- 1.
Verstegen, M.M.; Coppes, R.P.; Beghin, A.; et al. Clinical applications of human organoids. Nat. Med. 2025, 31, 409–421.
- 2.
Xu, Z.; Yang, J.; Xin, X.; et al. Merits and challenges of iPSC-derived organoids for clinical applications. Front. Cell Dev. Biol. 2023, 11, 1188905.
- 3.
Kratochvil, M.J.; Seymour, A.J.; Li, T.L.; et al. Engineered materials for organoid systems. Nat. Rev. Mater. 2019, 4, 606–622.
- 4.
Kanton, S.; Boyle, M.J.; He, Z.; et al. Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature 2019, 574, 418–422.
- 5.
Brazovskaja, A.; Treutlein, B.; Camp, J.G. High-throughput single-cell transcriptomics on organoids. Curr. Opin. Biotechnol. 2019, 55, 167–171.
- 6.
Shin, J.; Chung, H.; Kumar, H.; et al. 3D bioprinting of human iPSC-Derived kidney organoids using a low-cost, high-throughput customizable 3D bioprinting system. Bioprinting 2024, 38, e00337.
- 7.
Higuchi, A.; Ling, Q.-D.; Kumar, S.S.; et al. Generation of pluripotent stem cells without the use of genetic material. Lab. Investig. 2015, 95, 26–42.
- 8.
Kozlowski, M.T.; Crook, C.J.; Ku, H.T. Towards organoid culture without Matrigel. Commun. Biol. 2021, 4, 1387.
- 9.
Baker, L.A.; Tiriac, H.; Clevers, H.; et al. Modeling pancreatic cancer with organoids. Trends Cancer 2016, 2, 176–190.
- 10.
Drakhlis, L.; Devadas, S.B.; Zweigerdt, R. Generation of heart-forming organoids from human pluripotent stem cells. Nat. Protoc. 2021, 16, 5652–5672.
- 11.
Lee, S.-G.; Kim, Y.-J.; Son, M.-Y.; et al. Generation of human iPSCs derived heart organoids structurally and functionally similar to heart. Biomaterials 2022, 290, 121860.
- 12.
Kulkeaw, K.; Tubsuwan, A.; Tongkrajang, N.; et al. Generation of human liver organoids from pluripotent stem cell-derived hepatic endoderms. PeerJ 2020, 8, e9968.
- 13.
Gleeson, J.P.; Estrada, H.Q.; Yamashita, M.; et al. Development of physiologically responsive human iPSC-derived intestinal epithelium to study barrier dysfunction in IBD. Int. J. Mol. Sci. 2020, 21, 1438.
- 14.
Estrada, H.Q.; Patel, S.; Rabizadeh, S.; et al. Development of a personalized intestinal fibrosis model using human intestinal organoids derived from induced pluripotent stem cells. Inflamm. Bowel Dis. 2022, 28, 667–679.
- 15.
Dai, X.; Wang, X.; Yang, C.; et al. Human fibroblasts facilitate the generation of iPSCs-derived mammary-like organoids. Stem Cell Res. Ther. 2022, 13, 377.
- 16.
Wen, Z.; Orduno, M.; Liang, Z.; et al. Optimization of vascularized intestinal organoid model. Adv. Healthc. Mater. 2024, 13, 2400977.
- 17.
Xue, W.; Li, B.; Liu, H.; et al. Generation of dorsoventral human spinal cord organoids via functionalizing composite scaffold for drug testing. Iscience 2023, 26, 105898.
- 18.
De Paola, M.; Pischiutta, F.; Comolli, D.; et al. Neural cortical organoids from self-assembling human iPSC as a model to investigate neurotoxicity in brain ischemia. J. Cereb. Blood Flow Metab. 2023, 43, 680–693.
- 19.
Weng, Y.; Han, S.; Sekyi, M.T.; et al. Self-assembled matrigel-free iPSC-derived liver organoids demonstrate wide-ranging highly differentiated liver functions. Stem Cells 2023, 41, 126–139.
