- 1.
Signer, R.A.; Morrison, S.J. Mechanisms that regulate stem cell aging and life span. Cell Stem Cell 2013, 12, 152–165.
- 2.
Hall, B.M.; Balan, V.; Gleiberman, A.S.; et al. p16 (Ink4a) and senescence-associated β-galactosidase can be induced in macrophages as part of a reversible response to physiological stimuli. Aging 2017, 9, 1867.
- 3.
López-Otín, C.; Blasco, M.A.; Partridge, L.; et al. The hallmarks of aging. Cell 2013, 153, 1194–1217.
- 4.
Gruber, R.; Koch, H.; Doll, B.A.; et al. Fracture healing in the elderly patient. Exp. Gerontol. 2006, 41, 1080–1093.
- 5.
Health, U.D.; Services, H. Bone Health and Osteoporosis: A Report of the Surgeon General; Office of the Surgeon General: Rockville, MD, USA, 2004.
- 6.
Lorentzon, M.; Johansson, H.; Harvey, N.; et al. Osteoporosis and fractures in women: The burden of disease. Climacteric 2022, 25, 4–10.
- 7.
Chang, K.P.; Center, J.R.; Nguyen, T.V.; et al. Incidence of hip and other osteoporotic fractures in elderly men and women: Dubbo Osteoporosis Epidemiology Study. J. Bone Miner. Res. 2004, 19, 532–536.
- 8.
Roche, J.; Wenn, R.T.; Sahota, O.; et al. Effect of comorbidities and postoperative complications on mortality after hip fracture in elderly people: Prospective observational cohort study. BMJ 2005, 331, 1374.
- 9.
von Friesendorff, M.; McGuigan, F.E.; Wizert, A.; R et al. Hip fracture, mortality risk, and cause of death over two decades. Osteoporos. Int. 2016, 27, 2945–2953.
- 10.
Osyczka, A.M.; Damek-Poprawa, M.; Wojtowicz, A.; et al. Age and skeletal sites affect BMP-2 responsiveness of human bone marrow stromal cells. Connect. Tissue Res. 2009, 50, 270–277.
- 11.
Curtis, A.M.; Carroll, R.G. Aging alters rhythms in immunity. Nat. Immunol. 2022, 23, 153–154.
- 12.
Muñoz-Espín, D.; Serrano, M. Cellular senescence: From physiology to pathology. Nat. Rev. Mol. CellBiol.2014, 15, 482-496.
- 13.
Franceschi, C.; Bonafè, M.; Valensin, S.; et al. Inflamm-aging: An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 2000, 908, 244–254.
- 14.
Franceschi, C.; Garagnani, P.; Parini, P.; et al. Inflammaging: A new immune–metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 2018, 14, 576–590.
- 15.
Álvarez-Rodríguez, L.; López-Hoyos, M.; Muñoz-Cacho, P.; et al. Aging is associated with circulating cytokine dysregulation. Cell. Immunol. 2012, 273, 124–132.
- 16.
Fullerton, J.N.; Gilroy, D.W. Resolution of inflammation: A new therapeutic frontier. Nat. Rev. Drug Discov. 2016, 15, 551–567.
- 17.
Crooke, S.N.; Ovsyannikova, I.G.; Poland, G.A.; et al. Immunosenescence and human vaccine immune responses. Immun. Ageing 2019, 16, 1–16.
- 18.
Prata, L.G.L.; Ovsyannikova, I.G.; Tchkonia, T.; et al. Senescent Cell Clearance by the Immune System: Emerging Therapeutic Opportunities; Elsevier: Amsterdam, The Netherlands, 2018; p. 101275.
- 19.
Oishi, Y.; Manabe, I. Macrophages in age-related chronic inflammatory diseases. NPJ Aging Mech. Dis. 2016, 2, 1–8.
- 20.
De Maeyer, R.P.; Chambers, E.S. The impact of ageing on monocytes and macrophages. Immunol. Lett. 2021, 230, 1–10.
- 21.
Clark, D.; Brazina, S.; Yang, F.; et al. Age-related changes to macrophages are detrimental to fracture healing in mice. Aging Cell 2020, 19, e13112.
- 22.
Chen, Z.; Klein, T.; Murray, R.Z.; et al. Osteoimmunomodulation for the development of advanced bone biomaterials. Mater. Today 2016, 19, 304–321.
- 23.
Löffler, J.; Sass, F.A.; Filter, S.; et al. Compromised bone healing in aged rats is associated with impaired M2 macrophage function. Front. Immunol. 2019, 10, 2443.
- 24.
Gibon, E.; Lu, L.Y.; Nathan, K.; et al. Inflammation, ageing, and bone regeneration. J. Orthop. Transl. 2017, 10, 28–35.
- 25.
Van Deursen, J.M. The role of senescent cells in ageing. Nature 2014, 509, 439–446.
- 26.
Takayanagi, H. Osteoimmunology: Shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol. 2007, 7, 292.
- 27.
Kenkre, J.; Bassett, J. The bone remodelling cycle. Ann. Clin. Biochem. 2018, 55, 308–327.
- 28.
Firestein, G.S. Evolving concepts of rheumatoid arthritis. Nature 2003, 423, 356–361.
- 29.
Xiao, L.; Xiao, Y. The Autophagy in Osteoimmonology: Self-Eating, Maintenance, and Beyond. Front. Endocrinol. 2019, 10, 490.
- 30.
Atri, C.; Guerfali, F.Z.; Laouini, D. Role of human macrophage polarization in inflammation during infectious diseases. Int. J. Mol. Sci. 2018, 19, 1801.
- 31.
Arango Duque, G.; Descoteaux, A. Macrophage cytokines: Involvement in immunity and infectious diseases. Front. Immunol. 2014, 5, 491.
- 32.
Sharma, R. Perspectives on the dynamic implications of cellular senescence and immunosenescence on macrophage aging biology. Biogerontology 2021, 22, 571–587.
- 33.
