- 1.
Castellan, A.; Bart, J.C.J.; Cavallaro, S. Industrial production and use of adipic acid. Catal. Today 1991, 9, 237–254. https://doi.org/10.1016/0920-5861(91)80049-F.
- 2.
Huo, H.; Guo, B.; Ma, G.; et al. Recent progress in strategies to enhance the photocatalytic oxidation performance of cyclohexane. J. Environ. Chem. Eng. 2024, 12, 113504. https://doi.org/10.1016/j.jece.2024.113504.
- 3.
Montjoy, D.G.; Wilson, E.A.K.; Hou, H.; et al. Photocatalytic cyclohexane oxidation and epoxidation using hedgehog particles. Nat. Commun. 2023, 14, 857. https://doi.org/10.1038/s41467-023-36473-5.
- 4.
Schuchardt, U.; Cardoso, D.; Sercheli, R.; et al. Cyclohexane oxidation continues to be a challenge. Appl. Catal. A Gen. 2001, 211, 1–17. https://doi.org/10.1016/S0926-860X(01)00472-0.
- 5.
Luo, L.; Zhang, T.; Wang, M.; et al. Recent Advances in Heterogeneous Photo-Driven Oxidation of Organic Molecules by Reactive Oxygen Species. ChemSusChem 2020, 13, 5173–5184. https://doi.org/10.1002/cssc.202001398.
- 6.
Chen, L.; Tang, J.; Song, L.-N.; et al. Heterogeneous photocatalysis for selective oxidation of alcohols and hydrocarbons. Appl. Catal. B Environ. 2019, 242, 379–388. https://doi.org/10.1016/j.apcatb.2018.10.025.
- 7.
Wang, H.; Gao, X.; Lv, Z.; et al. Recent Advances in Oxidative R1-H/R2-H Cross-Coupling with Hydrogen Evolution via Photo-/Electrochemistry. Chem. Rev. 2019, 119, 6769–6787. https://doi.org/10.1021/acs.chemrev.9b00045.
- 8.
Wu, W.; He, X.; Fu, Z.; et al. Metal chlorides-catalyzed selective oxidation of cyclohexane by molecular oxygen under visible light irradiation. J. Catal. 2012, 286, 6–12. https://doi.org/10.1016/j.jcat.2011.09.034.
- 9.
She, J.; Fu, Z.; Li, J.; et al. Visible light-triggered vanadium-substituted molybdophosphoric acids to catalyze liquid phase oxygenation of cyclohexane to KA oil by nitrous oxide. Appl. Catal. B Environ. 2016, 182, 392–404. https://doi.org/10.1016/j.apcatb.2015.09.048.
- 10.
Fu, C.; Du, J.; Shi, N.; et al. Strongly active and environmentally friendly WO3/C3N4 photocatalysts for converting cyclohexane to cyclohexanone under ambient conditions. Sci. Rep. 2024, 14, 17947. https://doi.org/10.1038/s41598-024-68319-5.
- 11.
Zhou, H.; Shao, Y.; Zhou, Z.; et al. Bio-inspired V-TiO2 architectures with regulable surface ultrastructure for visible-light photocatalytic selective oxidation of cyclohexane. Appl. Surf. Sci. 2023, 622, 156957. https://doi.org/10.1016/j.apsusc.2023.156957.
- 12.
Xu, G.; Zhang, Y.; Peng, D.; et al. MOF derived carbon modified porous TiO2 mixed-phase junction with efficient visible-light photocatalysis for cyclohexane oxidation. Mater. Res. Bull. 2022, 146, 111602. https://doi.org/10.1016/j.materresbull.2021.111602.
- 13.
Teramura, K.; Tanaka, T.; Yamamoto, T.; et al. Photo-oxidation of cyclohexane over alumina-supported vanadium oxide catalyst. J. Mol. Catal. A: Chem. 2001, 165, 299–301. https://doi.org/10.1016/S1381-1169(00)00417-9.
- 14.
Wang, K.; Xue, B.; Wang, J.-L.; et al. Efficient and selective oxidation of cyclohexane to cyclohexanone over flake hexagonal boron nitride/titanium dioxide hybrid photocatalysts. Mol. Catal. 2021, 505, 111530. https://doi.org/10.1016/j.mcat.2021.111530.
- 15.