- 20.
Kjar, A.; Haschert, M.R.; Zepeda, J.C.; et al. Biofunctionalized gelatin hydrogels support development and maturation of iPSC-derived cortical organoids. Cell Rep. 2024, 43, 114874.
- 21.
Chooi, W.H.; Ng, C.Y.; Ow, V.; et al. Defined alginate hydrogels support spinal cord organoid derivation, maturation, and modeling of spinal cord diseases. Adv. Healthc. Mater. 2023, 12, 2202342.
- 22.
Heaton, E.S.; Hu, M.; Liu, T.; et al. Extracellular matrix-derived peptide stimulates the generation of endocrine progenitors and islet organoids from iPSCs. J. Tissue Eng. 2023, 14, 20417314231185858.
- 23.
Carolina, E.; Kuse, Y.; Okumura, A.; et al. Generation of human iPSC-derived 3D bile duct within liver organoid by incorporating human iPSC-derived blood vessel. Nat. Commun. 2024, 15, 7424.
- 24.
Sandilya, S.; Singh, S. Development of islet organoids from human induced pluripotent stem cells in a cross-linked collagen scaffold. Cell Regen. 2021, 10, 38.
- 25.
Jiang, S.; Xu, F.; Jin, M.; et al. Development of a high-throughput micropatterned agarose scaffold for consistent and reproducible hPSC-derived liver organoids. Biofabrication 2022, 15, 015006.
- 26.
Majumder, J.; Torr, E.E.; Aisenbrey, E.A.; et al. Human induced pluripotent stem cell-derived planar neural organoids assembled on synthetic hydrogels. J. Tissue Eng. 2024, 15, 20417314241230633.
- 27.
Meijer, E.M.; Koch, S.E.; van Dijk, C.G.; et al. 3D Human iPSC Blood Vessel Organoids as a Source of Flow‐Adaptive Vascular Cells for Creating a Human‐Relevant 3D‐Scaffold Based Macrovessel Model. Adv. Biol. 2023, 7, 2200137.
- 28.
Treacy, N.J.; Clerkin, S.; Davis, J.L.; et al. Growth and differentiation of human induced pluripotent stem cell (hiPSC)-derived kidney organoids using fully synthetic peptide hydrogels. Bioact. Mater. 2023, 21, 142–156.
- 29.
Chen, C.; Rengarajan, V.; Kjar, A.; et al. A matrigel-free method to generate matured human cerebral organoids using 3D-Printed microwell arrays. Bioact. Mater. 2021, 6, 1130–1139.
- 30.
Sridharan, A.; Rajan, S.D.; Muthuswamy, J. Long-term changes in the material properties of brain tissue at the implant–tissue interface. J. Neural Eng. 2013, 10, 066001.
- 31.
Lancaster, M.A.; Knoblich, J.A. Generation of cerebral organoids from human pluripotent stem cells. Nat. Protoc. 2014, 9, 2329–2340.
- 32.
Muñiz, A.J.; Topal, T.; Brooks, M.D.; et al. Engineered extracellular matrices facilitate brain organoids from human pluripotent stem cells. Ann. Clin. Transl. Neurol. 2023, 10, 1239–1253.
- 33.
Zeleniak, A.; Wiegand, C.; Liu, W.; et al. De novo construction of T cell compartment in humanized mice engrafted with iPSC-derived thymus organoids. Nat. Methods 2022, 19, 1306–1319.
- 34.
Richardson, T.; Kumta, P.N.; Banerjee, I. Alginate encapsulation of human embryonic stem cells to enhance directed differentiation to pancreatic islet-like cells. Tissue Eng. Part A 2014, 20, 3198–3211.
- 35.
Ramos, S.A.; Armitage, L.H.; Morton, J.J.; et al. Generation of functional thymic organoids from human pluripotent stem cells. Stem Cell Rep. 2023, 18, 829–840.