Schliehe, C.; Redaelli, C.; Engelhardt, S.; et al. CD8− dendritic cells and macrophages cross-present poly (D, L-lactate-co-glycolate) acid microsphere-encapsulated antigen in vivo. J. Immunol. 2011, 187, 2112–2121.
- 34.
Unanue, E.R. Antigen-presenting function of the macrophage. Annu. Rev. Immunol. 1984, 2, 395–428.
- 35.
Wynn, T.A.; Vannella, K.M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 2016, 44, 450–462.
- 36.
Xiao, L.; Ma, Y.; Crawford, R.; et al. The interplay between hemostasis and immune response in biomaterial development for osteogenesis. Mater. Today 2022, 54, 202–224.
- 37.
McInnes, I.B.; Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 2011, 365, 2205–2219.
- 38.
Haringman, J.J.; Gerlag, D.M.; Zwinderman, A.H.; et al. Synovial tissue macrophages: A sensitive biomarker for response to treatment in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2005, 64, 834–838.
- 39.
Behrens, F.; Himsel, A.; Rehart, S.; et al. Imbalance in distribution of functional autologous regulatory T cells in rheumatoid arthritis. Ann. Rheum. Dis. 2007, 66, 1151–1156.
- 40.
Jin, S.; Chen, H.; Li, Y.; et al. Maresin 1 improves the Treg/Th17 imbalance in rheumatoid arthritis through miR-21. Ann. Rheum. Dis. 2018, 77, 1644–1652.
- 41.
Feng, N.; Guo, F. Nanoparticle-siRNA: A potential strategy for rheumatoid arthritis therapy? J. Control. Release 2020, 325, 380–393.
- 42.
Rőszer, T. Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediat. Inflamm. 2015, 2015, 816460.
- 43.
Schlundt, C.; El Khassawna, T.; Serra, A.; et al. Macrophages in bone fracture healing: Their essential role in endochondral ossification. Bone 2018, 106, 78–89.
- 44.
Cho, T.-J.; Kim, J.; Chung, C.; et al. Expression and role of interleukin-6 in distraction osteogenesis. Calcif. Tissue Int. 2007, 80, 192–200.
- 45.
Sammons, J.; Ahmed, N.; El-Sheemy, M.; et al. The role of BMP-6, IL-6, and BMP-4 in mesenchymal stem cell-dependent bone development: Effects on osteoblastic differentiation induced by parathyroid hormone and vitamin D3. Stem Cells Dev. 2004, 13, 273–280.
- 46.
Blanchard, F.; Duplomb, L.; Baud’huin, M.; et al. The dual role of IL-6-type cytokines on bone remodeling and bone tumors. Cytokine Growth Factor Rev. 2009, 20, 19–28.
- 47.
Itoh, S.; Udagawa, N.; Takahashi, N.; et al. A critical role for interleukin-6 family-mediated Stat3 activation in osteoblast differentiation and bone formation. Bone 2006, 39, 505–512.
- 48.
Bellido, T.; Borba, V.Z.; Roberson, P.; et al. Activation of the Janus Kinase/STAT (Signal Transducer and Activator of Transcription) Signal Transduction Pathway by Interleukin-6-Type Cytokines Promotes Osteoblast Differentiation 1. Endocrinology 1997, 138, 3666–3676.
- 49.
Song, H.Y.; Jeon, E.S.; Kim, J.I.; et al. Oncostatin M promotes osteogenesis and suppresses adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells. J. Cell. Biochem. 2007, 101, 1238–1251.
- 50.
Guihard, P.; Danger, Y.; Brounais, B.; et al. Induction of osteogenesis in mesenchymal stem cells by activated monocytes/macrophages depends on oncostatin M signaling. Stem Cells 2012, 30, 762–772.
- 51.
Loi, F.; Córdova, L.A.; Zhang, R.; et al. The effects of immunomodulation by macrophage subsets on osteogenesis in vitro. Stem Cell Res. Ther. 2016, 7, 1–11.
- 52.
Wang, S.; Xiao, L.; Prasadam, I.; et al. Inflammatory macrophages interrupt osteocyte maturation and mineralization via regulating the Notch signaling pathway. Mol. Med. 2022, 28, 1–21.
- 53.
Santoro, A.; Bientinesi, E.; Monti, D. Immunosenescence and inflammaging in the aging process: Age-related diseases or longevity? Ageing Res. Rev. 2021, 71, 101422.
- 54.
Fülöp, T.; Larbi, A.; Witkowski, J.M. Human inflammaging. Gerontology 2019, 65, 495–504.
- 55.
Bleve, A.; Motta, F.; Durante, B.; et al. Immunosenescence, inflammaging, and frailty: Role of myeloid cells in age-related diseases. Clin. Rev. Allergy Immunol. 2022, 64, 123–144.
- 56.
Baylis, D.; Bartlett, D.B.; Patel, H.P.; et al. Understanding how we age: Insights into inflammaging. Longev. Heal. 2013, 2, 1–8.
- 57.
Rea, I.M.; Gibson, D.S.; McGilligan, V.; et al. Age and age-related diseases: Role of inflammation triggers and cytokines. Front. Immunol. 2018, 9, 586.
- 58.
Biagi, E.; Candela, M.; Fairweather-Tait, S.; et al. Aging of the human metaorganism: The microbial counterpart. Age 2012, 34, 247–267.
- 59.
Nakajima, A.; Nakatani, A.; Hasegawa, S.; et al. The short chain fatty acid receptor GPR43 regulates inflammatory signals in adipose tissue M2-type macrophages. PLoS ONE 2017, 12, e0179696.
- 60.
Onodera, T.; Fukuhara, A.; Shin, J.; et al. Eicosapentaenoic acid and 5-HEPE enhance macrophage-mediated Treg induction in mice. Sci. Rep. 2017, 7, 4560.
- 61.
Huang, S.; Rutkowsky, J.M.; Snodgrass, R.G.; et al. Saturated fatty acids activate TLR-mediated proinflammatory signaling pathways. J. Lipid Res. 2012, 53, 2002–2013.
- 62.
