim, J.-H.; et al. Electrode-Customized Separator Membranes Based on Self-Assembled Chiral Nematic Liquid Crystalline Cellulose Nanocrystals as a Natural Material Strategy for Sustainable Li-Metal Batteries. Energy Storage Mater. 2022, 50, 783–791.

  • 163.

    Versaci, D.; Canale, I.; Goswami, S.; et al. Molybdenum Disulfide/Polyaniline Interlayer for LITHIUM Polysulphide Trapping in Lithium-Sulphur Batteries. J. Power Sources 2023, 521, 230945.

  • 164.

    An, Q.; Liu, Q.; Mao, P.; et al. Developing the Tandem Structure to Regulate Interfacial Chemistry and Promote Ion Transport Kinetics Toward High-Voltage Lithium Metal Batteries. Angew. Chem. Int. Ed. 2025, 64, e202422539.

  • 165.

    Wang, Y.; Ji, M.; Zhu, T.; et al. Multifunctional Amino-Functionalized Zr-Based Metal-Organic Frameworks: A Breakthrough in Enhancing the Stability and Performance of Ni-Rich Cathode Li Metal Batteries in Water-Prone Environments. Energy Storage Mater. 2025, 77, 104217.

  • 166.

    Zeng, H.; Wang, Q.; Liu, C.; et al. Dynamics-Enhanced Sandwich Solid-State Electrolyte Separator for Wide-Temperature Operation of Lithium Metal Batteries. Energy Storage Mater. 2025, 82, 104614.

  • 167.

    Han, D.-Y.; Lee, J.; Bang, Y.; et al. Molecularly Engineered Membrane-Driven Interphase Stabilization of Electrodes for Li||NCM811 Cells Under Practical Operating Conditions. Energy Environ. Sci. 2025, 18, 10112–10124.

  • 168.

    Liao, C.; Zheng, T.; Zhu, J.; et al. Engineering Durable Nitrate-Enriched Solvation Sheaths in Carbonate Electrolytes through Functional Separator Design for High-Voltage Lithium Metal Batteries. Nano Energy 2025, 142, 111283.

  • 169.

    Zhu, H.; Zhang, G.; Song, M.; et al. Coordination-Induced High-Dielectric Polymer Coatings for High-Energy-Density Lithium Batteries. Energy Storage Mater. 2023, 63, 102968.

  • 170.

    Li, X.; Liu, K.; Yan, Y.; et al. Thermostable and Nonflammable Polyimide/Zirconia Compound Separator for Lithium-Ion Batteries with Superior Electrochemical and Safe Properties. J. Colloid Interface Sci. 2022, 625, 936–945.

  • 171.

    Wu, D.; Dong, N.; Wang, R.; et al. In Situ Construction of High-Safety and Non-Flammable Polyimide “Ceramic” Lithium-Ion Battery Separator via SiO2 Nano-Encapsulation. Chem. Eng. J. 2021, 420, 129992.

  • 172.

    Chen, X.; Liu, J.; Li, W.; et al. Permselective Covalent Organic Framework Membrane as Self-Extinguishing Separator for High-Safety Lithium-Ion Battery. Angew. Chem. Int. Ed. 2025, 64, e202512591.

  • 173.

    Niu, C.; Luo, W.; Dai, C.; et al. High-Voltage-Tolerant Covalent Organic Framework Electrolyte with Holistically Oriented Channels for Solid-State Lithium Metal Batteries with Nickel-Rich Cathodes. Angew. Chem. Int. Ed. 2021, 60, 24915–24923.

  • 174.

    An, H.; Li, M.; Liu, Q.; et al. Strong Lewis-Acid Coordinated PEO Electrolyte Achieves 4.8 V-Class All-Solid-State Batteries over 580 Wh·kg−1. Nat. Commun. 2024, 15, 9150.

  • 175.

    Hou, J.; Sun, W.; Yuan, Q.; et al. Multiscale Engineered Bionic Solid-State Electrolytes Breaking the Stiffness-Damping Trade-Off. Angew. Chem. Int. Ed. 2025, 64, e202421427.

  • 176.

    Eckert, H.; Rodrigues, M.-A. Ion-Conducting Glass-Ceramics for Energy-Storage Applications. MRS Bull. 2017, 42, 206–212.

Share this article:
How to Cite
He, Y.; Xie, H.; Han, Y.; He, W. Structural Degradation and Interfacial Failure of LiNi0.8Co0.1Mn0.1O2 Cathode: A Review of Mechanisms and Modification Strategies. Progress in Energy Materials 2025, 1 (1), 1.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.