- 36.
Lee, S.-J.; Park, C.; Lee, J.Y.; et al. Generation of pure lymphatic endothelial cells from human pluripotent stem cells and their therapeutic effects on wound repair. Sci. Rep. 2015, 5, 11019.
- 37.
Lee, J.; Jung, S.; Hong, H.K.; et al. Vascularized tissue on mesh-assisted platform (VT-MAP): A novel approach for diverse organoid size culture and tailored cancer drug response analysis. Lab A Chip 2024, 24, 2208–2223.
- 38.
Wang, Z.; McWilliams-Koeppen, H.P.; Reza, H.; et al. 3D-organoid culture supports differentiation of human CAR+ iPSCs into highly functional CAR T cells. Cell Stem Cell 2022, 29, 515–527. e518.
- 39.
Zheng, F.; Xiao, Y.; Liu, H.; et al. Patient-specific organoid and organ-on-a-chip: 3D cell-culture meets 3D printing and numerical simulation. Adv. Biol. 2021, 5, e2000024.
- 40.
Jarak, I.; Varela, C.L.; da Silva, E.T.; et al. Pluronic-based nanovehicles: Recent advances in anticancer therapeutic applications. Eur. J. Med. Chem. 2020, 206, 112526.
- 41.
Shriky, B.; Kelly, A.; Isreb, M.; et al. Pluronic F127 thermosensitive injectable smart hydrogels for controlled drug delivery system development. J. Colloid Interface Sci. 2020, 565, 119–130.
- 42.
Goncharuk, O.; Samchenko, Y.; Sternik, D.; et al. Thermosensitive hydrogel nanocomposites with magnetic laponite nanoparticles. Appl. Nanosci. 2020, 10, 4559–4569.
- 43.
Fan, R.; Cheng, Y.; Wang, R.; et al. Thermosensitive hydrogels and advances in their application in disease therapy. Polymers 2022, 14, 2379.
- 44.
Patel, N.; Ji, N.; Wang, Y.; et al. Subcutaneous delivery of albumin: Impact of thermosensitive hydrogels. AAPS PharmSciTech 2021, 22, 120.
- 45.
Deng, A.; Kang, X.; Zhang, J.; et al. Enhanced gelation of chitosan/β-sodium glycerophosphate thermosensitive hydrogel with sodium bicarbonate and biocompatibility evaluated. Mater. Sci. Eng. C 2017, 78, 1147–1154.
- 46.
Camp, J.G.; Sekine, K.; Gerber, T.; et al. Multilineage communication regulates human liver bud development from pluripotency. Nature 2017, 546, 533–538.
- 47.
Takebe, T.; Sekine, K.; Enomura, M.; et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 2013, 499, 481–484.
- 48.
Mansour, A.A.; Gonçalves, J.T.; Bloyd, C.W.; et al. An in vivo model of functional and vascularized human brain organoids. Nat. Biotechnol. 2018, 36, 432–441.
- 49.
Kim, W.; Gwon, Y.; Park, S.; et al. Therapeutic strategies of three-dimensional stem cell spheroids and organoids for tissue repair and regeneration. Bioact. Mater. 2023, 19, 50–74.
- 50.
Wang, L.; Koui, Y.; Kanegae, K.; et al. Establishment of human induced pluripotent stem cell-derived hepatobiliary organoid with bile duct for pharmaceutical research use. Biomaterials 2024, 310, 122621.
- 51.
Kim, H.J.; Kim, G.; Chi, K.Y.; et al. Generation of multilineage liver organoids with luminal vasculature and bile ducts from human pluripotent stem cells via modulation of Notch signaling. Stem Cell Res. Ther. 2023, 14, 19.
- 52.
Kim, J.-H.; An, G.H.; Kim, J.-Y.; et al. Human pluripotent stem cell-derived alveolar organoids for modeling pulmonary fibrosis and drug testing. Cell Death Discov. 2021, 7, 48.