Xu, X.; Grijalva, A.; Skowronski, A.; et al. Obesity Activates a Program of Lysosomal-Dependent Lipid Metabolism in Adipose Tissue Macrophages Independently of Classic Activation. Cell Metab. 2013, 18, 816–830.
- 63.
Kurachi, K.; Zhang, K.; Ameri, A.; et al. Genetic and molecular mechanisms of age regulation (homeostasis) of blood coagulation. IUBMB Life 2000, 49, 189–196.
- 64.
Yousefzadeh, M.J.; Flores, R.R.; Zhu, Y.; et al. An aged immune system drives senescence and ageing of solid organs. Nature 2021, 594, 100–105.
- 65.
Minhas, P.S.; Liu, L.; Moon, P.K.; et al. Macrophage de novo NAD+ synthesis specifies immune function in aging and inflammation. Nat. Immunol. 2019, 20, 50–63.
- 66.
Ferrucci, L.; Fabbri, E. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 2018, 15, 505–522.
- 67.
Sharpless, N.E.; Sherr, C.J. Forging a signature of in vivo senescence. Nat. Rev. Cancer 2015, 15, 397–408.
- 68.
Rayess, H.; Wang, M.B.; Srivatsan, E.S. Cellular senescence and tumor suppressor gene p16. Int. J. Cancer 2012, 130, 1715–1725.
- 69.
Zhou, D.; Borsa, M.; Simon, A.K. Hallmarks and detection techniques of cellular senescence and cellular ageing in immune cells. Aging Cell 2021, 20, e13316.
- 70.
Lee, K.-A.; Robbins, P.D.; Camell, C.D. Intersection of immunometabolism and immunosenescence during aging. Curr. Opin. Pharmacol. 2021, 57, 107–116.
- 71.
Yarbro, J.R.; Emmons, R.S.; Pence, B.D. Macrophage immunometabolism and inflammaging: Roles of mitochondrial dysfunction, cellular senescence, CD38, and NAD. Immunometabolism 2020, 2, e200026.
- 72.
Ray, P.D.; Huang, B.W.; Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 2012, 24, 981–990.
- 73.
Gasek, N.S.; Kuchel, G.A.; Kirkland, J.L.; et al. Strategies for Targeting Senescent Cells in Human Disease. Nat Aging 2021, 1, 870–879.
- 74.
Burton, D.G.A.; Stolzing, A. Cellular senescence: Immunosurveillance and future immunotherapy. Ageing Res. Rev. 2018, 43, 17–25.
- 75.
He, S.; Sharpless, N.E. Senescence in health and disease. Cell 2017, 169, 1000–1011.
- 76.
Prattichizzo, F.; Bonafè, M.; Olivieri, F.; et al. Senescence associated macrophages and “macroph-aging”: Are they pieces of the same puzzle? Aging 2016, 8, 3159–3160.
- 77.
Shin, E.Y.; Park, J.H.; You, S.T.; et al. Integrin-mediated adhesions in regulation of cellular senescence. Sci. Adv. 2020, 6, 1–12.
- 78.
Fulop, T.; Larbi, A.; Dupuis, G.; et al. Immunosenescence and inflamm-aging as two sides of the same coin: Friends or foes? Front. Immunol. 2018, 8, 1960.
- 79.
Krishnamurthty, J.; Torrice, C.; Ramsey, M.R.; et al. Ink4a/Arf expression is a biomarker of aging. J. Clin. Invest. 2004, 114, 1299–1307.
- 80.
Vicente, R.; Mausset-Bonnefont, A.L.; Jorgensen, C.; et al. Cellular senescence impact on immune cell fate and function. Aging Cell 2016, 15, 400–406.
- 81.
Marshall, J.S.; Warrington, R.; Watson, W.; et al. An introduction to immunology and immunopathology. Allergy Asthma Clin. Immunol. 2018, 14, 49.
- 82.
Netea, M.G.; Dominguez-Andres, J.; Barreiro, L.B.; et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 2020, 20, 375–388.
- 83.
Barbe-Tuana, F.; Funchal, G.; Schmitz, C.R.R.; et al. The interplay between immunosenescence and age-related diseases. Semin. Immunopathol. 2020, 42, 545–557.
- 84.
Goronzy, J.J.; Weyand, C.M. Understanding immunosenescence to improve responses to vaccines. Nat. Immunol. 2013, 14, 428–436.
- 85.
Geiger, H.; De Haan, G.; Florian, M. The ageing haematopoietic stem cell compartment. Nat. Rev. Immunol. 2013, 13, 376–389.
- 86.
Dorshkind, K.; Höfer, T.; Montecino-Rodriguez, E.; et al. Do haematopoietic stem cells age? Nat. Rev. Immunol. 2020, 20, 196–202.
- 87.
Beerman, I.; Maloney, W.J.; Weissmann, I.L.; et al. Stem cells and the aging hematopoietic system. Curr. Opin. Immunol. 2010, 22, 500–506.
- 88.
Linehan, E.; Fitzgerald, D.C. Ageing and the immune system: Focus on macrophages. Eur. J. Microbiol. Immunol. 2015, 5, 14–24.
- 89.
Camell, C.D.; Sander, J.; Spadaro, O.; et al. Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. Nature 2017, 550, 119–123.
- 90.
Lumeng, C.N.; Liu, J.; Geletka, L.; et al. Aging is associated with an increase in T cells and inflammatory macrophages in visceral adipose tissue. J. Immunol. 2011, 187, 6208–6216.
- 91.
Stout-Delgado, H.W.; Cho, S.J.; Chu, S.G.; et al. Age-dependent susceptibility to pulmonary fibrosis is associated with NLRP3 inflammasome activation. Am. J. Respir. Cell Mol. Biol. 2016, 55, 252–263.
- 92.
Renshaw, M.; Rockwell, J.; Engleman, C.; et al. Cutting edge: Impaired Toll-like receptor expression and function in aging. J. Immunol. 2002, 169, 4697–4701.
- 93.
Stranks, A.J.; Hansen, A.L.; Panse, I.; et al. Autophagy controls acquisition of aging features in macrophages. J. Innate. Immun. 2015, 7, 375–391.
