- 1.
Marin, E.; Boschetto, F.; Pezzotti, G. Biomaterials and biocompatibility: An historical overview. J. Biomed. Mater. Res. Part A 2020, 108, 1617–1633.
- 2.
Major, E.A.M. Ancient Civilisations. Trans. Newcom. Soc. 1929, 10, 69–85.
- 3.
Mobasheri, A. Intersection of inflammation and herbal medicine in the treatment of osteoarthritis. Curr. Rheumatol. Rep. 2012, 14, 604–616.
- 4.
Marin, E. History of dental biomaterials: Biocompatibility, durability and still open challenges. Herit. Sci. 2023, 11, 207.
- 5.
Li, P.; Yang, Z.; Jiang, L.; et al. An exploration of the origin and flow of the development of traditional Chinese medicine orthopedic and chiropractic massage. Hist. Philos. Med. 2024, 6, 15.
- 6.
Hoptioncann, E. Revolution in Byzantine Orthopedics. Dumbart. Oaks Pap. 2024, 78, 49–80.
- 7.
Kargozar, S.; Ramakrishna, S.; Mozafari, M. Chemistry of biomaterials: Future prospects. Curr. Opin. Biomed. Eng. 2019, 10, 181–190.
- 8.
Nather, A.; Zheng, S. Evolution of allograft transplantation. In Allograft Procurement, Processing and Transplantation: A Comprehensive Guide for Tissue Bank; World Scientific: Singapore, 2010; Volume 1.
- 9.
Boukraâ, L. Honey in Traditional and Modern Medicine; CRC Press: Boca Raton, FL, USA, 2023.
- 10.
Rubežić, M.Z.; Krstić, A.B.; Stanković, H.Z.; et al. Different types of biomaterials: Structure and application: A short review. Adv. Technol. 2020, 9, 69–79.
- 11.
Molan, P.; Betts, J. Clinical usage of honey as a wound dressing: An update. J. Wound Care 2004, 13, 353–356.
- 12.
Fatima, N.; Anwar, S.; Jaffar, S.; et al. An insight into animal and plant halal ingredients used in cosmetics. Int. J. Innov. Creat. Chang. 2020, 14, 2020.
- 13.
Murray, M.M.; Spindler, K.P.; Devin, C.; et al. Use of a collagen-platelet rich plasma scaffold to stimulate healing of a central defect in the canine ACL. J. Orthop. Res. 2006, 24, 820–830.
- 14.
Bertin, I.; Martín-Seijo, M.; Martínez-Sevilla, F.; et al. First evidence of early neolithic archery from Cueva de los Murciélagos (Albuñol, Granada) revealed through combined chemical and morphological analysis. Sci. Rep. 2024, 14, 29247.
- 15.
Fess, E.E. A history of splinting: To understand the present, view the past. J. Hand Ther. 2002, 15, 97–132.
- 16.
Holland, C.; Numata, K.; Rnjak-Kovacina, J.; et al. The biomedical use of silk: Past, present, future. Adv. Healthc. Mater. 2019, 8, 1800465.
- 17.
Salhi, A.; Letissier, H.; Salem, D.B.; et al. Shoulder anatomy, function, and modeling: Current state of the art as foreseen by Leonardo da Vinci. In Léonard de Vinci; L’Harmattan: Paris, France, 2022.
- 18.
Savoia, P. Nature or artifice? Grafting in early modern surgery and agronomy. J. Hist. Med. Allied Sci. 2017, 72, 67–86.
- 19.
Steinwachs, M.; Peterson, L.; Bobic, V.; et al. Cell-Seeded Collagen Matrix–Supported Autologous Chondrocyte Transplantation (ACT-CS) A Consensus Statement on Surgical Technique. Cartilage 2012, 3, 5–12.
- 20.
Wang, H.-L.; Carroll, W.J. Guided bone regeneration using bone grafts and collagen membranes. Quintessence Int. 2001, 32, 504.
- 21.
Wang, Y.; Wang, Z.; Dong, Y. Collagen-based biomaterials for tissue engineering. ACS Biomater. Sci. Eng. 2023, 9, 1132–1150.
- 22.
Eynon-Lewis, N.; Ferry, D.; Pearse, M. Themistocles Gluck: An unrecognised genius. BMJ Br. Med. J. 1992, 305, 1534.
- 23.
Roberts, T.T.; Rosenbaum, A.J. Bone grafts, bone substitutes and orthobiologics: The bridge between basic science and clinical advancements in fracture healing. Organogenesis 2012, 8, 114–124.
