- 1.
Centi, G.; Perathoner, S. Towards solar fuels from water and CO2. ChemSusChem 2010, 3, 195–208.
- 2.
Gust, D.; Moore, T.A.; Moore, A. Solar fuels via artificial photosynthesis. Acc. Chem. Res. 2009, 42, 1890–1898.
- 3.
Han, H.; Li, C. Photocatalysis in solar fuel production. Natl. Sci. Rev. 2015, 2, 145–147.
- 4.
Chen, X.; Shen, S.; Guo, L.; et al. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570.
- 5.
Kamat, P.V.; Bisquert, J. Solar fuels. Photocatalytic hydrogen generation. J. Phys. Chem. C 2013, 117, 14873–14875.
- 6.
Nishiyama, H.; Yamada, T.; Nakabayashi, M.; et al. Photocatalytic solar hydrogen production from water on a 100-m2 scale. Nat. Rev. Mater. 2021, 598, 304–307.
- 7.
Lu, Z.; Gao, J.; Rao, S.; et al. A multifunctional membrane based on TiO2/PCN-224 heterojunction with synergistic photocatalytic-photothermal activity under visible-light irradiation. Appl. Catal. B Environ. 2024, 342, 123374.
- 8.
Fang, S.; Rahaman, M.; Bharti, J.; et al. Photocatalytic CO2 reduction. Nat. Rev. Methods Primers 2023, 3, 61.
- 9.
Khan, M.; Akmal, Z.; Tayyab, M.; et al. MOFs materials as photocatalysts for CO2 reduction: Progress, challenges and perspectives. Carbon Capture Sci. Technol. 2024, 11, 100191. https://doi.org/10.1016/j.ccst.2024.100191.
- 10.
Jiang, H.; Li, J.; Ren, W.; et al. Atomic-Level Engineering of Amide-bonded Ohmic-junctions for Synergistic Photocatalytic CO2-to-CO Conversion and H2O2 Production via Barrier-Free Charge Transfer in Pure H2O. Appl. Catal. B Environ. Energy 2025, 378, 125638.
- 11.
Shen, H.; Yang, M.; Hao, L.; et al. Photocatalytic nitrogen reduction to ammonia: Insights into the role of defect engineering in photocatalysts. Nano Res. 2022, 15, 2773–2809.
- 12.
Dhakshinamoorthy, A.; Li, Z.; Yang, S.; et al. Metal–organic framework heterojunctions for photocatalysis. Chem. Soc. Rev. 2024, 53, 3002–3035. https://doi.org/10.1039/D3CS00205E.
- 13.
Navalón, S.; Dhakshinamoorthy, A.; Álvaro, M.; et al. Metal–Organic Frameworks as Photocatalysts for Solar-Driven Overall Water Splitting. Chem. Rev. 2023, 123, 445–490. https://doi.org/10.1021/acs.chemrev.2c00460.
- 14.
Li, K.; Peng, B.; Peng, T. Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. Acs Catal. 2016, 6, 7485–7527.
- 15.
Detz, R.; Reek, J.; Van Der Zwaan, B. The future of solar fuels: When could they become competitive? Energy Environ. Sci. 2018, 11, 1653–1669.
- 16.
Kabir, E.; Kumar, P.; Kumar, S.; et al. Solar energy: Potential and future prospects. Renew. Sustain. Energy Rev. 2018, 82, 894–900.
- 17.
Nayak, P.K.; Mahesh, S.; Snaith, H.J.; et al. Photovoltaic solar cell technologies: Analysing the state of the art. Nat. Rev. Mater. 2019, 4, 269–285.
- 18.
Parida, B.; Iniyan, S.; Goic, R. A review of solar photovoltaic technologies. Renew. Sustain. Energy Rev. 2011, 15, 1625–1636.
- 19.
Polman, A.; Knight, M.; Garnett, E.C.; et al. Photovoltaic materials: Present efficiencies and future challenges. Science 2016, 352, aad4424.
- 20.
Yu, T.; He, W.; Zhang, Q.; et al. Advanced nanomaterials and characterization techniques for photovoltaic and photocatalysis applications. Acc. Mater. Res. 2023, 4, 507–521.
- 21.
Chen, S.; Takata, T.; Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2017, 2, 1–17.
- 22.
Bie, C.; Wang, L.; Yu, J. Challenges for photocatalytic overall water splitting. Chem 2022, 8, 1567–1574.
- 23.
Zhu, Z.; Liu, X.; Bao, C.; et al. How efficient could photocatalytic CO2 reduction with H2O into solar fuels be? Energy Convers. 2020, 222, 113236.
- 24.