- 53.
Shen, H.; Yu, H.; Li, Q.-y.; et al. Hepatocyte-derived VEGFA accelerates the progression of non-alcoholic fatty liver disease to hepatocellular carcinoma via activating hepatic stellate cells. Acta Pharmacol. Sin. 2022, 43, 2917–2928.
- 54.
Cakir, B.; Xiang, Y.; Tanaka, Y.; et al. Engineering of human brain organoids with a functional vascular-like system. Nat. Methods 2019, 16, 1169–1175.
- 55.
Dao, L.; You, Z.; Lu, L.; et al. Modeling blood-brain barrier formation and cerebral cavernous malformations in human PSC-derived organoids. Cell Stem Cell 2024, 31, 818–833.e11.
- 56.
Chai, Y.C.; To, S.K.; Simorgh, S.; et al. Spatially Self‐Organized Three‐Dimensional Neural Concentroid as a Novel Reductionist Humanized Model to Study Neurovascular Development. Adv. Sci. 2024, 11, 2304421.
- 57.
Ham, O.; Jin, Y.B.; Kim, J.; et al. Blood vessel formation in cerebral organoids formed from human embryonic stem cells. Biochem. Biophys. Res. Commun. 2020, 521, 84–90.
- 58.
Cadena, M.A.; Sing, A.; Taylor, K.; et al. A 3D bioprinted cortical organoid platform for modeling human brain development. Adv. Healthc. Mater. 2024, 13, 2401603.
- 59.
Kistemaker, L.; van Bodegraven, E.J.; de Vries, H.E.; et al. Vascularized human brain organoids: Current possibilities and prospects. Trends Biotechnol. 2025.
- 60.
Gonzales-Aloy, E.; Ahmed-Cox, A.; Tsoli, M.; et al. From cells to organoids: The evolution of blood-brain barrier technology for modelling drug delivery in brain cancer. Adv. Drug Deliv. Rev. 2023, 196, 114777.
- 61.
Quintard, C.; Tubbs, E.; Jonsson, G.; et al. A microfluidic platform integrating functional vascularized organoids-on-chip. Nat. Commun. 2024, 15, 1452.
- 62.
Takasato, M.; Er, P.X.; Chiu, H.S.; et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 2015, 526, 564–568.
- 63.
Nishinakamura, R. Human kidney organoids: Progress and remaining challenges. Nat. Rev. Nephrol. 2019, 15, 613–624.
- 64.
Takasato, M.; Er, P.X.; Chiu, H.S.; et al. Generation of kidney organoids from human pluripotent stem cells. Nat. Protoc. 2016, 11, 1681–1692.
- 65.
Peng, K.; Xie, W.; Wang, T.; et al. HIF-1α promotes kidney organoid vascularization and applications in disease modeling. Stem Cell Res. Ther. 2023, 14, 336.
- 66.
Kim, J.W.; Nam, S.A.; Yi, J.; et al. Kidney decellularized extracellular matrix enhanced the vascularization and maturation of human kidney organoids. Adv. Sci. 2022, 9, 2103526.
- 67.
Lee, H.N.; Choi, Y.Y.; Kim, J.W.; et al. Effect of biochemical and biomechanical factors on vascularization of kidney organoid-on-a-chip. Nano Converg. 2021, 8, 35.
- 68.
Homan, K.A.; Gupta, N.; Kroll, K.T.; et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat. Methods 2019, 16, 255–262.
- 69.
Liu, B.; Wang, D.A. Application of Nanomaterials in the Repair and Regeneration of Lymphatic Organs and Corresponding Biophysical Simulation Strategies. Adv. NanoBiomed Res. 2024, 2400081.
- 70.
Nakamura, A.; Murata, D.; Fujimoto, R.; et al. Bio-3D printing iPSC-derived human chondrocytes for articular cartilage regeneration. Biofabrication 2021, 13, 044103.
