2506000803
  • Open Access
  • Review
Therapeutics-Loaded Electrospun Nanofibers: Rational Design and Mechanistic Insights on Managing Chronic Wound Infection
  • Zakia Riaz 1,   
  • Yu Xuan Fong 2,   
  • Yunn Yee Chan 2,   
  • Tristen Lee 3,   
  • Vincent Chan 1,   
  • Neethu Ninan 2, *,   
  • Vi Khanh Truong 1, 2, 4, *

Received: 15 May 2025 | Revised: 12 Jun 2025 | Accepted: 13 Jun 2025 | Published: 24 Jun 2025

Abstract

Chronic wounds present a multifactorial clinical challenge characterized by prolonged inflammation, microbial biofilm formation, oxidative stress, and impaired vascularization. Conventional wound dressings such as films, hydrogels, and decellularized matrices often fall short due to limited bioactivity, inadequate mechanical properties, and insufficient control over therapeutic delivery. This review highlights electrospun nanofiber membranes as advanced biomimetic platforms that replicate the structural and functional attributes of the extracellular matrix while enabling localized and sustained release of therapeutic agents. The novelty of this work lies in its systematic association of bioactive compounds including antimicrobial, antioxidant, immunomodulatory, oxygen releasing, and hemostatic agents with their specific biological targets in chronic wound healing. Also, the review critically examines fabrication techniques such as coaxial, emulsion, gas assisted, and stimuli responsive electrospinning, and evaluates how key processing parameters influence fiber morphology, drug release profiles, and cellular interactions. By integrating material science with mechanistic insight, this work provides a unified framework for the rational design of responsive nanofiber based wound dressings and outlines future directions involving smart delivery systems, biosensing integration, and three dimensional bioprinting to support clinical translation and personalized therapy. Emphasis is also placed on emerging multifunctional membranes capable of real-time interaction with wound pathophysiology. Challenges related to scalability, regulatory approval, and long-term biocompatibility are discussed to bridge the gap between laboratory findings and clinical adoption. This review ultimately serves as a foundation for developing next generation wound care strategies that are both mechanistically targeted and clinically adaptable.