- 94.
Fei, F.; Lee, K.M.; McCarry, B.E.; et al. Age-associated metabolic dysregulation in bone marrow-derived macrophages stimulated with lipopolysaccharide. Sci. Rep. 2016, 6, 22637.
- 95.
Acosta, J.C.; Banito, A.; Wuestefeld, T.; et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 2013, 15, 978–990.
- 96.
Hall, B.M.; Balan, V.; Gleiberman, A.S.; et al. Aging of mice is associated with p16(Ink4a)- and β-galactosidase-positive macrophage accumulation that can be induced in young mice by senescent cells. Aging 2016, 8, 1294–1315.
- 97.
Farr, J.N.; Fraser, D.G.; Wang, H.; et al. Identification of senescent cells in the bone microenvironment. J. Bone Miner. Res. 2016, 31, 1920–1929.
- 98.
Kim, O.H.; Kim, H.; Kang, J.; et al. Impaired phagocytosis of apoptotic cells causes accumulation of bone marrow-derived macrophages in aged mice. BMB Rep. 2017, 50, 43–48.
- 99.
Clark, D.; Nakamura, M.; Miclau, T.; et al. Curr. Osteoporos. Rep. 2017, 15, 601–608.
- 100.
Josephson, A.M.; Bradaschia-Correa, V.; Lee, S.; et al. Age-related inflammation triggers skeletal stem/progenitor cell dysfunction. Proc. Natl. Acad. Sci. USA 2019, 116, 6995–7004.
- 101.
Huang, R.; Vi, L.; Zong, X.; et al. Maresin 1 resolves aged-associated macrophage inflammation to improve bone regeneration. FASEB J. 2020, 34, 13521–13532.
- 102.
Lopez, E.M.; Leclerc, K.; Ramsukh, M.; et al. Modulating the systemic and local adaptive immune response after fracture improves bone regeneration during aging. Bone 2022, 157, 116324.
- 103.
Severino, V.; Alessio, N.; Farina, A.; et al. Insulin-like growth factor binding proteins 4 and 7 released by senescent cells promote premature senescence in mesenchymal stem cells. Cell Death Dis. 2013, 4, e911.
- 104.
Lin, H.; Sohn, J.; Shen, H.; et al. Bone marrow mesenchymal stem cells: Aging and tissue engineering applications to enhance bone healing. Biomaterials 2019, 203, 96–110.
- 105.
Kizilay Mancini, Ö.; Lora, M.; Shum-Tim, D.; et al. A proinflammatory secretome mediates the impaired immunopotency of human mesenchymal stromal cells in elderly patients with atherosclerosis. Stem Cells Transl. Med. 2017, 6, 1132–1140.
- 106.
Dallas, S.L.; Prideaux, M.; Bonewald, L.F. The osteocyte: An endocrine cell… and more. Endocr. Rev. 2013, 34, 658–690.
- 107.
Franceschi, C.; Garagnani, P.; Vitale, G.; et al. Inflammaging and ‘Garb-aging’. Trends Endocrinol. Metab. 2017, 28, 199–212.
- 108.
Marędziak, M.; Marycz, K.; Tomaszewski, K.A.; et al. The influence of aging on the regenerative potential of human adipose derived mesenchymal stem cells. Stem Cells Int. 2016, 2016, 2152435.
- 109.
Ardura, J.A.; Álvarez-Carrión, L.; Gortázar, A.R.; et al. Linking bone cells, aging, and oxidative stress: Osteoblasts, osteoclasts, osteocytes, and bone marrow cells. Aging 2020, 61–71.
- 110.
Corrado, A.; Cici, D.; Rotondo, C.; et al. Molecular Basis of Bone Aging. Int. J. Mol. Sci. 2020, 21, 3679.
- 111.
Espino, J.; Pariente, J.A.; Rodríguez, A.B. Oxidative stress and immunosenescence: Therapeutic effects of melatonin. Oxidative Med. Cell. Longev. 2012, 2012, 670294.
- 112.
Cao, J.J.; Wronski, T.J.; Iwaniec, U.; et al. Aging increases stromal/osteoblastic cell-induced osteoclastogenesis and alters the osteoclast precursor pool in the mouse. J. Bone Miner. Res. 2005, 20, 1659–1668.
- 113.
Cui, Y.; Li, H.; Li, Y.; et al. Novel insights into nanomaterials for immunomodulatory bone regeneration. Nanoscale Adv. 2022, 4, 334–352.
- 114.
Lee, J.; Byun, H.; Madhurakkat Perikamana, S.K.; et al. Current Advances in Immunomodulatory Biomaterials for Bone Regeneration. Adv. Healthc. Mater. 2019, 8, 1801106.
- 115.
Garimella, R.; Eltorai, A.E. Nanotechnology in orthopedics. J. Orthop. 2017, 14, 30–33.
- 116.
Mohammadi, M.; Shaegh, S.A.M.; Alibolandi, M.; et al. Micro and nanotechnologies for bone regeneration: Recent advances and emerging designs. J. Control. Release 2018, 274, 35–55.
- 117.
Malachowski, T.; Hassel, A. Engineering nanoparticles to overcome immunological barriers for enhanced drug delivery. Eng. Regen. 2020, 1, 35–50.
- 118.
Rabiei, M.; Kashanian, S.; Samavati, S.S.; et al. Nanotechnology application in drug delivery to osteoarthritis (OA), rheumatoid arthritis (RA), and osteoporosis (OSP). J. Drug Deliv. Sci. Technol. 2021, 61, 102011.
- 119.
Jin, S.-S.; He, D.-Q.; Luo, D.; et al. A Biomimetic Hierarchical Nanointerface Orchestrates Macrophage Polarization and Mesenchymal Stem Cell Recruitment To Promote Endogenous Bone Regeneration. ACS Nano 2019, 13, 6581–6595.
- 120.
Li, M.; Wei, F.; Yin, X.; et al. Synergistic regulation of osteoimmune microenvironment by IL-4 and RGD to accelerate osteogenesis. Mater. Sci. Eng. C 2020, 109, 110508.