- 24.
Larson, E. Innovations in health care: Antisepsis as a case study. Am. J. Public Health 1989, 79, 92–99.
- 25.
Schlich, T. Farmer to industrialist: Lister’s antisepsis and the making of modern surgery in Germany. Notes Rec. R. Soc. 2013, 67, 245–260.
- 26.
Baldwin, P.; Li, D.J.; Auston, D.A.; et al. Autograft, allograft, and bone graft substitutes: Clinical evidence and indications for use in the setting of orthopaedic trauma surgery. J. Orthop. Trauma 2019, 33, 203–213.
- 27.
Markatos, K.; Tsoucalas, G.; Sgantzos, M. Hallmarks in the history of orthopaedic implants for trauma and joint replacement. Acta Med.-Hist. Adriat. 2016, 14, 161–176.
- 28.
Walter, N.; Stich, T.; Docheva, D.; et al. Evolution of implants and advancements for osseointegration: A narrative review. Injury 2022, 53, S69-S73.
- 29.
Tian, L.; Tang, N.; Ngai, T.; et al. Hybrid fracture fixation systems developed for orthopaedic applications: A general review. J. Orthop. Transl. 2019, 16, 1–13.
- 30.
Kasoju, N.; Bora, U. Silk fibroin in tissue engineering. Adv. Healthc. Mater. 2012, 1, 393–412.
- 31.
Cheng, G.; Davoudi, Z.; Xing, X.; et al. Advanced silk fibroin biomaterials for cartilage regeneration. ACS Biomater. Sci. Eng. 2018, 4, 2704–2715.
- 32.
Kambe, Y. Functionalization of silk fibroin-based biomaterials for tissue engineering. Polym. J. 2021, 53, 1345–1351.
- 33.
Magalhaes, R.; Atala, A. Regenerative Medicine and Tissue Engineering Technologies; IIF Press: Washington, DC, USA, 2021; Volume 93.
- 34.
Wahl, D.; Czernuszka, J. Collagen-hydroxyapatite composites for hard tissue repair. Eur. Cell Mater. 2006, 11, 43–56.
- 35.
Li, L.; Yu, F.; Zheng, L.; et al. Natural hydrogels for cartilage regeneration: Modification, preparation and application. J. Orthop. Transl. 2019, 17, 26–41.
- 36.
Hayes, A.J.; Melrose, J. Glycosaminoglycan and proteoglycan biotherapeutics in articular cartilage protection and repair strategies: Novel approaches to visco-supplementation in orthobiologics. Adv. Ther. 2019, 2, 1900034.
- 37.
Agrawal, C.M. Biodegradable polymers for orthopaedic applications. In Polymer Based Systems on Tissue Engineering, Replacement and Regeneration; Springer: Berlin/Heidelberg, Germany, 2002; pp. 25–36.
- 38.
Athanasiou, K.A.; Niederauer, G.G.; Agrawal, C.M. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 1996, 17, 93–102.
- 39.
Morris, H.; Murray, R. The Development of Textiles in Medicine and the Healthcare Environment over Time. In Medical Textiles; CRC Press: Boca Raton, FL, USA, 2021; pp. 5–34.
- 40.
Ma, B.; Xie, J.; Jiang, J.; et al. Rational design of nanofiber scaffolds for orthopedic tissue repair and regeneration. Nanomedicine 2013, 8, 1459–1481.
- 41.
Warnecke, D.; Stein, S.; Haffner-Luntzer, M.; et al. Biomechanical, structural and biological characterisation of a new silk fibroin scaffold for meniscal repair. J. Mech. Behav. Biomed. Mater. 2018, 86, 314–324.
- 42.
Mathew, A.P.; Oksman, K.; Pierron, D.; et al. Biocompatible fibrous networks of cellulose nanofibres and collagen crosslinked using genipin: Potential as artificial ligament/tendons. Macromol. Biosci. 2013, 13, 289–298.
- 43.
Vedula, S.S.; Yadav, G.D. Chitosan-based membranes preparation and applications: Challenges and opportunities. J. Indian Chem. Soc. 2021, 98, 100017.
- 44.
Tamplenizza, M.; Tocchio, A.; Gerges, I.; et al. In vivo imaging study of angiogenesis in a channelized porous scaffold. Mol. Imaging 2015, 14, 7290.
- 45.
