2510001659
  • Open Access
  • Review

Recent Progress in the Development of Small Molecule-Based Fluorescent Probes for Oxidative Stress

  • Yusheng Fan,   
  • Yanlin Fu,   
  • Chunfei Bao,   
  • Yubin Ding *

Received: 30 Aug 2025 | Revised: 26 Sep 2025 | Accepted: 09 Oct 2025 | Published: 17 Oct 2025

Abstract

Oxidative stress, driven by overproduction of reactive oxygen and nitrogen species, is implicated in numerous diseases. The precise detection of oxidative stress biomarkers is therefore crucial for understanding their biological roles. In this review, we intend to discuss recent advances in the development of fluorescent probes for detecting oxidative stress-related analytes. We specifically highlight the design strategies, sensing mechanisms, and performance of recently reported probes for hypochlorite and peroxynitrite, and other important ROS/RNS. The discussion is divided into four subtopics including fluorescent probes for hypochlorite, fluorescent probes for peroxynitrite, fluorescent probes for other oxidative stress species and fluorescent probes for multiple oxidative stress related analytes. Especially, we are interested in probes with multi-analyte responsive abilities, which are even capable of differentiating between multiple ROS/RNS. We propose that the comprehensive measurement of multiple biomarkers represents a critical future direction for this field. With a well-designed chemical structure, these probes are not just analytical tools. They are translational bridges that transform our understanding of oxidative stress into actionable clinical insights for earlier diagnosis, mechanistic understanding, and therapeutic monitoring.

References 

  • 1.
    Pizzino, G.; Irrera, N.; Cucinotta, M.; et al. Oxidative Stress: Harms and Benefits for Human Health. Oxidative Med. Cell. Longev. 2017, 2017, 8416763. https://doi.org/10.1155/2017/8416763.
  • 2.
    Chen, X.; Tian, X.; Shin, I.; et al. Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. Chem. Soc. Rev. 2011, 40, 4783–4804. https://doi.org/10.1039/C1CS15037E.
  • 3.
    Chen, X.; Wang, F.; Hyun, J.Y.; et al. Recent progress in the development of fluorescent, luminescent and colorimetric probes for detection of reactive oxygen and nitrogen species. Chem. Soc. Rev. 2016, 45, 2976–3016. https://doi.org/10.1039/C6CS00192K.
  • 4.
    Sies, H.; Belousov, V.V.; Chandel, N.S.; et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 2022, 23, 499–515. https://doi.org/10.1038/s41580-022-00456-z.
  • 5.
    Cotruvo Jr, J.A.; Aron, A.T.; Ramos-Torres, K.M.; et al. Synthetic fluorescent probes for studying copper in biological systems. Chem. Soc. Rev. 2015, 44, 4400–4414. https://doi.org/10.1039/C4CS00346B.
  • 6.
    Sedgwick, A.C.; Wu, L.; Han, H.-H.; et al. Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents. Chem. Soc. Rev. 2018, 47, 8842–8880. https://doi.org/10.1039/C8CS00185E.
  • 7.
    Wu, L.; Huang, C.; Emery, B.P.; et al. Forster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents. Chem. Soc. Rev. 2020, 49, 5110–5139. https://doi.org/10.1039/c9cs00318e.
  • 8.
    Lv, X.; Huang, W.; Jiang, N.; et al. A-D-A type fluorescent probe with dual quaternary-ammonium-salt anchors for turn on detection of HSA in wide emission gamut. Spectrochim. Acta A 2025, 331, 125772. https://doi.org/10.1016/j.saa.2025.125772.
  • 9.
    Xu, S.; Yan, K.-C.; Xu, Z.-H.; et al. Fluorescent probes for targeting the Golgi apparatus: Design strategies and applications. Chem. Soc. Rev. 2024, 53, 7590–7631. https://doi.org/10.1039/D3CS00171G.
  • 10.
    Xu, J.; Huang, H.; Wang, K.; et al. Design and Synthesis of BODIPY and Its Application in Inhibiting Intestinal Flora. ACS Omega 2024, 9, 44379–44384. https://doi.org/10.1021/acsomega.4c04882.
