2506000755
  • Open Access
  • Article
Graphene Oxide/Chitosan/Calcium Silicate Aerogels for Hemostasis and Infectious Wound Healing 
  • Jianmin Xue 1, 2, †,   
  • Yi Zheng 1, 2, †,   
  • Zhibo Yang 1, 2,   
  • Jinzhou Huang 1, 2,   
  • Wenping Ma 1, 2,   
  • Zhiguang Huan 1, 2,   
  • Yufang Zhu 1, 2, *,   
  • Chengtie Wu 1, 2, *

Received: 01 Apr 2025 | Revised: 09 Jun 2025 | Accepted: 13 Jun 2025 | Published: 18 Jun 2025

Abstract

Uncontrolled hemorrhage is still the great obstacle for saving life during accident or surgery. In addition, hemostatic materials integrating with both rapid hemostasis and wound healing functions are of great significance in clinic. In this work, we successfully developed graphene oxide/chitosan/calcium silicate aerogels with good hemostasis, anti-bacteria and wound healing abilities. The porous lamellar structure with interconnected channels were constructed in aerogels, which enabled the rapid liquid-absorbing capacity and certain elasticity. Moreover, the graphene oxide/chitosan/calcium silicate aerogels exhibited good blood clotting ability in vitro and fast stop bleeding effect in vivo, far exceeding the hemostatic effect of gauze. Additionally, the graphene oxide/chitosan/calcium silicate aerogels could not only accumulate blood cells to promote primary hemostasis, but also activate the intrinsic pathway of coagulation during second hemostasis owing to the graphene oxide and bioactive components (Ca and Si ions). For the repairing of infectious skin wounds, such aerogels could inhibit inflammation after photothermal therapy at early stage and achieve high healing quality after 14 days. These multifunctional aerogels are promising biomaterials for uncontrolled hemorrhage and subsequently tissue skin tissue healing of emergency trauma.

