• Open Access
  • Article

Photocatalytic Oxidation of Cyclohexane in a Biphasic System Using Rapidly Synthesized Polymeric Carbon Nitride Films

  • Ayelet Tashakory,   
  • Venugopala Rao Battula *,   
  • Menny Shalom *

Received: 11 Sep 2025 | Revised: 02 Nov 2025 | Accepted: 05 Nov 2025 | Published: 12 Nov 2025

Abstract

The oxidation of cyclohexane (CHA) to cyclohexanol and cyclohexanone (collectively known as KA oil) is a key C–H activation reaction and holds a central step in Nylon™ production. However, traditional processes suffer from low conversion and complex reaction conditions. Photocatalytic approaches under ambient conditions offer a sustainable alternative, though most rely on suspended powders with challenges in light management, catalyst recovery, and scalability. Here, we demonstrate the use of immobilized carbon nitride films for visible light-driven oxidation of CHA in a biphasic CHA–water system at a mild temperature. The system achieves high KA oil yields without stirring, enabling better light utilization and operational simplicity. Product selectivity proved to depend on the type of acid added: HCl favors cyclohexanone, while HBr enhances cyclohexanol formation. Mixtures of both acids allow fine-tuning of the product ratio. These findings highlight the potential of scalable CN-based photocatalyst panels for energy-efficient KA oil production under benign conditions. The highest product yield was achieved after 6 days in a biphasic CHA + 1 M HCl system, obtaining 155 µM cm−2 KA oil.

Graphical Abstract

References 

  • 1.
    Castellan, A.; Bart, J.C.J.; Cavallaro, S. Industrial production and use of adipic acid. Catal. Today 1991, 9, 237–254. https://doi.org/10.1016/0920-5861(91)80049-F.
  • 2.
    Huo, H.; Guo, B.; Ma, G.; et al. Recent progress in strategies to enhance the photocatalytic oxidation performance of cyclohexane. J. Environ. Chem. Eng. 2024, 12, 113504. https://doi.org/10.1016/j.jece.2024.113504.
  • 3.
    Montjoy, D.G.; Wilson, E.A.K.; Hou, H.; et al. Photocatalytic cyclohexane oxidation and epoxidation using hedgehog particles. Nat. Commun. 2023, 14, 857. https://doi.org/10.1038/s41467-023-36473-5.
  • 4.
    Schuchardt, U.; Cardoso, D.; Sercheli, R.; et al. Cyclohexane oxidation continues to be a challenge. Appl. Catal. A Gen. 2001, 211, 1–17. https://doi.org/10.1016/S0926-860X(01)00472-0.
  • 5.
    Luo, L.; Zhang, T.; Wang, M.; et al. Recent Advances in Heterogeneous Photo-Driven Oxidation of Organic Molecules by Reactive Oxygen Species. ChemSusChem 2020, 13, 5173–5184. https://doi.org/10.1002/cssc.202001398.
  • 6.
    Chen, L.; Tang, J.; Song, L.-N.; et al. Heterogeneous photocatalysis for selective oxidation of alcohols and hydrocarbons. Appl. Catal. B Environ. 2019, 242, 379–388. https://doi.org/10.1016/j.apcatb.2018.10.025.
  • 7.
    Wang, H.; Gao, X.; Lv, Z.; et al. Recent Advances in Oxidative R1-H/R2-H Cross-Coupling with Hydrogen Evolution via Photo-/Electrochemistry. Chem. Rev. 2019, 119, 6769–6787. https://doi.org/10.1021/acs.chemrev.9b00045.
  • 8.
    Wu, W.; He, X.; Fu, Z.; et al. Metal chlorides-catalyzed selective oxidation of cyclohexane by molecular oxygen under visible light irradiation. J. Catal. 2012, 286, 6–12. https://doi.org/10.1016/j.jcat.2011.09.034.
  • 9.
    She, J.; Fu, Z.; Li, J.; et al. Visible light-triggered vanadium-substituted molybdophosphoric acids to catalyze liquid phase oxygenation of cyclohexane to KA oil by nitrous oxide. Appl. Catal. B Environ. 2016, 182, 392–404. https://doi.org/10.1016/j.apcatb.2015.09.048.
  • 10.

    Fu, C.; Du, J.; Shi, N.; et al. Strongly active and environmentally friendly WO3/C3N4 photocatalysts for converting cyclohexane to cyclohexanone under ambient conditions. Sci. Rep. 2024, 14, 17947. https://doi.org/10.1038/s41598-024-68319-5.

  • 11.

    Zhou, H.; Shao, Y.; Zhou, Z.; et al. Bio-inspired V-TiO2 architectures with regulable surface ultrastructure for visible-light photocatalytic selective oxidation of cyclohexane. Appl. Surf. Sci. 2023, 622, 156957. https://doi.org/10.1016/j.apsusc.2023.156957.

  • 12.

    Xu, G.; Zhang, Y.; Peng, D.; et al. MOF derived carbon modified porous TiO2 mixed-phase junction with efficient visible-light photocatalysis for cyclohexane oxidation. Mater. Res. Bull. 2022, 146, 111602. https://doi.org/10.1016/j.materresbull.2021.111602.