  • 11.
    Bao, Y.; Lv, X.; Qu, Y.; et al. Red-Emissive Fluorescent Thermometer for Real-Time Monitoring of Intracellular and Architectural Glass Facade Temperature Variations. ACS Sustain. Chem. Eng. 2025, 13, 15627–15637. https://doi.org/10.1021/acssuschemeng.5c06460.
  • 12.
    Gui, R.; Jin, H.; Bu, X.; et al. Recent advances in dual-emission ratiometric fluorescence probes for chemo/biosensing and bioimaging of biomarkers. Coordin. Chem. Rev. 2019, 383, 82–103. https://doi.org/10.1016/j.ccr.2019.01.004.
  • 13.
    Xu, S.-L.; Guo, F.-F.; Xu, Z.-H.; et al. A hemicyanine-based fluorescent probe for ratiometric detection of ClO- and turn-on detection of viscosity and its imaging application in mitochondria of living cells and zebrafish. Sens. Actuator B Chem. 2023, 383, 133510. https://doi.org/10.1016/j.snb.2023.133510.
  • 14.
    Mao, P.-D.; Liu, S.-S.; Lian, Z.-Y.; et al. Dual-channel fluorescent probe for monitoring the dynamic changes of hypochlorite ion and ATP in drug-induced liver injury. Sens. Actuator B Chem. 2025, 440, 137908.
  • 15.
    Yang, K.; Tian, Y.; Zheng, B.; et al. Fast-Responsive HClO-Activated Near-Infrared Fluorescent Probe for In Vivo Diagnosis of Inflammatory Bowel Disease and Ex Vivo Optical Fecal Analysis. Anal. Chem. 2024, 96, 12065–12073. https://doi.org/10.1021/acs.analchem.4c02130.
  • 16.
    Li, Z.; Huang, P.; Wu, G.; et al. Activatable Fluorescent Probe for Studying Drug-Induced Senescence In Vitro and In Vivo. Anal. Chem. 2024, 96, 12189–12196. https://doi.org/10.1021/acs.analchem.4c02423.
  • 17.
    Zhao, G.; Wang, X.; Wen, M.; et al. Near-Infrared Fluorescence Reporter Offering Real-Time Tracking and Differential Assessment of Ferroptosis Progressions In Vivo. Anal. Chem. 2025, 97, 11279–11287. https://doi.org/10.1021/acs.analchem.5c01413.
  • 18.
    Yuan, F.; Zhang, S.; Wang, Y.; et al. Activatable Near-Infrared Fluorescence Probe for Hypochlorous Acid Detection in Early Diagnosis of Keloids. Anal. Chem. 2024, 96, 16964–16970. https://doi.org/10.1021/acs.analchem.4c04201.
  • 19.
    Zheng, H.; Peng, W.; Liu, M.; et al. Ratiometric Fluorescent Probe for Super-Resolution Imaging of Lysosome HClO in Ferroptosis Cells. Anal. Chem. 2024, 96, 11581–11587. https://doi.org/10.1021/acs.analchem.4c02435.
  • 20.
    Zhang, X.; Yan, Y.; Peng, Q.; et al. A pH-sensitive multifunctional fluorescent probe based on N-annulated perylene for the sensitive and selective detection of hypochlorous acid. Mater. Chem. Front. 2017, 1, 2292–2298.
  • 21.
    Zhang, Z.; Ma, L.; Huang, Y.; et al. A facile ratiometric near-infrared fluorescent probe using conjugated 1,8-naphthalimide and dicyanoisophorone with a vinylene linker for detection and bioimaging of hypochlorite. Anal. Methods 2023, 15, 3420–3425. https://doi.org/10.1039/d3ay00820g.
  • 22.
    Maiti, A.; Manna, S.K.; Halder, S.; et al. Near-Infrared Fluorescent Turn-On Probe for Selective Detection of Hypochlorite in Aqueous Medium and Live Cell Imaging. Chem. Res. Toxicol. 2024, 37, 1682–1690. https://doi.org/10.1021/acs.chemrestox.4c00222.
  • 23.