References 

  • 1.
    Guo, B.; Dong, R.; Bang, Y.; et al. Haemostatic materials for wound healing applications. Nat. Rev. Chem. 2021, 5, 773–791.
  • 2.
    Dong, R.; Zhang, H.; Guo, B. Emerging hemostatic materials for non-compressible hemorrhage control. Natl. Sci. Rev. 2022, 9, nwac162.
  • 3.
    Zheng, Y.; Ma, W.; Yang, Z.; et al. An ultralong hydroxyapatite nanowire aerogel for rapid hemostasis and wound healing. Chem. Eng. J. 2022, 430, 132912.
  • 4.
    Jimenez-Martin, J.; Heras, K.L.; Etxabide, A.; et al. Green hemostatic sponge-like scaffold composed of soy protein and chitin for the treatment of epistaxis. Mater. Today Bio 2022, 15, 100273.
  • 5.
    Fang, Y.; Xu, Y.; Wang, Z.; et al. 3D porous chitin sponge with high absorbency, rapid shape recovery, and excellent antibacterial activities for noncompressible wound. Chem. Eng. J. 2020, 388, 124169.
  • 6.
    Li, G.; Quan, K.; Liang, Y.; et al. Graphene-Montmorillonite Composite Sponge for Safe and Effective Hemostasis. ACS Appl. Mater. Interfaces 2016, 8, 35071–35080.
  • 7.
    Jiang, T.; Chen, S.; Xu, J.; et al. Superporous sponge prepared by secondary network compaction with enhanced permeability and mechanical properties for non-compressible hemostasis in pigs. Nat. Commun. 2024, 15, 5460.
  • 8.
    Wan, W.; Feng, Y.; Tan, J.; et al. Carbonized Cellulose Aerogel Derived from Waste Pomelo Peel for Rapid Hemostasis of Trauma-Induced Bleeding. Adv. Sci. 2024, 11, 2307409.
  • 9.
    Zheng, L.; Li, X.; Xu, C.; et al. High-Efficiency Antibacterial Hemostatic AgNP@Zeolite/Chitin/Bamboo Composite Sponge for Wound Healing without Heat Injury. Adv. Healthc. Mater. 2023, 12, 2300075.
  • 10.
    He, G.; Xian, Y.; Lin, H.; et al. An injectable and coagulation-independent Tetra-PEG hydrogel bioadhesive for post-extraction hemostasis and alveolar bone regeneration. Bioact. Mater. 2024, 37, 106–118.
  • 11.
    Ye, R.; Zhu, Z.; Gu, T.; et al. Neutrophil extracellular traps-inspired DNA hydrogel for wound hemostatic adjuvant. Nat. Commun. 2024, 15, 5557.
  • 12.
    Zhao, X.; Huang, Y.; Li, Z.; et al. Injectable Self-Expanding/Self-Propelling Hydrogel Adhesive with Procoagulant Activity and Rapid Gelation for Lethal Massive Hemorrhage Management. Adv. Mater. 2024, 36, 202308701.
  • 13.
    Fan, P.; Dong, Q.; Yang, J.; et al. Flexible dual-functionalized hyaluronic acid hydrogel adhesives formed in situ for rapid hemostasis. Carbohydr. Polym. 2023, 313, 120854.
  • 14.
    Pourshahrestani, S.; Kadri, N.A.; Zeimaran, E.; et al. Well-ordered mesoporous silica and bioactive glasses: promise for improved hemostasis. Biomater. Sci. 2019, 7, 31–50.
  • 15.
    Tong, L.; Zhang, D.; Huang, Z.; et al. Calcium Ion-Coupled Polyphosphates with Different Degrees of Polymerization for Bleeding Control. ACS Appl. Mater. Interfaces 2024, 16, 43244–43256.
  • 16.
    Su, C.; Jiang, C.; Sun, X.; et al. Diatomite hemostatic particles with hierarchical porous structure for rapid and effective hemostasis. Colloids Surf. B 2022, 219, 112809.
  • 17.
    Li, Q.; Hu, E.; Yu, K.; et al. Self-Propelling Janus Particles for Hemostasis in Perforating and Irregular Wounds with Massive Hemorrhage. Adv. Funct. Mater. 2020, 30, 2004153.
  • 18.
    Lu, X.; Li, X.; Yu, J.; et al. Nanofibrous hemostatic materials: Structural design, fabrication methods, and hemostatic mechanisms. Acta Biomater. 2022, 220, 112891.
  • 19.
    Wang, A.; Du, F.; He, Y.; et al. Graphene oxide reinforced hemostasis of gelatin sponge in noncompressible hemorrhage via synergistic effects. Colloids Surf. B 2022, 220, 112891.
  • 20.
    Sun, Z.; Hu, K.; Wang, T.; et al. Enhanced physiochemical, antibacterial, and hemostatic performance of collagen-quaternized chitosan-graphene oxide sponges for promoting infectious wound healing. Int. J. Biol. Macromol. 2024, 266, 131277.
  • 21.