- 71.
Agten, H.; Van Hoven, I.; Viseu, S.R.; et al. In vitro and in vivo evaluation of 3D constructs engineered with human iPSC‐derived chondrocytes in gelatin methacryloyl hydrogel. Biotechnol. Bioeng. 2022, 119, 2950–2963.
- 72.
Chi, J.; Wang, S.; Ju, R.; et al. Repair effects of thermosensitive hydrogels combined with iPSC-derived corneal endothelial cells on rabbit corneal endothelial dysfunction. Acta Biomater. 2025, 191, 216–232.
- 73.
Lu, C.; Le, Q. Advances in Organoid Technology: A Focus on Corneal Limbal Organoids. Stem Cell Rev. Rep. 2024, 20, 1227–1235.
- 74.
Ma, S.; Xie, Y.; Wang, Q.; et al. Application of eye organoids in the study of eye diseases. Exp. Eye Res. 2024, 247, 110068.
- 75.
Koc, A.C.; Sari, V.; Kocak, G.; et al. Patient-derived cornea organoid model to study metabolomic characterization of rare disease: Aniridia-associated keratopathy. BMC Ophthalmol. 2025, 25, 14.
- 76.
Frenz-Wiessner, S.; Fairley, S.D.; Buser, M.; et al. Generation of complex bone marrow organoids from human induced pluripotent stem cells. Nat. Methods 2024, 21, 868–881.
- 77.
Koike, H.; Iwasawa, K.; Ouchi, R.; et al. Modelling human hepato-biliary-pancreatic organogenesis from the foregut–midgut boundary. Nature 2019, 574, 112–116.
- 78.
Workman, M.J.; Mahe, M.M.; Trisno, S.; et al. Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. Nat. Med. 2017, 23, 49–59.
- 79.
Kishimoto, K.; Iwasawa, K.; Sorel, A.; et al. Directed differentiation of human pluripotent stem cells into diverse organ-specific mesenchyme of the digestive and respiratory systems. Nat. Protoc. 2022, 17, 2699–2719.
- 80.
Navoly, G.; McCann, C.J. Dynamic integration of enteric neural stem cells in ex vivo organotypic colon cultures. Sci. Rep. 2021, 11, 15889.
- 81.
Pan, W.; Rahman, A.A.; Ohkura, T.; et al. Autologous cell transplantation for treatment of colorectal aganglionosis in mice. Nat. Commun. 2024, 15, 2479.
- 82.
Moerkens, R.; Mooiweer, J.; Ramírez-Sánchez, A.D.; et al. An iPSC-derived small intestine-on-chip with self-organizing epithelial, mesenchymal, and neural cells. Cell Rep. 2024, 43, 114247.
- 83.
Laddach, A.; Chng, S.H.; Lasrado, R.; et al. A branching model of lineage differentiation underpinning the neurogenic potential of enteric glia. Nat. Commun. 2023, 14, 5904.
- 84.
Qian, X.; Su, Y.; Adam, C.D.; et al. Sliced human cortical organoids for modeling distinct cortical layer formation. Cell Stem Cell 2020, 26, 766–781.e69.
- 85.
Fu, C.-L.; Dong, B.-C.; Jiang, X.; et al. A cell therapy approach based on iPSC-derived midbrain organoids for the restoration of motor function in a Parkinson’s disease mouse model. Heliyon 2024, 10, e24234.
- 86.
Babu, H.W.S.; Kumar, S.M.; Kaur, H.; et al. Midbrain organoids for Parkinson's disease (PD)-A powerful tool to understand the disease pathogenesis. Life Sci. 2024, 345, 122610.
- 87.
Cui, X.; Li, X.; Zheng, H.; et al. Human midbrain organoids: A powerful tool for advanced Parkinson’s disease modeling and therapy exploration. NPJ Park. Dis. 2024, 10, 189.
- 88.
