- 1.
Guo, B.; Dong, R.; Bang, Y.; et al. Haemostatic materials for wound healing applications. Nat. Rev. Chem. 2021, 5, 773–791.
- 2.
Dong, R.; Zhang, H.; Guo, B. Emerging hemostatic materials for non-compressible hemorrhage control. Natl. Sci. Rev. 2022, 9, nwac162.
- 3.
Zheng, Y.; Ma, W.; Yang, Z.; et al. An ultralong hydroxyapatite nanowire aerogel for rapid hemostasis and wound healing. Chem. Eng. J. 2022, 430, 132912.
- 4.
Jimenez-Martin, J.; Heras, K.L.; Etxabide, A.; et al. Green hemostatic sponge-like scaffold composed of soy protein and chitin for the treatment of epistaxis. Mater. Today Bio 2022, 15, 100273.
- 5.
Fang, Y.; Xu, Y.; Wang, Z.; et al. 3D porous chitin sponge with high absorbency, rapid shape recovery, and excellent antibacterial activities for noncompressible wound. Chem. Eng. J. 2020, 388, 124169.
- 6.
Li, G.; Quan, K.; Liang, Y.; et al. Graphene-Montmorillonite Composite Sponge for Safe and Effective Hemostasis. ACS Appl. Mater. Interfaces 2016, 8, 35071–35080.
- 7.
Jiang, T.; Chen, S.; Xu, J.; et al. Superporous sponge prepared by secondary network compaction with enhanced permeability and mechanical properties for non-compressible hemostasis in pigs. Nat. Commun. 2024, 15, 5460.
- 8.
Wan, W.; Feng, Y.; Tan, J.; et al. Carbonized Cellulose Aerogel Derived from Waste Pomelo Peel for Rapid Hemostasis of Trauma-Induced Bleeding. Adv. Sci. 2024, 11, 2307409.
- 9.
Zheng, L.; Li, X.; Xu, C.; et al. High-Efficiency Antibacterial Hemostatic AgNP@Zeolite/Chitin/Bamboo Composite Sponge for Wound Healing without Heat Injury. Adv. Healthc. Mater. 2023, 12, 2300075.
- 10.
He, G.; Xian, Y.; Lin, H.; et al. An injectable and coagulation-independent Tetra-PEG hydrogel bioadhesive for post-extraction hemostasis and alveolar bone regeneration. Bioact. Mater. 2024, 37, 106–118.
- 11.
Ye, R.; Zhu, Z.; Gu, T.; et al. Neutrophil extracellular traps-inspired DNA hydrogel for wound hemostatic adjuvant. Nat. Commun. 2024, 15, 5557.
- 12.
Zhao, X.; Huang, Y.; Li, Z.; et al. Injectable Self-Expanding/Self-Propelling Hydrogel Adhesive with Procoagulant Activity and Rapid Gelation for Lethal Massive Hemorrhage Management. Adv. Mater. 2024, 36, 202308701.
- 13.
Fan, P.; Dong, Q.; Yang, J.; et al. Flexible dual-functionalized hyaluronic acid hydrogel adhesives formed in situ for rapid hemostasis. Carbohydr. Polym. 2023, 313, 120854.
- 14.
Pourshahrestani, S.; Kadri, N.A.; Zeimaran, E.; et al. Well-ordered mesoporous silica and bioactive glasses: promise for improved hemostasis. Biomater. Sci. 2019, 7, 31–50.
- 15.
Tong, L.; Zhang, D.; Huang, Z.; et al. Calcium Ion-Coupled Polyphosphates with Different Degrees of Polymerization for Bleeding Control. ACS Appl. Mater. Interfaces 2024, 16, 43244–43256.
- 16.
Su, C.; Jiang, C.; Sun, X.; et al. Diatomite hemostatic particles with hierarchical porous structure for rapid and effective hemostasis. Colloids Surf. B 2022, 219, 112809.
- 17.
Li, Q.; Hu, E.; Yu, K.; et al. Self-Propelling Janus Particles for Hemostasis in Perforating and Irregular Wounds with Massive Hemorrhage. Adv. Funct. Mater. 2020, 30, 2004153.
- 18.
Lu, X.; Li, X.; Yu, J.; et al. Nanofibrous hemostatic materials: Structural design, fabrication methods, and hemostatic mechanisms. Acta Biomater. 2022, 220, 112891.
- 19.
Wang, A.; Du, F.; He, Y.; et al. Graphene oxide reinforced hemostasis of gelatin sponge in noncompressible hemorrhage via synergistic effects. Colloids Surf. B 2022, 220, 112891.
- 20.
Sun, Z.; Hu, K.; Wang, T.; et al. Enhanced physiochemical, antibacterial, and hemostatic performance of collagen-quaternized chitosan-graphene oxide sponges for promoting infectious wound healing. Int. J. Biol. Macromol. 2024, 266, 131277.