Schmidt, R. Photosensitized generation of singlet oxygen. Photochemistryphotobiology 2006, 82, 1161–1177.
- 25.
Piguillem, S.V.; Gomez, G.E.; Tortella, G.R.; et al. Based Analytical Devices Based on Amino-MOFs (MIL-125, UiO-66, and MIL-101) as Platforms towards Fluorescence Biodetection Applications. Chemosensors 2024, 12, 208.
- 26.
Mohamadpour, F.; Amani, A.M. Photocatalytic systems: Reactions, mechanism, and applications. RSC Adv. 2024, 14, 20609–20645.
- 27.
Luu, C.L.; Nguyen, T.T.V.; Nguyen, T.; et al. Synthesis, characterization and adsorption ability of UiO-66-NH2. Adv. Nat.Sci. Nanosci. Nanotechnol. 2015, 6, 025004. https://doi.org/10.1088/2043-6262/6/2/025004.
- 28.
Kampouri, S.; Nguyen, T.N.; Spodaryk, M.; et al. Concurrent Photocatalytic Hydrogen Generation and Dye Degradation Using MIL-125-NH2 under Visible Light Irradiation. Adv. Funct. Mater. 2018, 28, 1806368. https://doi.org/10.1002/adfm.201806368.
- 29.
Balčiūnas, S.; Pavlovaitė, D.; Kinka, M.; et al. Dielectric Spectroscopy of Water Dynamics in Functionalized UiO-66 Metal-Organic Frameworks. Molecules 2020, 25, 1962.
- 30.
Zhang, W.; Wang, L.; Zhang, J. Preparation of Ag/UiO-66-NH2 and its application in photocatalytic reduction of Cr(VI) under visible light. Res. Chem. Intermed. 2019, 45, 4801–4811. https://doi.org/10.1007/s11164-019-03865-6.
- 31.
Meng, J.; Chen, Q.; Lu, J.; et al. Z-Scheme Photocatalytic CO2 Reduction on a Heterostructure of Oxygen-Defective ZnO/Reduced Graphene Oxide/UiO-66-NH2 under Visible Light. ACS Appl. Mater. Interfaces 2019, 11, 550–562. https://doi.org/10.1021/acsami.8b14282.
- 32.
Wang, M.; Yang, L.; Yuan, J.; et al. Heterostructured Bi2S3@NH2-MIL-125(Ti) nanocomposite as a bifunctional photocatalyst for Cr(vi) reduction and rhodamine B degradation under visible light. RSC Adv. 2018, 8, 12459–12470. https://doi.org/10.1039/C8RA00882E.
- 33.
Kavun, V.; Uslamin, E.; van der Linden, B.; et al. Promoting Photocatalytic Activity of NH2-MIL-125(Ti) for H2 Evolution Reaction through Creation of TiIII- and CoI-Based Proton Reduction Sites. ACS Appl. Mater. Interfaces 2023, 15, 54590–54601. https://doi.org/10.1021/acsami.3c15490.
- 34.
Shi, X.; Lian, X.; Yang, D.; et al. Facet-engineering of NH2-UiO-66 with enhanced photocatalytic hydrogen production performance. Dalton Trans. 2021, 50, 17953–17959. https://doi.org/10.1039/D1DT03424C.
- 35.
Sagara, T.; Tahara, H. Redox of viologen for powering and coloring. Chem. Rec. 2021, 21, 2375–2388.
- 36.
Daeneke, T.; Uemura, Y.; Duffy, N.W.; et al. Aqueous dye-sensitized solar cell electrolytes based on the ferricyanide-ferrocyanide redox couple. Adv. Mater. 2012, 24, 1222–1225.
- 37.
Reyes, R.L.; Tanaka, K. The NAD+/NADH redox couple—Insights from the perspective of electrochemical energy transformation and biomimetic Chemistry. Kimika 2017, 28, 32–43.
- 38.
Michaelis, L.; Hill, E.S. The viologen indicators. J. Gen. Physiol. 1933, 16, 859.
- 39.
Alvaro, M.; Carbonell, E.; Ferrer, B.; et al. Semiconductor behavior of a metal-organic framework (MOF). Chem. A Eur. J. 2007, 13, 5106–5112.
- 40.
De Miguel, M.; Ragon, F.; Devic, T.; et al. Evidence of Photoinduced Charge Separation in the Metal–Organic Framework MIL-125 (Ti)-NH2. ChemPhysChem 2012, 13, 3651–3654.
- 41.
Dhakshinamoorthy, A.; Asiri, A.M.; Garcia, H. Metal–organic framework (MOF) compounds: Photocatalysts for redox reactions and solar fuel production. Angew. Chem. Int. Ed. 2016, 55, 5414–5445.