Parrotta, E.I.; Lucchino, V.; Zannino, C.; et al. Modeling Sporadic Progressive Supranuclear Palsy in 3D Midbrain Organoids: Recapitulating Disease Features for In Vitro Diagnosis and Drug Discovery. Ann. Neurol. 2025.
https://doi.org/10.1002/ana.27172.
- 89.
Selecky, G.A.; Whitney, K.R.; Krassner, M.M.; et al. Generating a novel and reliable human iPSC‐derived midbrain organoid model of sporadic progressive supranuclear palsy. Alzheimer's Dement. 2025, 20, e093263.
- 90.
Tang, X.-Y.; Wu, S.; Wang, D.; et al. Human organoids in basic research and clinical applications. Signal Transduct. Target. Ther. 2022, 7, 168.
- 91.
Barak, M.; Fedorova, V.; Pospisilova, V.; et al. Human iPSC-derived neural models for studying Alzheimer’s disease: From neural stem cells to cerebral organoids. Stem Cell Rev. Rep. 2022, 18, 792–820.
- 92.
Kiral, F.R.; Cakir, B.; Tanaka, Y.; et al. Generation of ventralized human thalamic organoids with thalamic reticular nucleus. Cell Stem Cell 2023, 30, 677–688. e675.
- 93.
Shin, D.; Kim, C.N.; Ross, J.; et al. Thalamocortical organoids enable in vitro modeling of 22q11. 2 microdeletion associated with neuropsychiatric disorders. Cell Stem Cell 2024, 31, 421–432.e8.
- 94.
Brás, J.; Henriques, D.; Moreira, R.; et al. Establishment and characterization of human pluripotent stem cells-derived brain organoids to model cerebellar diseases. Sci. Rep. 2022, 12, 12513.
- 95.
Huang, W.-K.; Wong, S.Z.H.; Pather, S.R.; et al. Generation of hypothalamic arcuate organoids from human induced pluripotent stem cells. Cell Stem Cell 2021, 28, 1657–1670.e10.
- 96.
Leal, H.; Carvalhas-Almeida, C.; Álvaro, A.R.; et al. Modeling hypothalamic pathophysiology in vitro for metabolic, circadian, and sleep disorders. Trends Endocrinol. Metab. 2024, 35, 505–517.
- 97.
Yi, W.; Xue, Y.; Qing, W.; et al. Effective treatment of optic neuropathies by intraocular delivery of MSC-sEVs through augmenting the G-CSF-macrophage pathway. Proc. Natl. Acad. Sci. USA 2024, 121, e2305947121.
- 98.
Wang, J.; Daniszewski, M.; Hao, M.M.; et al. Organelle mapping in dendrites of human iPSC-derived neurons reveals dynamic functional dendritic Golgi structures. Cell Rep. 2023, 42, 112709.
- 99.
Takeuchi, K.; Tabe, S.; Takahashi, K.; et al. Incorporation of human iPSC-derived stromal cells creates a pancreatic cancer organoid with heterogeneous cancer-associated fibroblasts. Cell Rep. 2023, 42, 113420.
- 100.
Kong, D.; Kwon, D.; Moon, B.; et al. CD19 CAR-expressing iPSC-derived NK cells effectively enhance migration and cytotoxicity into glioblastoma by targeting to the pericytes in tumor microenvironment. Biomed. Pharmacother. 2024, 174, 116436.
- 101.
Khan, A.O.; Rodriguez-Romera, A.; Reyat, J.S.; et al. Human bone marrow organoids for disease modeling, discovery, and validation of therapeutic targets in hematologic malignancies. Cancer Discov. 2023, 13, 364–385.
- 102.
O’Brien, B.S.; Mokry, R.L.; Schumacher, M.L.; et al. Downregulation of neurodevelopmental gene expression in iPSC-derived cerebral organoids upon infection by human cytomegalovirus. Iscience 2022, 25, 104098.
- 103.