    Li, S.; Gu, B.; Li, X.; et al. MXene-Enhanced Chitin Composite Sponges with Antibacterial and Hemostatic Activity for Wound Healing. Adv. Healthc. Mater. 2022, 11, 2102367.
  • 22.
    Yang, F.; Jia, X.; Hua, C.; et al. Highly efficient semiconductor modules making controllable parallel microchannels for non-compressible hemorrhages. Bioact. Mater. 2024, 36, 30–47.
  • 23.
    Khosravi, Z.; Kharaziha, M.; Goli, R.; et al. Antibacterial adhesive based on oxidized tannic acid-chitosan for rapid hemostasis. Carbohydr. Polym. 2024, 333, 121973.
  • 24.
    Zheng, Y.; Xue, J.; Ma, B.; et al. Mesoporous Bioactive Glass-Graphene Oxide Composite Aerogel with Effective Hemostatic and Antibacterial Activities. ACS Appl. Bio Mater. 2024, 7, 429–442.
  • 25.
    Sridhar, S.K.; Goudanavar, P.; Rao GS, N.K.; et al. Innovations in nano-enhanced healing: Patent insights and clinical trials on nanotubes in wound recovery. Mater. Today Commun. 2024, 41, 110750.
  • 26.
    Chao, Y.; Yu, S.; Zhang, H.; et al. Architecting Lignin/Poly(vinyl alcohol) Hydrogel with Carbon Nanotubes for Photothermal Antibacterial Therapy. ACS Appl. Bio Mater. 2023, 6, 1525–1535.
  • 27.
    Zheng, Y.; Wu, J.F.; Zhu, Y.F.; et al. Inorganic-based biomaterials for rapid hemostasis and wound healing. Chem. Sci. 2022, 14, 29–53.
  • 28.
    Fan, S.; Wu, X.; Fang, Z.; et al. Injectable and ultra-compressible shape-memory mushroom: Highly aligned microtubules for ultra-fast blood absorption and hemostasis. Chem. Eng. J. 2023, 460, 140554.
  • 29.
    Wang, L.; Zhong, Y.; Qian, C.; et al. A natural polymer-based porous sponge with capillary-mimicking microchannels for rapid hemostasis. Acta Biomater. 2020, 114, 193–205.
  • 30.
    Ong, S.Y.; Wu, J.; Moochhala, S.M.; et al. Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials 2008, 29, 4323–4332.
  • 31.
    Zhou, Y.; Wu, C.; Chang, J. Bioceramics to regulate stem cells and their microenvironment for tissue regeneration. Mater. Today 2019, 24, 41–56.
  • 32.
    Lv, F.; Wang, J.; Xu, P.; et al. A conducive bioceramic/polymer composite biomaterial for diabetic wound healing. Acta Biomater. 2017, 60, 128–143.
  • 33.
    Chen, K.; Tang, X.K.; Yue, Y.H.; et al. Strong and tough layered nanocomposites with buried interfaces. ACS Nano 2016, 10, 4816–4827.
  • 34.
    Xue, J.; Wang, X.; Wang, E.; et al. Bioinspired multifunctional biomaterials with hierarchical microstructure for wound dressing. Acta Biomater. 2019, 100, 270–279.
  • 35.
    Wang, Y.; Li, J.; Li, X.; et al. Graphene-based nanomaterials for cancer therapy and anti-infections. Bioact. Mater. 2022, 14, 335–349.
  • 36.
    Huang, C.; Chen, L.; Liu, X.; et al. Effect of tranexamic acid-functionalized photothermal hydrothermal treated oxidized graphene sponge on diabetic wound healing: Hemostasis, antibacterial, and regeneration. Mater. Design 2025, 253, 113915.
  • 37.
    Nepal, D.; Kang, S.; Adstedt, K.M.; et al. Hierarchically structured bioinspired nanocomposites. Nat. Mater. 2023, 22, 18–35.
  • 38.
    Wegst, U.G.; Bai, H.; Saiz, E.; et al. Bioinspired structural materials. Nat. Mater. 2015, 14, 23–36.
  • 39.
    Yang, M.; Zhao, N.; Cui, Y.; et al. Biomimetic Architectured Graphene Aerogel with Exceptional Strength and Resilience. ACS Nano 2017, 11, 6817–6824.
  • 40.
    Feng, Y.; Luo, X.; Wu, F.; et al. Systematic studies on blood coagulation mechanisms of halloysite nanotubes-coated PET dressing as superior topical hemostatic agent. Chem. Eng. J. 2022, 428, 132049.
  • 41.
    Li, H.; Chang, J. Stimulation of proangiogenesis by calcium silicate bioactive ceramic. Acta Biomater. 2013, 9, 5379–5389.
Share this article:
How to Cite
Xue, J.; Zheng, Y.; Yang, Z.; Huang, J.; Ma, W.; Huan, Z.; Zhu, Y.; Wu, C. Graphene Oxide/Chitosan/Calcium Silicate Aerogels for Hemostasis and Infectious Wound Healing . Regenerative Medicine and Dentistry 2025, 2 (2), 8. https://doi.org/10.53941/rmd.2025.100008.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.