- 121.
Vantucci, C.E.; Krishan, L.; Cheng, A.; et al. BMP-2 delivery strategy modulates local bone regeneration and systemic immune responses to complex extremity trauma. Biomater. Sci. 2021, 9, 1668–1682.
- 122.
Guo, G.; Gong, T.; Shen, H.; et al. Self-Amplification Immunomodulatory Strategy for Tissue Regeneration in Diabetes Based on Cytokine-ZIFs System. Adv. Funct. Mater. 2021, 31, 2100795.
- 123.
Hu, Z.; Ma, C.; Rong, X.; et al. Immunomodulatory ECM-like microspheres for accelerated bone regeneration in diabetes mellitus. ACS Appl. Mater. Interfaces 2018, 10, 2377–2390.
- 124.
Bai, L.; Liu, Y.; Du, Z.; et al. Differential effect of hydroxyapatite nano-particle versus nano-rod decorated titanium micro-surface on osseointegration. Acta Biomater. 2018, 76, 344–358.
- 125.
He, Y.; Yang, X.; Yuan, Z.; et al. Regulation of MSC and macrophage functions in bone healing by peptide LL-37-loaded silk fibroin nanoparticles on a titanium surface. Biomater. Sci. 2019, 7, 5492–5505.
- 126.
Feng, X.; Xu, W.; Li, Z.; et al. Immunomodulatory Nanosystems. Adv. Sci. 2019, 6, 1900101.
- 127.
Li, Y.; Bai, Y.; Pan, J.; et al. A hybrid 3D-printed aspirin-laden liposome composite scaffold for bone tissue engineering. J. Mater. Chem. B 2019, 7, 619–629.
- 128.
Elashiry, M.; Elashiry, M.M.; Elsayed, R.; et al. Dendritic cell derived exosomes loaded with immunoregulatory cargo reprogram local immune responses and inhibit degenerative bone disease in vivo. J. Extracell. Vesicles 2020, 9, 1795362.
- 129.
Li, Y.; Cai, B.; Zhang, Z.; et al. Salicylic acid-based nanomedicine with self-immunomodulatory activity facilitates microRNA therapy for metabolic skeletal disorders. Acta Biomater. 2021, 130, 435–446.
- 130.
Kwon, E.J.; Lo, J.H.; Bhatia, S.N. Smart nanosystems: Bio-inspired technologies that interact with the host environment. Proc. Natl. Acad. Sci. 2015, 112, 14460–14466.
- 131.
Chien, Y.H.; Chan, K.K.; Yap, S.H.K.; et al. NIR-responsive nanomaterials and their applications; upconversion nanoparticles and carbon dots: A perspective. J. Chem. Technol. Biotechnol. 2018, 93, 1519–1528.
- 132.
Yin, C.; Zhao, Q.; Li, W.; et al. Biomimetic anti-inflammatory nano-capsule serves as a cytokine blocker and M2 polarization inducer for bone tissue repair. Acta Biomater. 2020, 102, 416–426.
- 133.
Liu, Y.; Jin, J.; Xu, H.; et al. Construction of a pH-responsive, ultralow-dose triptolide nanomedicine for safe rheumatoid arthritis therapy. Acta Biomater. 2021, 121, 541–553.
- 134.
Wang, Y.; Wu, Y.; Long, L.; et al. Inflammation-responsive drug-loaded hydrogels with sequential hemostasis, antibacterial, and anti-inflammatory behavior for chronically infected diabetic wound treatment. ACS Appl. Mater. Interfaces 2021, 13, 33584–33599.
- 135.
Kong, Y.; Liu, F.; Ma, B.; et al. Intracellular pH-responsive iron-catechin nanoparticles with osteogenic/anti-adipogenic and immunomodulatory effects for efficient bone repair. Nano Res. 2022, 15, 1153–1161.
- 136.
Yang, J.; Zhang, X.; Liu, C.; et al. Biologically modified nanoparticles as theranostic bionanomaterials. Prog. Mater. Sci. 2021, 118, 100768.
- 137.
Sushnitha, M.; Evangelopoulos, M.; Tasciotti, E.; et al. Cell Membrane-Based Biomimetic Nanoparticles and the Immune System: Immunomodulatory Interactions to Therapeutic Applications. Front. Bioeng. Biotechnol. 2020, 8, 627.
- 138.
Zhang, X.; Chen, J.; Jiang, Q.; et al. Highly biosafe biomimetic stem cell membrane-disguised nanovehicles for cartilage regeneration. J. Mater. Chem. B 2020, 8, 8884–8893.
- 139.
Zhang, Q.; Dehaini, D.; Zhang, Y.; et al. Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat. Nanotechnol. 2018, 13, 1182–1190.
- 140.
Li, R.; He, Y.; Zhu, Y.; et al. Route to rheumatoid arthritis by macrophage-derived microvesicle-coated nanoparticles. Nano Lett. 2018, 19, 124–134.
- 141.
Liu, Y.; Hardie, J.; Zhang, X.; et al. Effects of engineered nanoparticles on the innate immune system. Semin. Immunol. 2017, 34, 25–32.
- 142.
Fadeel, B. Hide and Seek: Nanomaterial Interactions With the Immune System. Front. Immunol. 2019, 10, 133.
- 143.
Stater, E.P.; Sonay, A.Y.; Hart, C.; et al. The ancillary effects of nanoparticles and their implications for nanomedicine. Nat. Nanotechnol. 2021, 16, 1180–1194.
- 144.
Feng, R.; Yu, F.; Xu, J.; et al. Knowledge gaps in immune response and immunotherapy involving nanomaterials: Databases and artificial intelligence for material design. Biomaterials 2021, 266, 120469.
- 145.
Bartneck, M.; Keul, H.A.; Singh, S.; et al. Rapid Uptake of Gold Nanorods by Primary Human Blood Phagocytes and Immunomodulatory Effects of Surface Chemistry. ACS Nano 2010, 4, 3073–3086.
- 146.