  • 13.
    Teramura, K.; Tanaka, T.; Yamamoto, T.; et al. Photo-oxidation of cyclohexane over alumina-supported vanadium oxide catalyst. J. Mol. Catal. A: Chem. 2001, 165, 299–301. https://doi.org/10.1016/S1381-1169(00)00417-9.
  • 14.
    Wang, K.; Xue, B.; Wang, J.-L.; et al. Efficient and selective oxidation of cyclohexane to cyclohexanone over flake hexagonal boron nitride/titanium dioxide hybrid photocatalysts. Mol. Catal. 2021, 505, 111530. https://doi.org/10.1016/j.mcat.2021.111530.
  • 15.

    Ichihashi, Y.; Saijo, S.; Taniguchi, M.; et al. Study of Cyclohexane Photooxidation over Pt-WO3 Catalysts Mixed with TiO2 under Visible Light Irradiation. Mater. Sci. Forum 2010, 658, 149–152. https://doi.org/10.4028/www.scientific.net/MSF.658.149.

  • 16.
    Thomas, A.; Fischer, A.; Goettmann, F.; et al. Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 2008, 18, 4893–4908. https://doi.org/10.1039/b800274f.
  • 17.
    Wang, Y.; Wang, X.; Antonietti, M. Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry. Angew. Chem. Int. Ed. 2012, 51, 68–89. https://doi.org/10.1002/anie.201101182.
  • 18.
    Wang, X.; Maeda, K.; Thomas, A.; et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80. https://doi.org/10.1038/nmat2317.
  • 19.
    Wang, X.; Blechert, S.; Antonietti, M. Polymeric Graphitic Carbon Nitride for Heterogeneous Photocatalysis. ACS Catal. 2012, 2, 1596–1606. https://doi.org/10.1021/cs300240x.
  • 20.
    Wang, X.; Maeda, K.; Chen, X.; et al. Polymer Semiconductors for Artificial Photosynthesis: Hydrogen Evolution by Mesoporous Graphitic Carbon Nitride with Visible Light. J. Am. Chem. Soc. 2009, 131, 1680–1681. https://doi.org/10.1021/ja809307s.
  • 21.
    Maeda, K.; Wang, X.; Nishihara, Y.; et al. Photocatalytic Activities of Graphitic Carbon Nitride Powder for Water Reduction and Oxidation under Visible Light. J. Phys. Chem. C 2009, 113, 4940–4947. https://doi.org/10.1021/jp809119m.
  • 22.
    Wang, J.; Yang, J.; Zeng, S.; et al. Efficient photocatalytic oxidation of cyclohexane to KA oil by carbon nitride hybridized decatungstate under visible light. J. Catal. 2025, 443, 115996. https://doi.org/10.1016/j.jcat.2025.115996.
  • 23.
    Xu, M.; Yu, Y.; Shi, G.; et al. Curved Surface of Graphitic Carbon Nitride Boosting Cyclohexane Oxidation over Single-Atom Catalysts. ACS Appl. Nano Mater. 2024, 7, 11952–11964. https://doi.org/10.1021/acsanm.4c01538.
  • 24.
    Dam, B.; Das, B.; Patel, B.K. Graphitic carbon nitride materials in dual metallo-photocatalysis: A promising concept in organic synthesis. Green Chem. 2023, 25, 3374–3397. https://doi.org/10.1039/D3GC00669G.
  • 25.
    Zhou, P.; Cai, Y.; Tang, Y. Recent advances on carbon nitride-based photocatalysts for organic transformations in aqueous media. Org. Chem. Front. 2024, 11, 4624–4638. https://doi.org/10.1039/D4QO00955J.
  • 26.
    Savateev, A.; Antonietti, M. Heterogeneous Organocatalysis for Photoredox Chemistry. ACS Catal. 2018, 8, 9790–9808. https://doi.org/10.1021/acscatal.8b02595.
  • 27.
    Verma, S.K.; Verma, R.; Girish, Y.R.; et al. Heterogeneous graphitic carbon nitrides in visible-light-initiated organic transformations. Green Chem. 2022, 24, 438–479. https://doi.org/10.1039/D1GC03490A.
  • 28.
    Tashakory, A.; Mondal, S.; Battula, V.R.; et al. Minute-Scale High-Temperature Synthesis of Polymeric Carbon Nitride Photoanodes. Small Struct. 2024, 5, 2400123. https://doi.org/10.1002/sstr.202400123.
  • 29.
    Zhao, C.; Li, Q.; Xie, Y.; et al. Three-dimensional assemblies of carbon nitride tubes as nanoreactors for enhanced photocatalytic hydrogen production. J. Mater. Chem. A 2020, 8, 305–312. https://doi.org/10.1039/C9TA10688J.
  • 30.
    Fan, J.-M.; Chen, J.-J.; Zhang, Q.; et al. An Amorphous Carbon Nitride Composite Derived from ZIF-8 as Anode Material for Sodium-Ion Batteries. ChemSusChem 2015, 8, 1856–1861. https://doi.org/10.1002/cssc.201500192.
  • 31.
    Ech-chamikh, E.; Essafti, A.; Ijdiyaou, Y.; et al. XPS study of amorphous carbon nitride (a-C:N) thin films deposited by reactive RF sputtering. Sol. Energy Mater. Sol. Cells 2006, 90, 1420–1423. https://doi.org/10.1016/j.solmat.2005.10.007.
  • 32.
    Alwin, E.; Nowicki, W.; Wojcieszak, R.; et al. Elucidating the structure of the graphitic carbon nitride nanomaterials via X-ray photoelectron spectroscopy and X-ray powder diffraction techniques. Dalton Trans. 2020, 49, 12805–12813. https://doi.org/10.1039/D0DT02325F.
  • 33.
    Mondal, S.; Mark, G.; Tashakory, A.; et al. Porous carbon nitride rods as an efficient photoanode for water splitting and benzylamine oxidation. J. Mater. Chem. A 2024, 12, 11502–11510. https://doi.org/10.1039/D4TA00237G.
  • 34.