Tamai, K.; Sakai, K.; Yamaki, H.; et al. iPSC-derived mesenchymal cells that support alveolar organoid development. Cell Rep. Methods 2022, 2, 100314.
- 104.
Han, Y.; Tan, L.; Zhou, T.; et al. A human iPSC-array-based GWAS identifies a virus susceptibility locus in the NDUFA4 gene and functional variants. Cell Stem Cell 2022, 29, 1475–1490.e76.
- 105.
Gandikota, C.; Vaddadi, K.; Sivasami, P.; et al. The use of human iPSC‐derived alveolar organoids to explore SARS‐CoV‐2 variant infections and host responses. J. Med. Virol. 2024, 96, e29579.
- 106.
Cappelletti, G.; Brambilla, L.; Strizzi, S.; et al. iPSC‐derived human cortical organoids display profound alterations of cellular homeostasis following SARS‐CoV‐2 infection and Spike protein exposure. FASEB J. 2025, 39, e70396.
- 107.
Wang, W.; Yang, J.; Kang, P.; et al. Direct infection of SARS-CoV-2 in human iPSC-derived 3D cardiac organoids recapitulates COVID-19 myocarditis. Virol. Sin. 2023, 38, 971.
- 108.
Tiwari, S.K.; Wang, S.; Smith, D.; et al. Revealing tissue-specific SARS-CoV-2 infection and host responses using human stem cell-derived lung and cerebral organoids. Stem Cell Rep. 2021, 16, 437–445.
- 109.
Mithal, A.; Hume, A.J.; Lindstrom-Vautrin, J.; et al. Human pluripotent stem cell-derived intestinal organoids model SARS-CoV-2 infection revealing a common epithelial inflammatory response. Stem Cell Rep. 2021, 16, 940–953.
- 110.
Yamada, S.; Noda, T.; Okabe, K.; et al. SARS-CoV-2 induces barrier damage and inflammatory responses in the human iPSC-derived intestinal epithelium. J. Pharmacol. Sci. 2022, 149, 139–146.
- 111.
Zhao, Y.; Landau, S.; Okhovatian, S.; et al. Integrating organoids and organ-on-a-chip devices. Nat. Rev. Bioeng. 2024, 2, 588–608.
- 112.
Koenig, L.; Ramme, A.P.; Faust, D.; et al. A human stem cell-derived brain-liver chip for assessing blood-brain-barrier permeation of pharmaceutical drugs. Cells 2022, 11, 3295.
- 113.
Novak, R.; Ingram, M.; Marquez, S.; et al. Robotic fluidic coupling and interrogation of multiple vascularized organ chips. Nat. Biomed. Eng. 2020, 4, 407–420.
- 114.
Leung, C.M.; De Haan, P.; Ronaldson-Bouchard, K.; et al. A guide to the organ-on-a-chip. Nat. Rev. Methods Primers 2022, 2, 33.
- 115.
- 116.
Zhang, D.; Deng, Y.; Kukanja, P.; et al. Spatial epigenome–transcriptome co-profiling of mammalian tissues. Nature 2023, 616, 113–122.
- 117.
- 118.
Cyranoski, D. What’s next for CRISPR babies. Nature 2019, 566, 440–442.
- 119.
Cyranoski, D. What CRISPR-baby prison sentences mean for research. Nature 2020, 577, 154–155.
- 120.
Nadel, L. The Future of Stem Cell Therapy Regulation under the FDA’s Comprehensive Regenerative Medicine Policy Framework through a Public Health Lens. Hous. J. Health L. Pol’y 2021, 21, 223.
- 121.
Knoepfler, P.S. From bench to FDA to bedside: US regulatory trends for new stem cell therapies. Adv. Drug Deliv. Rev. 2015, 82, 192–196.
- 122.
Trounson, A.; McDonald, C. Stem cell therapies in clinical trials: Progress and challenges. Cell Stem Cell 2015, 17, 11–22.