Ichihashi, Y.; Saijo, S.; Taniguchi, M.; et al. Study of Cyclohexane Photooxidation over Pt-WO3 Catalysts Mixed with TiO2 under Visible Light Irradiation. Mater. Sci. Forum 2010, 658, 149–152. https://doi.org/10.4028/www.scientific.net/MSF.658.149.
- 16.
Thomas, A.; Fischer, A.; Goettmann, F.; et al. Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 2008, 18, 4893–4908. https://doi.org/10.1039/b800274f.
- 17.
Wang, Y.; Wang, X.; Antonietti, M. Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry. Angew. Chem. Int. Ed. 2012, 51, 68–89. https://doi.org/10.1002/anie.201101182.
- 18.
Wang, X.; Maeda, K.; Thomas, A.; et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80. https://doi.org/10.1038/nmat2317.
- 19.
Wang, X.; Blechert, S.; Antonietti, M. Polymeric Graphitic Carbon Nitride for Heterogeneous Photocatalysis. ACS Catal. 2012, 2, 1596–1606. https://doi.org/10.1021/cs300240x.
- 20.
Wang, X.; Maeda, K.; Chen, X.; et al. Polymer Semiconductors for Artificial Photosynthesis: Hydrogen Evolution by Mesoporous Graphitic Carbon Nitride with Visible Light. J. Am. Chem. Soc. 2009, 131, 1680–1681. https://doi.org/10.1021/ja809307s.
- 21.
Maeda, K.; Wang, X.; Nishihara, Y.; et al. Photocatalytic Activities of Graphitic Carbon Nitride Powder for Water Reduction and Oxidation under Visible Light. J. Phys. Chem. C 2009, 113, 4940–4947. https://doi.org/10.1021/jp809119m.
- 22.
Wang, J.; Yang, J.; Zeng, S.; et al. Efficient photocatalytic oxidation of cyclohexane to KA oil by carbon nitride hybridized decatungstate under visible light. J. Catal. 2025, 443, 115996. https://doi.org/10.1016/j.jcat.2025.115996.
- 23.
Xu, M.; Yu, Y.; Shi, G.; et al. Curved Surface of Graphitic Carbon Nitride Boosting Cyclohexane Oxidation over Single-Atom Catalysts. ACS Appl. Nano Mater. 2024, 7, 11952–11964. https://doi.org/10.1021/acsanm.4c01538.
- 24.
Dam, B.; Das, B.; Patel, B.K. Graphitic carbon nitride materials in dual metallo-photocatalysis: A promising concept in organic synthesis. Green Chem. 2023, 25, 3374–3397. https://doi.org/10.1039/D3GC00669G.
- 25.
Zhou, P.; Cai, Y.; Tang, Y. Recent advances on carbon nitride-based photocatalysts for organic transformations in aqueous media. Org. Chem. Front. 2024, 11, 4624–4638. https://doi.org/10.1039/D4QO00955J.
- 26.
Savateev, A.; Antonietti, M. Heterogeneous Organocatalysis for Photoredox Chemistry. ACS Catal. 2018, 8, 9790–9808. https://doi.org/10.1021/acscatal.8b02595.
- 27.
Verma, S.K.; Verma, R.; Girish, Y.R.; et al. Heterogeneous graphitic carbon nitrides in visible-light-initiated organic transformations. Green Chem. 2022, 24, 438–479. https://doi.org/10.1039/D1GC03490A.
- 28.
Tashakory, A.; Mondal, S.; Battula, V.R.; et al. Minute-Scale High-Temperature Synthesis of Polymeric Carbon Nitride Photoanodes. Small Struct. 2024, 5, 2400123. https://doi.org/10.1002/sstr.202400123.
- 29.
Zhao, C.; Li, Q.; Xie, Y.; et al. Three-dimensional assemblies of carbon nitride tubes as nanoreactors for enhanced photocatalytic hydrogen production. J. Mater. Chem. A 2020, 8, 305–312. https://doi.org/10.1039/C9TA10688J.
- 30.
Fan, J.-M.; Chen, J.-J.; Zhang, Q.; et al. An Amorphous Carbon Nitride Composite Derived from ZIF-8 as Anode Material for Sodium-Ion Batteries. ChemSusChem 2015, 8, 1856–1861. https://doi.org/10.1002/cssc.201500192.
- 31.