Xiao, M.; Yao, J.; Shao, Z.; et al. Silk-Based 3D Porous Scaffolds for Tissue Engineering. ACS Biomater. Sci. Eng. 2024, 10, 2827–2840.
- 46.
Li, C.; Hotz, B.; Ling, S.; et al. Regenerated silk materials for functionalized silk orthopedic devices by mimicking natural processing. Biomaterials 2016, 110, 24–33.
- 47.
Farokhi, M.; Mottaghitalab, F.; Samani, S.; et al. Silk fibroin/hydroxyapatite composites for bone tissue engineering. Biotechnol. Adv. 2018, 36, 68–91.
- 48.
Fitzpatrick, V.; Martín-Moldes, Z.; Deck, A.; et al. Functionalized 3D-printed silk-hydroxyapatite scaffolds for enhanced bone regeneration with innervation and vascularization. Biomaterials 2021, 276, 120995.
- 49.
Wang, Z.; Dadpour, S. Novel applications of collagen in tissue engineering and wound healing: New horizons. Micro Nano Bio Asp. 2024, 3, 21–26.
- 50.
Hogan, K.J. Development of Extracellular Matrix-Based Biomaterials for Musculoskeletal Tissue Engineering. Rice University, 2023.
- 51.
Amini, A.A.; Nair, L.S. Injectable hydrogels for bone and cartilage repair. Biomed. Mater. 2012, 7, 024105.
- 52.
Peptu, C.; Humelnicu, A.C.; Rotaru, R.; et al. Chitosan-based drug delivery systems. In Chitin and Chitosan: Properties and Applications; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2019; pp. 259–289.
- 53.
Yilmaz, I.; Gokay, N.; Gokce, A.; et al. A novel designed chitosan based hydrogel which is capable of consecutively controlled release of TGF-Beta 1 and BMP-7. Turk. Klin. J. Med. Sci 2013, 33, 18–32.
- 54.
Yousefiasl, S.; Sharifi, E.; Salahinejad, E.; et al. Bioactive 3D-printed chitosan-based scaffolds for personalized craniofacial bone tissue engineering. Eng. Regen. 2023, 4, 1–11.
- 55.
Abinaya, B.; Prasith, T.P.; Ashwin, B.; et al. Chitosan in surface modification for bone tissue engineering applications. Biotechnol. J. 2019, 14, 1900171.
- 56.
Caplan, A.I. New era of cell-based orthopedic therapies. Tissue Eng. Part B Rev. 2009, 15, 195–200.
- 57.
Ringe, J.; Kaps, C.; Burmester, G.-R.; et al. Stem cells for regenerative medicine: Advances in the engineering of tissues and organs. Naturwissenschaften 2002, 89, 338–351.
- 58.
Chen, J.; Mo, Q.; Sheng, R.; et al. The application of human periodontal ligament stem cells and biomimetic silk scaffold for in situ tendon regeneration. Stem Cell Res. Ther. 2021, 12, 596.
- 59.
Moreau, J.L.; Xu, H.H. Mesenchymal stem cell proliferation and differentiation on an injectable calcium phosphate–chitosan composite scaffold. Biomaterials 2009, 30, 2675–2682.
- 60.
Yang, X.; Lu, Z.; Wu, H.; et al. Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering. Mater. Sci. Eng. C 2018, 83, 195–201.
- 61.
Bucciarelli, A.; Petretta, M.; Grigolo, B.; et al. Methacrylated silk fibroin additive manufacturing of shape memory constructs with possible application in bone regeneration. Gels 2022, 8, 833.
- 62.
Frączek, W.; Kotela, A.; Kotela, I.; et al. Nanostructures in Orthopedics: Advancing Diagnostics, Targeted Therapies, and Tissue Regeneration. Materials 2024, 17, 6162.
- 63.
Zhu, L.; Luo, D.; Liu, Y. Effect of the nano/microscale structure of biomaterial scaffolds on bone regeneration. Int. J. Oral Sci. 2020, 12, 6.
- 64.
Shi, S.; Shi, W.; Zhou, B.; et al. Research and Application of Chitosan Nanoparticles in Orthopedic Infections. Int. J. Nanomed. 2024, 19, 6589–6602.
- 65.
Zuluaga-Velez, A.; Quintero-Martinez, A.; Orozco, L.M.; et al. Silk fibroin nanocomposites as tissue engineering scaffolds–A systematic review. Biomed. Pharmacother. 2021, 141, 111924.
- 66.