Li, B.; Xie, J.; Yuan, Z.; et al. Mitigation of Inflammatory Immune Responses with Hydrophilic Nanoparticles. Angew. Chem. Int. Ed. 2018, 57, 4527–4531.
- 147.
Ray, P.; Haideri, N.; Haque, I.; et al. The Impact of Nanoparticles on the Immune System: A Gray Zone of Nanomedicine. J. Immunol. Sci. 2021, 5, 19–33.
- 148.
Oliveira, I.M.; Gonçalves, C.; Oliveira, E.P.; et al. PAMAM dendrimers functionalised with an anti-TNF α antibody and chondroitin sulphate for treatment of rheumatoid arthritis. Mater. Sci. Eng. C 2021, 121, 111845.
- 149.
Oliveira, I.; Carvalho, M.; Fernandes, D.; et al. Modulation of inflammation by anti-TNF α mAb-dendrimer nanoparticles loaded in tyramine-modified gellan gum hydrogels in a cartilage-on-a-chip model. J. Mater. Chem. B 2021, 9, 4211–4218.
- 150.
Patel, K.D.; Kim, T.-H.; Mandakhbayar, N.; et al. Coating biopolymer nanofibers with carbon nanotubes accelerates tissue healing and bone regeneration through orchestrated cell-and tissue-regulatory responses. Acta Biomater. 2020, 108, 97–110.
- 151.
Kwon, D.; Cha, B.G.; Cho, Y.; et al. Extra-large pore mesoporous silica nanoparticles for directing in vivo M2 macrophage polarization by delivering IL-4. Nano Lett. 2017, 17, 2747–2756.
- 152.
Wang, S.; Yang, L.; Cai, B.; et al. Injectable hybrid inorganic nanoscaffold as rapid stem cell assembly template for cartilage repair. Natl. Sci. Rev. 2022, 9, nwac037.
- 153.
Sarkar, A.; Carvalho, E.; D’souza, A.A.; et al. Liposome-encapsulated fish oil protein-tagged gold nanoparticles for intra-articular therapy in osteoarthritis. Nanomedicine 2019, 14, 871–887.
- 154.
Chen, Y.; Guan, M.; Ren, R.; et al. Improved immunoregulation of ultra-low-dose silver nanoparticle-loaded TiO2 nanotubes via M2 macrophage polarization by regulating GLUT1 and autophagy. Int. J. Nanomed. 2020, 15, 2011.
- 155.
Bai, L.; Chen, P.; Zhao, Y.; et al. A micro/nano-biomimetic coating on titanium orchestrates osteo/angio-genesis and osteoimmunomodulation for advanced osseointegration. Biomaterials 2021, 278, 121162.
- 156.
Huang, Q.; Ouyang, Z.; Tan, Y.; et al. Activating macrophages for enhanced osteogenic and bactericidal performance by Cu ion release from micro/nano-topographical coating on a titanium substrate. Acta Biomater. 2019, 100, 415–426.
- 157.
Shah, Y.; Partain, B.; Dobson, J.; et al. Protein corona formation on particles in bovine synovial fluid and in a rat knee model of osteoarthritis. Osteoarthr. Cartil. 2020, 28, S349.
- 158.
Brown, S.; Pistiner, J.; Adjei, I.M.; et al. Nanoparticle properties for delivery to cartilage: The implications of disease state, synovial fluid, and off-target uptake. Mol. Pharm. 2017, 16, 469–479.
- 159.
Obst, K.; Yealland, G.; Balzus, B.; et al. Protein corona formation on colloidal polymeric nanoparticles and polymeric nanogels: Impact on cellular uptake, toxicity, immunogenicity, and drug release properties. Biomacromolecules 2017, 18, 1762–1771.
- 160.
Li, D.; Li, Y.; Shrestha, A.; et al. Effects of Programmed Local Delivery from a Micro/Nano-Hierarchical Surface on Titanium Implant on Infection Clearance and Osteogenic Induction in an Infected Bone Defect. Adv. Healthc. Mater. 2019, 8, 1900002.
- 161.
Shi, M.; Xia, L.; Chen, Z.; et al. Europium-doped mesoporous silica nanosphere as an immune-modulating osteogenesis/angiogenesis agent. Biomaterials 2017, 144, 176–187.
- 162.
Liang, H.; Jin, C.; Ma, L.; et al. Accelerated bone regeneration by gold-nanoparticle-loaded mesoporous silica through stimulating immunomodulation. ACS Appl. Mater. Interfaces 2019, 11, 41758–41769.
- 163.
Rodrigues, D.B.; Oliveira, J.M.; Santos, T.C.; et al. Dendrimers: Breaking the paradigm of current musculoskeletal autoimmune therapies. J. Tissue Eng. Regen. Med. 2018, 12, e1796–e1812.
- 164.
Jeevanandam, J.; Sundaramurthy, A.; Sharma, V.; et al. Sustainability of One-Dimensional Nanostructures: Fabrication and Industrial Applications. In Sustainable Nanoscale Engineering; Elsevier: Amsterdam, The Netherlands, 2020; pp. 83–113.
- 165.
Bordoni, V.; Reina, G.; Orecchioni, M.; et al. Stimulation of bone formation by monocyte-activator functionalized graphene oxide in vivo. Nanoscale 2019, 11, 19408–19421.
- 166.
Chen, W.; Zhang, F.; Ju, Y.; et al. Gold nanomaterial engineering for macrophage-mediated inflammation and tumor treatment. Adv. Healthc. Mater. 2021, 10, 2000818.
- 167.
Oh, N.; Kim, Y.; Kweon, H.-S.; et al. Macrophage-mediated exocytosis of elongated nanoparticles improves hepatic excretion and cancer phototherapy. ACS Appl. Mater. Interfaces 2018, 10, 28450–28457.
- 168.
Nambara, K.; Niikura, K.; Mitomo, H.; et al. Reverse size dependences of the cellular uptake of triangular and spherical gold nanoparticles. Langmuir 2016, 32, 12559–12567.
- 169.
Sumbayev, V.V.; Yasinska, I.M.; Garcia, C.P.; et al. Gold nanoparticles downregulate interleukin-1β-induced pro-inflammatory responses. Small 2013, 9, 472–477.