Ech-chamikh, E.; Essafti, A.; Ijdiyaou, Y.; et al. XPS study of amorphous carbon nitride (a-C:N) thin films deposited by reactive RF sputtering. Sol. Energy Mater. Sol. Cells 2006, 90, 1420–1423. https://doi.org/10.1016/j.solmat.2005.10.007.
- 32.
Alwin, E.; Nowicki, W.; Wojcieszak, R.; et al. Elucidating the structure of the graphitic carbon nitride nanomaterials via X-ray photoelectron spectroscopy and X-ray powder diffraction techniques. Dalton Trans. 2020, 49, 12805–12813. https://doi.org/10.1039/D0DT02325F.
- 33.
Mondal, S.; Mark, G.; Tashakory, A.; et al. Porous carbon nitride rods as an efficient photoanode for water splitting and benzylamine oxidation. J. Mater. Chem. A 2024, 12, 11502–11510. https://doi.org/10.1039/D4TA00237G.
- 34.
Mai, J.; Fang, Y.; Liu, J.; et al. Simple synthesis of WO3-Au composite and their improved photothermal synergistic catalytic performance for cyclohexane oxidation. Mol. Catal. 2019, 473, 110389. https://doi.org/10.1016/j.mcat.2019.04.018.
- 35.
Wang, K.; Wang, D.; Zhang, X.-Y.; et al. Modular calcination strategy to construct defect-rich nitrogen-doped Nb2O5 for boosting photocatalytic oxidation of cyclohexane to cyclohexanone in solvent-free conditions. Appl. Surf. Sci. 2023, 617, 156600. https://doi.org/10.1016/j.apsusc.2023.156600.
- 36.
Laudadio, G.; Govaerts, S.; Wang, Y.; et al. Selective C(sp3)−H Aerobic Oxidation Enabled by Decatungstate Photocatalysis in Flow. Angew. Chem. Int. Ed. 2018, 57, 4078–4082. https://doi.org/10.1002/anie.201800818.
- 37.
Tang, S.; She, J.; Fu, Z.; et al. Study on the formation of photoactive species in XPMo12−nVnO40− HCl system and its effect on photocatalysis oxidation of cyclohexane by dioxygens under visible light irradiation. Appl. Catal. B Environ. 2017, 214, 89–99. https://doi.org/10.1016/j.apcatb.2017.05.027.
- 38.
Wan, Y.; Guo, Q.; Wang, K.; et al. Efficient and selective photocatalytic oxidation of cyclohexane using O2 as oxidant in VOCl2 solution and mechanism insight. Chem. Eng. Sci. 2019, 203, 163–172. https://doi.org/10.1016/j.ces.2019.03.079.
- 39.
Xiang, L.; Fan, J.; Zhong, W.; et al. Heteroatom-induced band-reconstruction of metal vanadates for photocatalytic cyclohexane oxidation towards KA-oil selectivity. Appl. Catal. A Gen. 2019, 575, 120–131. https://doi.org/10.1016/j.apcata.2019.02.015.
- 40.
Grando, G.; Sportelli, G.; Castellani, G.; et al. Toward Reliable and Reproducible Research in Organic Photocatalysis by Carbon Nitride. ACS Catal. 2025, 15, 16792–16809. https://doi.org/10.1021/acscatal.5c04794.
- 41.
Li, Z.; Luo, L.; Li, M.; et al. Photoelectrocatalytic C–H halogenation over an oxygen vacancy-rich TiO2 photoanode. Nat. Commun. 2021, 12, 6698. https://doi.org/10.1038/s41467-021-26997-z.
- 42.
Saxena, B.; Patel, R.I.; Sharma, A. Visible light-induced bromine radical enhanced hydrogen atom transfer (HAT) reactions in organic synthesis. RSC Sustain. 2024, 2, 2169–2189. https://doi.org/10.1039/D4SU00214H.
- 43.
Ludwig, C.T.; Owolabi, I.A.; Evans, L.W.; et al. Wavelength-Selective Reactivity of Iron(III) Halide Salts in Photocatalytic C–H Functionalization. J. Org. Chem. 2025, 90, 3404–3411. https://doi.org/10.1021/acs.joc.4c03107.
- 44.
Bonciolini, S.; Noël, T.; Capaldo, L. Synthetic Applications of Photocatalyzed Halogen-Radical Mediated Hydrogen Atom Transfer for C−H Bond Functionalization. Eur. J. Org. Chem. 2022, 2022, e202200417. https://doi.org/10.1002/ejoc.202200417.