    Liang, Y.; Xu, T.; Xu, S.; et al. A HClO-activated BODIPY based ratiometric fluorescent probe with dual near-infrared channels for differentiating cancerous cells from normal cells and surgical guidance of tumor resection. Biosens. Bioelectron. 2025, 275, 117247. https://doi.org/10.1016/j.bios.2025.117247.
  • 24.
    Lin, X.; Zhang, M.; Feng, H.; et al. Ratiometric Covalent Fluorescent Probes for Dynamic Super-Resolution Imaging of Mitochondrial HClO. ACS Sens. 2025, 10, 3713–3724. https://doi.org/10.1021/acssensors.5c00640.
  • 25.
    Rehemaitijiang, M.; Li, G.; Zhu, R.; et al. Triple-Standard Hypochlorite Quantitative Array Enabled by Precise Stokes Shift Modulation in D-pi-A Chemodosimeters. Anal. Chem. 2025, 97, 9462–9470. https://doi.org/10.1021/acs.analchem.5c00821.
  • 26.
    Cao, C.; Zhou, X.; Xue, M.; et al. Dual Near-Infrared-Emissive Luminescent Nanoprobes for Ratiometric Luminescent Monitoring of ClO− in Living Organisms. ACS Appl. Mater. Interfaces 2019, 11, 15298–15305.
  • 27.
    Jin, L.; Tan, X.; Dai, L.; et al. A highly specific and sensitive turn-on fluorescence probe for hypochlorite detection and its bioimaging applications. RSC Adv. 2019, 9, 15926–15932. https://doi.org/10.1039/c9ra01457h.
  • 28.
    Liu, J.; Li, Z.; Peng, S.; et al. ONOO− Activatable Fluorescent Sulfur Dioxide Donor for a More Accurate Assessment of Cell Ferroptosis. Anal. Chem. 2024, 96, 2041–2051. https://doi.org/10.1021/acs.analchem.3c04565.
  • 29.
    Karak, A.; Banik, D.; Ganguly, R.; et al. A Phenanthrenequinone-Based Ratiometric Fluorescent Probe for Rapid Detection of Peroxynitrite with Imaging in Osteoblast Precursor Cells. Chem. Res. Toxicol. 2024, 37, 771–778.
  • 30.
    Wang, Z.; Yan, M.; Yu, M.; et al. A Fluorescent Probe with Zwitterionic ESIPT Feature for Ratiometric Monitoring of Peroxynitrite In Vitro and In Vivo. Anal. Chem. 2024, 96, 3600–3608. https://doi.org/10.1021/acs.analchem.3c05718.
  • 31.
    Xie, H.; Zhang, J.; Chen, C.; et al. Sensitive and specific detection of peroxynitrite and in vivo imaging of inflammation by a “simple” AIE bioprobe. Mater. Chem. Front. 2021, 5, 1830–1835. https://doi.org/10.1039/D0QM01004A.
  • 32.
    Gong, J.; Wang, X.; Wu, J.; et al. Diaminonaphthalene Boronic Acid (DANBA): New Approach for Peroxynitrite Sensing Site. Angew. Chem. Int. Ed. 2024, 63, e202409295. https://doi.org/10.1002/anie.202409295.
  • 33.
    Chai, X.; Ma, X.; Sun, L.L.; et al. A Mitochondria-Targeting and Peroxynitrite-Activatable Ratiometric Fluorescent Probe for Precise Tracking of Oxidative Stress-Induced Mitophagy. Anal. Chem. 2024, 96, 20161–20168. https://doi.org/10.1021/acs.analchem.4c03759.
  • 34.
    Kim, J.; Yoo, J.; Kim, B.; et al. An AIE-based fluorescent probe to detect peroxynitrite levels in human serum and its cellular imaging. Chem. Commun. 2024, 60, 5443–5446. https://doi.org/10.1039/d4cc01231c.
  • 35.
    Gao, X.; Zhang, W.; Dong, Z.; et al. Multichannel, multifunctional ruthenium(II) complex luminescent probe for elucidating the relationship between peroxynitrite, ferroptosis, and Parkinson's disease. Sens. Actuator B Chem. 2025, 428, 137264. https://doi.org/10.1016/j.snb.2025.137264.