- 170.
Tsai, C.-Y.; Lu, S.-L.; Hu, C.-W.; et al. Size-dependent attenuation of TLR9 signaling by gold nanoparticles in macrophages. J. Immunol. 2012, 188, 68–76.
- 171.
Krpetic, Z.; Porta, F.; Caneva, E.; et al. Phagocytosis of biocompatible gold nanoparticles. Langmuir 2010, 26, 14799–14805.
- 172.
Chen, Z.; Ni, S.; Han, S.; et al. Nanoporous microstructures mediate osteogenesis by modulating the osteo-immune response of macrophages. Nanoscale 2017, 9, 706–718.
- 173.
Xu, C.; Xiao, L.; Cao, Y.; et al. Mesoporous silica rods with cone shaped pores modulate inflammation and deliver BMP-2 for bone regeneration. Nano Res. 2020, 13, 2323–2331.
- 174.
Li, J.; Jiang, X.; Li, H.; et al. Tailoring materials for modulation of macrophage fate. Adv. Mater. 2021, 33, 2004172.
- 175.
Siqueira, R.; Ferreira, J.A.; Rizzante, F.A.P.; et al. Hydrophilic titanium surface modulates early stages of osseointegration in osteoporosis. J. Periodontal Res. 2021, 56, 351–362.
- 176.
Li, X.; Huang, Q.; Elkhooly, T.A.; et al. Effects of titanium surface roughness on the mediation of osteogenesis via modulating the immune response of macrophages. Biomed. Mater. 2018, 13, 045013.
- 177.
Richtering, W.; Alberg, I.; Zentel, R. Nanoparticles in the biological context: Surface morphology and protein corona formation. Small 2020, 16, 2002162.
- 178.
García-Álvarez, R.; Hadjidemetriou, M.; Sánchez-Iglesias, A.; et al. In vivo formation of protein corona on gold nanoparticles. The effect of their size and shape. Nanoscale 2018, 10, 1256–1264.
- 179.
Zia, F.; Kendall, M.; Watson, S.P.; et al. Platelet aggregation induced by polystyrene and platinum nanoparticles is dependent on surface area. RSC Adv. 2018, 8, 37789–37794.
- 180.
Moustaoui, H.; Saber, J.; Djeddi, I.; et al. A protein corona study by scattering correlation spectroscopy: A comparative study between spherical and urchin-shaped gold nanoparticles. Nanoscale 2019, 11, 3665–3673.
- 181.
Binnemars-Postma, K.A.; Ten Hoopen, H.W.; Storm, G.; et al. Differential uptake of nanoparticles by human M1 and M2 polarized macrophages: Protein corona as a critical determinant. Nanomedicine 2016, 11, 2889–2902.
- 182.
Sadowska, J.M.; Wei, F.; Guo, J.; et al. Effect of nano-structural properties of biomimetic hydroxyapatite on osteoimmunomodulation. Biomaterials 2018, 181, 318–332.
- 183.
Veiseh, O.; Doloff, J.C.; Ma, M.; et al. Size-and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat. Mater. 2015, 14, 643–651.
- 184.
Yang, C.; Zhao, C.; Wang, X.; et al. Stimulation of osteogenesis and angiogenesis by micro/nano hierarchical hydroxyapatite via macrophage immunomodulation. Nanoscale 2019, 11, 17699–17708.
- 185.
Sj, A.; Ryb, C.; Ccb, C.; et al. Topological structure of electrospun membrane regulates immune response, angiogenesis and bone regeneration. Acta Biomater. 2021, 129, 148–158.
- 186.
Ni, S.; Zhai, D.; Huan, Z.; et al. Nanosized concave pit/convex dot microarray for immunomodulatory osteogenesis and angiogenesis. Nanoscale 2020, 12, 16474-16488.
- 187.
Zheng, X.; Xin, L.; Luo, Y.; et al. Near-Infrared-Triggered Dynamic Surface Topography for Sequential Modulation of Macrophage Phenotypes. ACS Appl. Mater. Interfaces 2019, 11, 43689–43697.
- 188.
Boehler, R.M.; Graham, J.G.; Shea, L.D. Tissue engineering tools for modulation of the immune response. BioTechniques 2011, 51, 239–254.
- 189.
Wilson, C.J.; Clegg, R.E.; Leavesley, D.I.; et al. Mediation of biomaterial-cell interactions by adsorbed proteins: A review. Tissue Eng. 2005, 11, 1–18.
- 190.
Lin, L.; Xie, Y.; Kai, L.; et al. Unveiling the Mechanism of Surface Hydrophilicity-Modulated Macrophage Polarization. Adv. Healthc. Mater. 2018, 7, 1800675.
- 191.
Hotchkiss, K.M.; Reddy, G.B.; Hyzy, S.L.; et al. Titanium surface characteristics, including topography and wettability, alter macrophage activation. Acta Biomater. 2016, 31, 425–434.
- 192.
Chen, L.; Wang, D.; Peng, F.; et al. Nanostructural Surfaces with Different Elastic Moduli Regulate the Immune Response by Stretching Macrophages. Nano Lett. 2019, 19, 3480–3489.
- 193.
Chen, Z.; Chen, L.; Liu, R.; et al. The osteoimmunomodulatory property of a barrier collagen membrane and its manipulation via coating nanometer-sized bioactive glass to improve guided bone regeneration. Biomater. Sci. 2018, 6, 1007–1019.
- 194.
Wu, C.; Chen, Z.; Yi, D.; et al. Multidirectional Effects of Sr-, Mg-, and Si-Containing Bioceramic Coatings with High Bonding Strength on Inflammation, Osteoclastogenesis, and Osteogenesis. ACS Appl. Mater. Interfaces 2014, 6, 4264–4276.
- 195.
Bai, L.; Du, Z.; Du, J.; et al. A multifaceted coating on titanium dictates osteoimmunomodulation and osteo/angio-genesis towards ameliorative osseointegration. Biomaterials 2018, 162, 154–169.
- 196.