- 21.
Li, S.; Gu, B.; Li, X.; et al. MXene-Enhanced Chitin Composite Sponges with Antibacterial and Hemostatic Activity for Wound Healing. Adv. Healthc. Mater. 2022, 11, 2102367.
- 22.
Yang, F.; Jia, X.; Hua, C.; et al. Highly efficient semiconductor modules making controllable parallel microchannels for non-compressible hemorrhages. Bioact. Mater. 2024, 36, 30–47.
- 23.
Khosravi, Z.; Kharaziha, M.; Goli, R.; et al. Antibacterial adhesive based on oxidized tannic acid-chitosan for rapid hemostasis. Carbohydr. Polym. 2024, 333, 121973.
- 24.
Zheng, Y.; Xue, J.; Ma, B.; et al. Mesoporous Bioactive Glass-Graphene Oxide Composite Aerogel with Effective Hemostatic and Antibacterial Activities. ACS Appl. Bio Mater. 2024, 7, 429–442.
- 25.
Sridhar, S.K.; Goudanavar, P.; Rao GS, N.K.; et al. Innovations in nano-enhanced healing: Patent insights and clinical trials on nanotubes in wound recovery. Mater. Today Commun. 2024, 41, 110750.
- 26.
Chao, Y.; Yu, S.; Zhang, H.; et al. Architecting Lignin/Poly(vinyl alcohol) Hydrogel with Carbon Nanotubes for Photothermal Antibacterial Therapy. ACS Appl. Bio Mater. 2023, 6, 1525–1535.
- 27.
Zheng, Y.; Wu, J.F.; Zhu, Y.F.; et al. Inorganic-based biomaterials for rapid hemostasis and wound healing. Chem. Sci. 2022, 14, 29–53.
- 28.
Fan, S.; Wu, X.; Fang, Z.; et al. Injectable and ultra-compressible shape-memory mushroom: Highly aligned microtubules for ultra-fast blood absorption and hemostasis. Chem. Eng. J. 2023, 460, 140554.
- 29.
Wang, L.; Zhong, Y.; Qian, C.; et al. A natural polymer-based porous sponge with capillary-mimicking microchannels for rapid hemostasis. Acta Biomater. 2020, 114, 193–205.
- 30.
Ong, S.Y.; Wu, J.; Moochhala, S.M.; et al. Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials 2008, 29, 4323–4332.
- 31.
Zhou, Y.; Wu, C.; Chang, J. Bioceramics to regulate stem cells and their microenvironment for tissue regeneration. Mater. Today 2019, 24, 41–56.
- 32.
Lv, F.; Wang, J.; Xu, P.; et al. A conducive bioceramic/polymer composite biomaterial for diabetic wound healing. Acta Biomater. 2017, 60, 128–143.
- 33.
Chen, K.; Tang, X.K.; Yue, Y.H.; et al. Strong and tough layered nanocomposites with buried interfaces. ACS Nano 2016, 10, 4816–4827.
- 34.
Xue, J.; Wang, X.; Wang, E.; et al. Bioinspired multifunctional biomaterials with hierarchical microstructure for wound dressing. Acta Biomater. 2019, 100, 270–279.
- 35.
Wang, Y.; Li, J.; Li, X.; et al. Graphene-based nanomaterials for cancer therapy and anti-infections. Bioact. Mater. 2022, 14, 335–349.
- 36.
Huang, C.; Chen, L.; Liu, X.; et al. Effect of tranexamic acid-functionalized photothermal hydrothermal treated oxidized graphene sponge on diabetic wound healing: Hemostasis, antibacterial, and regeneration. Mater. Design 2025, 253, 113915.
- 37.
Nepal, D.; Kang, S.; Adstedt, K.M.; et al. Hierarchically structured bioinspired nanocomposites. Nat. Mater. 2023, 22, 18–35.
- 38.
Wegst, U.G.; Bai, H.; Saiz, E.; et al. Bioinspired structural materials. Nat. Mater. 2015, 14, 23–36.
- 39.
Yang, M.; Zhao, N.; Cui, Y.; et al. Biomimetic Architectured Graphene Aerogel with Exceptional Strength and Resilience. ACS Nano 2017, 11, 6817–6824.
- 40.
Feng, Y.; Luo, X.; Wu, F.; et al. Systematic studies on blood coagulation mechanisms of halloysite nanotubes-coated PET dressing as superior topical hemostatic agent. Chem. Eng. J. 2022, 428, 132049.
- 41.
Li, H.; Chang, J. Stimulation of proangiogenesis by calcium silicate bioactive ceramic. Acta Biomater. 2013, 9, 5379–5389.