  • 36.
    Wang, P.; Yu, L.; Gong, J.; et al. An Activity-Based Fluorescent Probe for Imaging Fluctuations of Peroxynitrite (ONOO−) in the Alzheimer’s Disease Brain. Angew. Chem. Int. Ed. 2022, 61, e202206894. https://doi.org/10.1002/anie.202206894.
  • 37.
    Huang, L.; Ma, L.; Zhu, Q.; et al. Visualizing Endoplasmic Reticulum Stress and Autophagy in Alzheimer's Model Cells by a Peroxynitrite-Responsive AIEgen Fluorescent Probe. ACS Chem. Neurosci. 2025, 16, 223–231.
  • 38.
    Zhang, H.; Zhu, G.-N.; Xiang, F.-F.; et al. High-Throughput Screening of Antioxidant Drug Candidates from Natural Antioxidants with a “Zero” Intrinsic Fluorescence Peroxynitrite Sensing Precursor. J. Med. Chem. 2024, 67, 17855–17865. https://doi.org/10.1021/acs.jmedchem.4c01858.
  • 39.
    Si, M.; Lv, L.; Shi, Y.; et al. Activatable Dual-Optical Molecular Probe for Bioimaging Superoxide Anion in Epilepsy. Anal. Chem. 2024, 96, 4632–4638. https://doi.org/10.1021/acs.analchem.3c05641.
  • 40.
    Yang, W.; Liu, R.; Yin, X.; et al. Novel Near-Infrared Fluorescence Probe for Bioimaging and Evaluating Superoxide Anion Fluctuations in Ferroptosis-Mediated Epilepsy. Anal. Chem. 2023, 95, 12240–12246.
  • 41.
    Chen, L.; Wu, X.; Yu, H.; et al. An Edaravone-Guided Design of a Rhodamine-Based Turn-on Fluorescent Probe for Detecting Hydroxyl Radicals in Living Systems. Anal. Chem. 2021, 93, 14343–14350.
  • 42.
    Kang, Z.; Zhou, Y.; Wang, W.; et al. Dual-response chemosensor for monitoring changes of polarity and ∙OH in ferroptosis of cell and zebrafish. Sens. Actuator B Chem. 2025, 426, 137121. https://doi.org/10.1016/j.snb.2024.137121.
  • 43.
    Li, H.; Li, X.; Shi, W.; et al. Rationally Designed Fluorescence ·OH Probe with High Sensitivity and Selectivity for Monitoring the Generation of ·OH in Iron Autoxidation without Addition of H2O2. Angew. Chem. Int. Ed. Engl. 2018, 57, 12830–12834. https://doi.org/10.1002/anie.201808400.
  • 44.
    Lee, J.; Kim, H.S.; Jangili, P.; et al. Fluorescent Probe for Monitoring Hydrogen Peroxide in COX-2-Positive Cancer Cells. ACS Appl. Bio Mater. 2021, 4, 2073–2079. https://doi.org/10.1021/acsabm.0c01135.
  • 45.
    Long, Y.; Chen, J.; Zeng, F.; et al. An activatable NIR-II fluorescent probe for tracking heavy-metal ion and high-level salt-induced oxidative stress in plant sprouts. Aggregate 2023, 4, e288. https://doi.org/10.1002/agt2.288.
  • 46.
    Hu, F.; Huang, Y.; Zhang, G.; et al. A highly selective fluorescence turn-on detection of hydrogen peroxide and d-glucose based on the aggregation/deaggregation of a modified tetraphenylethylene. Tetrahedron Lett. 2014, 55, 1471–1474. https://doi.org/10.1016/j.tetlet.2014.01.056.
  • 47.
    Jiang, R.; Cai, Z.; Bai, H.; et al. Precise Modulation of the π-Conjugated Bridge of Naphthalimide-Based Probes for High-Performance Fluorescent Sensing of H2O2. Anal. Chem. 2025, 97, 11669–11677.
  • 48.