    Mai, J.; Fang, Y.; Liu, J.; et al. Simple synthesis of WO3-Au composite and their improved photothermal synergistic catalytic performance for cyclohexane oxidation. Mol. Catal. 2019, 473, 110389. https://doi.org/10.1016/j.mcat.2019.04.018.

  • 35.

    Wang, K.; Wang, D.; Zhang, X.-Y.; et al. Modular calcination strategy to construct defect-rich nitrogen-doped Nb2O5 for boosting photocatalytic oxidation of cyclohexane to cyclohexanone in solvent-free conditions. Appl. Surf. Sci. 2023, 617, 156600. https://doi.org/10.1016/j.apsusc.2023.156600.

  • 36.

    Laudadio, G.; Govaerts, S.; Wang, Y.; et al. Selective C(sp3)−H Aerobic Oxidation Enabled by Decatungstate Photocatalysis in Flow. Angew. Chem. Int. Ed. 2018, 57, 4078–4082. https://doi.org/10.1002/anie.201800818.

  • 37.

    Tang, S.; She, J.; Fu, Z.; et al. Study on the formation of photoactive species in XPMo12−nVnO40− HCl system and its effect on photocatalysis oxidation of cyclohexane by dioxygens under visible light irradiation. Appl. Catal. B Environ. 2017, 214, 89–99. https://doi.org/10.1016/j.apcatb.2017.05.027.

  • 38.

    Wan, Y.; Guo, Q.; Wang, K.; et al. Efficient and selective photocatalytic oxidation of cyclohexane using O2 as oxidant in VOCl2 solution and mechanism insight. Chem. Eng. Sci. 2019, 203, 163–172. https://doi.org/10.1016/j.ces.2019.03.079.

  • 39.
    Xiang, L.; Fan, J.; Zhong, W.; et al. Heteroatom-induced band-reconstruction of metal vanadates for photocatalytic cyclohexane oxidation towards KA-oil selectivity. Appl. Catal. A Gen. 2019, 575, 120–131. https://doi.org/10.1016/j.apcata.2019.02.015.
  • 40.
    Grando, G.; Sportelli, G.; Castellani, G.; et al. Toward Reliable and Reproducible Research in Organic Photocatalysis by Carbon Nitride. ACS Catal. 2025, 15, 16792–16809. https://doi.org/10.1021/acscatal.5c04794.
  • 41.

    Li, Z.; Luo, L.; Li, M.; et al. Photoelectrocatalytic C–H halogenation over an oxygen vacancy-rich TiO2 photoanode. Nat. Commun. 2021, 12, 6698. https://doi.org/10.1038/s41467-021-26997-z.

  • 42.
    Saxena, B.; Patel, R.I.; Sharma, A. Visible light-induced bromine radical enhanced hydrogen atom transfer (HAT) reactions in organic synthesis. RSC Sustain. 2024, 2, 2169–2189. https://doi.org/10.1039/D4SU00214H.
  • 43.
    Ludwig, C.T.; Owolabi, I.A.; Evans, L.W.; et al. Wavelength-Selective Reactivity of Iron(III) Halide Salts in Photocatalytic C–H Functionalization. J. Org. Chem. 2025, 90, 3404–3411. https://doi.org/10.1021/acs.joc.4c03107.
  • 44.
    Bonciolini, S.; Noël, T.; Capaldo, L. Synthetic Applications of Photocatalyzed Halogen-Radical Mediated Hydrogen Atom Transfer for C−H Bond Functionalization. Eur. J. Org. Chem. 2022, 2022, e202200417. https://doi.org/10.1002/ejoc.202200417.
Share this article:
How to Cite
Tashakory, A.; Battula, V. R.; Shalom, M. Photocatalytic Oxidation of Cyclohexane in a Biphasic System Using Rapidly Synthesized Polymeric Carbon Nitride Films. Photocatalysis 2025, 1 (1), 4. https://doi.org/10.53941/photocatalysis.2025.100004.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.