- 42.
de Lacey, A.L.; Fernández, V.M. pH-Dependent redox behaviour of asymmetric viologens. J. Electroanal. Chem. 1995, 399, 163–167.
- 43.
Collyer, S.D.; Davis, F.; Lucke, A.; et al. The electrochemistry of the ferri/ferrocyanide couple at a calix[4]resorcinarenetetrathiol-modified gold electrode as a study of novel electrode modifying coatings for use within electro-analytical sensors. J. Electroanal. Chem. 2003, 549, 119–127.
- 44.
Qarah, N.A.; Basavaiah, K.; Abdulrahman, S.A. Spectrophotometric determination of ethionamide in pharmaceuticals using Folin–Ciocalteu reagent and iron(III)-ferricyanide as chromogenic agents. J. Taibah Univ. Sci. 2017, 11, 718–728.
- 45.
Saleh, F.S.; Rahman, M.R.; Okajima, T.; et al. Determination of formal potential of NADH/NAD+ redox couple and catalytic oxidation of NADH using poly (phenosafranin)-modified carbon electrodes. Bioelectrochemistry 2011, 80, 121–127.
- 46.
Doménech, A.; García, H.; Doménech-Carbó, M.T.; et al. Electrochemistry of metal—organic frameworks: A description from the voltammetry of microparticles approach. J. Phys. Chem. C 2007, 111, 13701–13711.
- 47.
Kosower, E.M.; Cotter, J.L. Stable free radicals. II. The reduction of 1-methyl-4-cyanopyridinium ion to methylviologen cation radical. J. Am. Chem. Soc. 1964, 86, 5524–5527.
- 48.
Yamauchi, K.; Kawano, K.; Yatsuzuka, K.; et al. Viologen-Radical-Driven Hydrogen Evolution from Water Catalyzed by Co-NHC Catalysts: Radical Scavenging by Nitrate and Volmer-Heyrovsky-like CPET Pathway. J. Am. Chem. Soc. 2025, 147, 5602–5614.
- 49.
Harriman, A.; Porter, G. Viologen/Platinum systems for hydrogen generation. J. Chem.Soc. Faraday Trans. 2 Mol. Phys. 1982, 78, 1937–1943.
- 50.
Li, Z.; Zhang, X.; Luo, Y.; et al. An electrochemical sensor based on the composite UiO-66-NH2/rGO for trace detection of Pb(II) and Cu(II). Chem. Phys. Lett. 2023, 830, 140825. https://doi.org/10.1016/j.cplett.2023.140825.
- 51.
Bravo Fuchineco, D.A.; Heredia, A.C.; Mendoza, S.M.; et al. Synthesis, Characterization and Catalytic Activity of UiO-66-NH2 in the Esterification of Levulinic Acid. Appl. Nano 2021, 2, 344–358.
- 52.
Dan-Hardi, M.; Serre, C.; Frot, T.; et al. A New Photoactive Crystalline Highly Porous Titanium(IV) Dicarboxylate. J. Am. Chem. Soc. 2009, 131, 10857–10859. https://doi.org/10.1021/ja903726m.
- 53.
Wang, Z.; Inoue, Y.; Hisatomi, T.; et al. Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles. Nat. Catal. 2018, 1, 756–763.
- 54.
Wang, Q.; Nakabayashi, M.; Hisatomi, T.; et al. Oxysulfide photocatalyst for visible-light-driven overall water splitting. Nature materials 2019, 18, 827–832.
- 55.
Zhao, Z.; Goncalves, R.V.; Barman, S.K.; et al. Electronic structure basis for enhanced overall water splitting photocatalysis with aluminum doped SrTiO3 in natural sunlight. Energy Environ. Sci. 2019, 12, 1385–1395.
- 56.
Kato, H.; Asakura, K.; Kudo, A. Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J. Am. Chem. Soc. 2003, 125, 3082–3089.
- 57.
Goto, Y.; Hisatomi, T.; Wang, Q.; et al. A particulate photocatalyst water-splitting panel for large-scale solar hydrogen generation. Joule 2018, 2, 509–520.
- 58.
Liu, T.; Pan, Z.; Kato, K.; et al. A general interfacial-energetics-tuning strategy for enhanced artificial photosynthesis. Nat. Commun. 2022, 13, 7783.
- 59.
Chen, D.; Chen, W.; Wu, Y.; et al. Covalent organic frameworks containing dual O2 reduction centers for overall photosynthetic hydrogen peroxide production. Angew. Chem. Int. Ed. 2023, 62, e202217479.