Peltier, L.F. Orthopedics: A History and Iconography; Norman Publishing: San Francisco, CA, USA, 1993.
- 67.
Narayanan, G.; Vernekar, V.N.; Kuyinu, E.L.; et al. Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Adv. Drug Deliv. Rev. 2016, 107, 247–276.
- 68.
Habibovic, P.; Kruyt, M.C.; Juhl, M.V.; et al. Comparative in vivo study of six hydroxyapatite-based bone graft substitutes. J. Orthop. Res. 2008, 26, 1363–1370.
- 69.
Rico-Llanos, G.A.; Borrego-González, S.; Moncayo-Donoso, M.; et al. Collagen type I biomaterials as scaffolds for bone tissue engineering. Polymers 2021, 13, 599.
- 70.
Sommerich, R.; DeCelle, M.; Frasier, W.J. Mechanical Implant Material Selection, Durability, Strength, and Stiffness. In Handbook of Spine Technology; Springer: Cham, Switzerland, 2021; pp. 151–162.
- 71.
Wang, X. Cortical bone mechanics and composition: Effects of age and gender. In Skeletal Aging and Osteoporosis: Biomechanics and Mechanobiology; Springer Nature: Berlin, Germany, 2013; pp. 53–85.
- 72.
Li, Y.; Liu, Y.; Li, R.; et al. Collagen-based biomaterials for bone tissue engineering. Mater. Des. 2021, 210, 110049.
- 73.
Cunniffe, G.M.; O’Brien, F.J. Collagen scaffolds for orthopedic regenerative medicine. Jom 2011, 63, 66–73.
- 74.
Yoshii, T.; Hashimoto, M.; Egawa, S.; et al. Hydroxyapatite/collagen composite graft for posterior lumbar interbody fusion: A comparison with local bone graft. J. Orthop. Surg. Res. 2021, 16, 639.
- 75.
Noishiki, Y.; Nishiyama, Y.; Wada, M.; et al. Mechanical properties of silk fibroin–microcrystalline cellulose composite films. J. Appl. Polym. Sci. 2002, 86, 3425–3429.
- 76.
Jevotovsky, D.; Alfonso, A.; Einhorn, T.; et al. Osteoarthritis and stem cell therapy in humans: A systematic review. Osteoarthr. Cartil. 2018, 26, 711–729.
- 77.
Akkiraju, H.; Nohe, A. Role of chondrocytes in cartilage formation, progression of osteoarthritis and cartilage regeneration. J. Dev. Biol. 2015, 3, 177–192.
- 78.
Wang, X.; Wang, Y.; Gou, W.; et al. Role of mesenchymal stem cells in bone regeneration and fracture repair: A review. Int. Orthop. 2013, 37, 2491–2498.
- 79.
Leong, N.L.; Kator, J.L.; Clemens, T.L.; et al. Tendon and ligament healing and current approaches to tendon and ligament regeneration. J. Orthop. Res. 2020, 38, 7–12.
- 80.
Parnia, F.; Yazdani, J.; Javaherzadeh, V.; et al. Overview of nanoparticle coating of dental implants for enhanced osseointegration and antimicrobial purposes. J. Pharm. Pharm. Sci. 2017, 20, 148–160.
- 81.
Güven, E. Nanotechnology-based drug delivery systems in orthopedics. Jt. Dis. Relat. Surg. 2021, 32, 267.
- 82.
Tracy, A.A.; Bhatia, S.K.; Ramadurai, K.W.; et al. Impact of Biomaterials on Health and Economic Development. In Bio-Based Materials as Applicable, Accessible, and Affordable Healthcare Solutions; Springer Nature: Berlin, Germany, 2018; pp. 33–41.
- 83.
Reddy, M.S.B.; Ponnamma, D.; Choudhary, R.; et al. A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers 2021, 13, 1105.
- 84.
Aguado-Maestro, I.; Simón-Pérez, C.; García-Alonso, M.; et al. Clinical Applications of “In-Hospital” 3D Printing in Hip Surgery: A Systematic Narrative Review. J. Clin. Med. 2024, 13, 599.
- 85.
Li, G.; Sun, S. Silk fibroin-based biomaterials for tissue engineering applications. Molecules 2022, 27, 2757.
- 86.
Rahimi, M.; Mir, S.M.; Baghban, R.; et al. Chitosan-based biomaterials for the treatment of bone disorders. Int. J. Biol. Macromol. 2022, 215, 346–367.
- 87.