Bezuidenhout, D.; Davies, N.; Zilla, P. Effect of well defined dodecahedral porosity on inflammation and angiogenesis. Asaio J. 2002, 48, 465–471.
- 197.
Klinge, U.; Klosterhalfen, B.; Birkenhauer, V.; et al. Impact of Polymer Pore Size on the Interface Scar Formation in a Rat Model. J. Surg. Res. 2002, 103, 208–214.
- 198.
Karageorgiou, V.; Kaplan, D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005, 26, 5474–5491.
- 199.
Junge, K.; Binnebösel, M.; Trotha, K.; et al. Mesh biocompatibility: Effects of cellular inflammation and tissue remodelling. Langenbecks Arch. Surg. 2012, 397, 255–270.
- 200.
Laschke, M.W.; Harder, Y.; Amon, M.; et al. Angiogenesis in tissue engineering: Breathing life into constructed tissue substitutes. Tissue Eng. 2006, 12, 2093–2104.
- 201.
Chung, J.J.; Jin, Y.; Sum, B.; et al. Bone Substitutes: 3D Printed Porous Methacrylate/Silica Hybrid Scaffold for Bone Substitution. Adv. Healthc. Mater. 2021, 10, 2100117.
- 202.
Chen, Y.W.; Hsu, T.T.; Wang, K.; et al. Stimulatory effects of the fast setting and suitable degrading Ca–Si–Mg cement on both cementogenesis and angiogenesis differentiation of human periodontal ligament cells. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 3, 7099–7108.
- 203.
Wang, C.Y.; Chen, B.; Wang, W.; et al. Strontium released bi-lineage scaffolds with immunomodulatory properties induce a pro-regenerative environment for osteochondral regeneration. Mater. Sci. Eng. C-Mater. Biol. Appl. 2019, 103, 109833.
- 204.
Yamaguchi, M.; Neale Weitzmann, M. The intact strontium ranelate complex stimulates osteoblastogenesis and suppresses osteoclastogenesis by antagonizing NF-κB activation. Mol. Cell. Biochem. 2012, 359, 399–407.
- 205.
Tan, S.; Wang, Y.; Du, Y.; et al. Injectable bone cement with magnesium-containing microspheres enhances osteogenesis via anti-inflammatory immunoregulation. Bioact. Mater. 2021, 6, 3411–3423.
- 206.
Shi, M.; Chen, Z.; Farnaghi, S.; et al. Copper-doped mesoporous silica nanospheres, a promising immunomodulatory agent for inducing osteogenesis. Acta Biomater. 2016, 30, 334–344.
- 207.
Lin, R.C.; Deng, C.J.; Li, X.X.; et al. Copper-incorporated bioactive glass-ceramics inducing anti-inflammatory phenotype and regeneration of cartilage/bone interface. Theranostics 2019, 9, 6300–6313.
- 208.
Liu, W.; Li, J.; Cheng, M.; et al. Zinc-Modified Sulfonated Polyetheretherketone Surface with Immunomodulatory Function for Guiding Cell Fate and Bone Regeneration. Adv. Sci. 2018, 5, 1800749.
- 209.
Liu, G.; Wang, X.; Zhou, X.; et al. Modulating the cobalt dose range to manipulate multisystem cooperation in bone environment: A strategy to resolve the controversies about cobalt use for orthopedic applications. Theranostics 2020, 10, 1074.
- 210.
Chen, Z.; Yuen, J.; Crawford, R.; et al. The effect of osteoimmunomodulation on the osteogenic effects of cobalt incorporated β-tricalcium phosphate. Biomaterials 2015, 61, 126–138.
- 211.
Wu, J.; Qin, C.; Ma, J.; et al. An immunomodulatory bioink with hollow manganese silicate nanospheres for angiogenesis. Appl. Mater. Today 2021, 23, 101015.
- 212.
Pan, H.; Xie, Y.; Zhang, Z.; et al. Immunomodulation effect of a hierarchical macropore/nanosurface on osteogenesis and angiogenesis. Biomed. Mater. 2017, 12, 045006.
- 213.
Wang, Q.; Feng, Y.; He, M.; et al. A Hierarchical Janus Nanofibrous Membrane Combining Direct Osteogenesis and Osteoimmunomodulatory Functions for Advanced Bone Regeneration. Adv. Funct. Mater. 2021, 31, 2008906.
- 214.
Chen, Z.; Bachhuka, A.; Han, S.; et al. Tuning Chemistry and Topography of Nanoengineered Surfaces to Manipulate Immune Response for Bone Regeneration Applications. Acs Nano 2017, 11, 4494–4506.
- 215.
Ma, W.; Mao, J.; Yang, X.; et al. A single-atom Fe–N 4 catalytic site mimicking bifunctional antioxidative enzymes for oxidative stress cytoprotection. Chem. Commun. 2018, 55, 159–162.
- 216.
Zhang, Q.; Tao, H.; Lin, Y.; et al. A superoxide dismutase/catalase mimetic nanomedicine for targeted therapy of inflammatory bowel disease. Biomaterials 2016, 105, 206–221.
- 217.
Bao, X.; Zhao, J.; Sun, J.; et al. Polydopamine nanoparticles as efficient scavengers for reactive oxygen species in periodontal disease. ACS Nano 2018, 12, 8882–8892.
- 218.
Rymut, N.; Heinz, J.; Sadhu, S.; et al. Resolvin D1 promotes efferocytosis in aging by limiting senescent cell-induced MerTK cleavage. FASEB J. 2020, 34, 597–609.
- 219.
Pham, L.M.; Kim, E.-C.; Ou, W.; et al. Targeting and clearance of senescent foamy macrophages and senescent endothelial cells by antibody-functionalized mesoporous silica nanoparticles for alleviating aorta atherosclerosis. Biomaterials 2021, 269, 120677.
- 220.
Cai, Y.; Zhou, H.; Zhu, Y.; et al. Elimination of senescent cells by β-galactosidase-targeted prodrug attenuates inflammation and restores physical function in aged mice. Cell Res. 2020, 30, 574–589.