    Zhao, W.; Zhang, S.; Yan, J.; et al. A dual-emission fluorescent probe for simultaneous detection of singlet oxygen and hypochlorous acid in lipid droplets. Sens. Actuator B Chem. 2024, 412, 135813. https://doi.org/10.1016/j.snb.2024.135813.
  • 49.
    Wang, H.; Xiu, T.; Zhang, X.; et al. A Sequentially activated probe for simultaneous fluorescence imaging of ONOO―and HOBr in brain to indicate Alzheimer’s Disease. Sens. Actuator B Chem. 2025, 440, 137947. https://doi.org/10.1016/j.snb.2025.137947.
  • 50.
    Murfin, L.C.; Weber, M.; Park, S.J.; et al. Azulene-Derived Fluorescent Probe for Bioimaging: Detection of Reactive Oxygen and Nitrogen Species by Two-Photon Microscopy. J. Am. Chem. Soc. 2019, 141, 19389–19396.
  • 51.
    Mei, Y.; Hai, Z.; Li, Z.; et al. Dual-Responsive Near-Infrared BODIPY-Based Fluorescent Probe for the Detection of F− and HClO in Organisms. Anal. Chem. 2024, 96, 3802–3809. https://doi.org/10.1021/acs.analchem.3c04856.
  • 52.
    Fortibui, M.M.; Park, C.; Kim, N.Y.; et al. Dual-Emissive Detection of ATP and Hypochlorite Ions for Monitoring Inflammation-Driven Liver Injury In Vitro and In Vivo. Anal. Chem. 2024, 96, 9408–9415.
  • 53.
    Kang, Z.; Zhou, Y.; Ma, Y.; et al. Dual-Site Chemosensor for Visualizing ·OH–GSH Redox and Tracking Ferroptosis-Inducing Pathways In Vivo. Anal. Chem. 2024, 96, 11932–11941. https://doi.org/10.1021/acs.analchem.4c01688.
  • 54.
    He, L.; Wei, X.; Zhang, W.; et al. Fabrication of a Redox-Reversible Near-Infrared Fluorogenic Probe for Ferroptosis Process Monitoring and the Early Diagnosis of Diabetes. Anal. Chem. 2025, 97, 2411–2417.
  • 55.
    Wu, W.-N.; Chen, X.; Liu, S.-S.; et al. A dual-response fluorescent hemicyanine probe for the detection of mitochondrial hypochlorite and viscosity based on ESIPT/AIE and TICT. Sens. Actuator B Chem. 2025, 423, 136695.
  • 56.
    Li, B.; Peng, W.; Jin, Z.; et al. Development of a Near-Infrared Probe for Enhancing Cancer Therapy by Mitigating Pyroptosis-Induced Inflammation. Anal. Chem. 2025, 97, 5274–5282. https://doi.org/10.1021/acs.analchem.4c07048.
  • 57.
    Zan, Q.; Fan, L.; Wang, R.; et al. Dual-channel fluorescent probe for simultaneously visualizing ONOO− and viscosity in epilepsy, non-alcoholic fatty liver and tumoral ferroptosis models. Biosens. Bioelectron. 2025, 282, 117495. https://doi.org/10.1016/j.bios.2025.117495.
  • 58.
    Wei, D.; Dai, Y.; Yan, X.; et al. A Novel “Double-Responsive” and “Dual-Targeted” Multifunctional Fluorescent Probe Monitors the Level Changes of ONOO− in Mitochondria during Cell Pyroptosis. ACS Sens. 2025, 10, 2542–2553. https://doi.org/10.1021/acssensors.4c02841.
  • 59.
    Wang, X.; Chen, Y.; Liu, C.; et al. An ONOO−/Viscosity-Sensitive and Mitochondria-Targeted Near-Infrared Fluorophore for Real-Time Tracking Mitophagy and Photodynamic Therapy of Cancer Anal. Chem. 2025, 97, 10244–10251. https://doi.org/10.1021/acs.analchem.5c00104.
Share this article:
How to Cite
Fan, Y.; Fu, Y.; Bao, C.; Ding, Y. Recent Progress in the Development of Small Molecule-Based Fluorescent Probes for Oxidative Stress. PhotoScience Advances 2025, 1 (1), 3.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.