Reakasame, S.; Boccaccini, A.R. Oxidized alginate-based hydrogels for tissue engineering applications: A review. Biomacromolecules 2018, 19, 3–21.
- 88.
Kong, H.J.; Kaigler, D.; Kim, K.; et al. Controlling rigidity and degradation of alginate hydrogels via molecular weight distribution. Biomacromolecules 2004, 5, 1720–1727.
- 89.
Pawelec, K.; Best, S.; Cameron, R. Collagen: A network for regenerative medicine. J. Mater. Chem. B 2016, 4, 6484–6496.
- 90.
Malige, A.; Gates, C.; Cook, J.L. Mesenchymal stem cells in orthopaedics: A systematic review of applications to practice. J. Orthop. 2024, 58, 1–9.
- 91.
Lukomska, B.; Stanaszek, L.; Zuba-Surma, E.; et al. Challenges and controversies in human mesenchymal stem cell therapy. Stem Cells Int. 2019, 2019, 9628536.
- 92.
Aicale, R.; Tarantino, D.; Maccauro, G.; et al. Genetics in orthopaedic practice. J. Biol. Regul. Homeost. Agents 2019, 33, 103–117.
- 93.
Wattanaanek, N.; Suttapreyasri, S.; Samruajbenjakun, B. 3D printing of calcium phosphate/calcium sulfate with alginate/cellulose-based scaffolds for bone regeneration: Multilayer fabrication and characterization. J. Funct. Biomater. 2022, 13, 47.
- 94.
Khitab, A.; Anwar, W.; Mehmood, I.; et al. Sustainable Construction with Advanced Biomaterials: An Overview. Sci. Int. 2016, 28, 2351–2356.
- 95.
Brown, B.N.; Badylak, S.F. Biocompatibility and immune response to biomaterials. In Regenerative Medicine Applications in Organ Transplantation; Elsevier: Amsterdam, The Netherlands, 2014; pp. 151–162.
- 96.
Delustro, F.; Dasch, J.; Keefe, J.; et al. Immune responses to allogeneic and xenogeneic implants of collagen and collagen derivatives. Clin. Orthop. Relat. Res. 1990, 260, 263–279.
- 97.
Saad, B.; Said, O. Greco-Arab and Islamic Herbal Medicine: Traditional System, Ethics, Safety, Efficacy, and Regulatory Issues; John Wiley & Sons: Hoboken, NJ, USA, 2011.
- 98.
Singh, A.V.; Chandrasekar, V.; Prabhu, V.M.; et al. Sustainable bioinspired materials for regenerative medicine: Balancing toxicology, environmental impact, and ethical considerations. Biomed. Mater. 2024, 19, 060501.
- 99.
Williams, D.F. Challenges with the development of biomaterials for sustainable tissue engineering. Front. Bioeng. Biotechnol. 2019, 7, 127.
- 100.
Dobrzański, L.A.; Hajduczek, E.; Hudecki, A. Materials Challenges in Regenerative Medicine. Polym. Nanofibers Prod. By Electrospinn. Appl. Regen. Med. 2015, 3, 12–82.
- 101.
Hassan, S.; Heinrich, M.; Cecen, B.; et al. Biomaterials for on-chip organ systems. In Biomaterials for Organ and Tissue Regeneration; Elsevier: Amsterdam, The Netherlands, 2020; p. 669.
- 102.
Wasyłeczko, M.; Sikorska, W.; Chwojnowski, A. Review of synthetic and hybrid scaffolds in cartilage tissue engineering. Membranes 2020, 10, 348.
- 103.
Sánchez-Téllez, D.A.; Téllez-Jurado, L.; Rodríguez-Lorenzo, L.M. Hydrogels for cartilage regeneration, from polysaccharides to hybrids. Polymers 2017, 9, 671.
- 104.
Hsu, M.-N.; Chang, Y.-H.; Truong, V.A.; et al. CRISPR technologies for stem cell engineering and regenerative medicine. Biotechnol. Adv. 2019, 37, 107447.
- 105.
Wong, T.M.; Jin, J.; Lau, T.W.; et al. The use of three-dimensional printing technology in orthopaedic surgery: A review. J. Orthop. Surg. 2017, 25, 4077.
- 106.
Dhawan, A.; Kennedy, P.M.; Rizk, E.B.; et al. Three-dimensional bioprinting for bone and cartilage restoration in orthopaedic surgery. JAAOS-J. Am. Acad. Orthop. Surg. 2019, 27, e215–e226.