References 

  • 1.
    Nguyen Ngoc, D.; Latalski, M.; Danielewicz, A.; et al. Application of Antimicrobial Peptides (AMPs) in Treatment of Osteomyelitis in Human and Veterinary Orthopedics. J. Funct. Biomater. 2025, 16, 90. https://doi.org/10.3390/JFB16030090.
  • 2.
    Ansari, M.; Darvishi, A. A Review of the Current State of Natural Biomaterials in Wound Healing Applications. Front. Bioeng. Biotechnol. 2024, 12, 1309541. https://doi.org/10.3389/FBIOE.2024.1309541.
  • 3.
    Hussein, R.S.; Bin Dayel, S.; Abahussein, O.; El-Sherbiny, A.A. Influences on Skin and Intrinsic Aging: Biological, Environmental, and Therapeutic Insights. J. Cosmet. Dermatol. 2024, 24, e16688. https://doi.org/10.1111/JOCD.16688.
  • 4.
    Chylińska, N.; Maciejczyk, M. Hyaluronic Acid and Skin: Its Role in Aging and Wound-Healing Processes. Gels 2025, 11, 281. https://doi.org/10.3390/GELS11040281.
  • 5.
    Xin, H.; Cai, Z.; Hao, J.; et al. Macro/Microgel-Encapsulated, Biofilm-Armored Living Probiotic Platform for Regenerating Bacteria-Infected Diabetic Wounds. Adv. Healthc. Mater. 2025, 14, 2403476. https://doi.org/10.1002/ADHM.202403476.
  • 6.
    Wang, J.; Ge, X.; Xiang, Y.; et al. An Ionic Liquid Functionalized Sericin Hydrogel for Drug-Resistant Bacteria-Infected Diabetic Wound Healing. Chin. Chem. Lett. 2025, 36, 109819. https://doi.org/10.1016/J.CCLET.2024.109819.
  • 7.
    Klarak, J.; Brito, A.C.M.; Moreira, L.F.; et al. Using Network Analysis and Large-Language Models to Obtain a Landscape of the Literature on Dressing Materials for Wound Healing: The Predominance of Chitosan and Other Biomacromolecules: A Review. Int. J. Biol. Macromol. 2025, 306, 141565. https://doi.org/10.1016/J.IJBIOMAC.2025.141565.
  • 8.
    Schilrreff, P.; Alexiev, U. Chronic Inflammation in Non-Healing Skin Wounds and Promising Natural Bioactive Compounds Treatment. Int. J. Mol. Sci. 2022, 23, 4928. https://doi.org/10.3390/IJMS23094928.
  • 9.
    Lu, Q.; Tang, X.; Tao, B.; et al. Multifunctional Hyaluronic Acid Microneedle Patch Enhances Diabetic Wound Healing in Diabetic Infections. Int. J. Biol. Macromol. 2025, 296, 139685. https://doi.org/10.1016/J.IJBIOMAC.2025.139685.
  • 10.
    Tamnna Sharma, T.; Mittal, R.; Kaushik, P. Advances in Polymer-Based Scaffolding for Enhanced Wound Healing: A Comprehensive Review. Int. J. Polym. Mater. Polym. Biomater. 2025, 74, 684–702. https://doi.org/10.1080/00914037.2024.2367208.
  • 11.
    Aminnezhad, S.; Hama, N.H.; Hasan, A.H.; et al. Applications of Biocompatible Polymeric Nanomaterials in Three-Dimensional (3D) Scaffolds: Bacterial Infections and Diabetes. Int. J. Biol. Macromol. 2025, 301, 140331. https://doi.org/10.1016/J.IJBIOMAC.2025.140331.
  • 12.
    Uberoi, A.; McCready-Vangi, A.; Grice, E.A. The Wound Microbiota: Microbial Mechanisms of Impaired Wound Healing and Infection. Nat. Rev. Microbiol. 2024, 22, 507–521. https://doi.org/10.1038/s41579-024-01035-z.
  • 13.
    Ray, H.; Weis, C.; Nwaeze, C.; Zhou, V.; et al. Development and Control of Biofilms in Diabetic Foot Infections: A Narrative Review. Acta Microbiol. Hell. 2025, 70, 9. https://doi.org/10.3390/AMH70010009.
  • 14.
    Li, S.; Lin, B.; Xiong, Y.; et al. Artificial Spidroin Bioelectronic Dressings for Intelligent Wound Management. J. Mater. Chem. C 2024, 12, 12708–12720. https://doi.org/10.1039/D4TC02467B.
  • 15.
    Blume, S.Y.; Garg, A.; Martí-Mateos, Y.; et al. HypoxyStat, a Small-Molecule Form of Hypoxia Therapy That Increases Oxygen-Hemoglobin Affinity. Cell 2025, 188, 1580–1588.e11. https://doi.org/10.1016/j.cell.2025.01.029.
  • 16.
    Ntentakis, D.P.; Ntentaki, A.M.; Delavogia, E.; et al. Dissolved Oxygen Technologies as a Novel Strategy for Non-Healing Wounds: A Critical Review. Wound Repair Regen. 2021, 29, 1062–1079. https://doi.org/10.1111/WRR.12972.
  • 17.
    Gardeazabal, L.; Izeta, A. Elastin and Collagen Fibres in Cutaneous Wound Healing. Exp. Dermatol. 2024, 33, e15052. https://doi.org/10.1111/EXD.15052.
  • 18.
    Catanzano, O.; Quaglia, F.; Boateng, J.S. Wound Dressings as Growth Factor Delivery Platforms for Chronic Wound Healing. Expert Opin. Drug Deliv. 2021, 18, 737–759. https://doi.org/10.1080/17425247.2021.1867096.
  • 19.
    Ottaviano, L.; Buoso, S.; Zamboni, R.; et al. Natural Protein Films from Textile Waste for Wound Healing and Wound Dressing Applications. J. Funct. Biomater. 2025, 16, 20. https://doi.org/10.3390/JFB16010020.
  • 20.
    Saraiva, M.M.; da Silva Campelo, M.; Câmara Neto, J.F.; et al. Alginate/Polyvinyl Alcohol Films for Wound Healing: Advantages and Challenges. J. Biomed. Mater. Res. Part B Appl. Biomater. 2023, 111, 220–233. https://doi.org/10.1002/JBM.B.35146.
  • 21.
    Gupta, M.N.; Rangaraju, A.; Ambre, P. Sustainable Dressings for Wound Healing. Biotechnol. Sustain. Mater. 2025, 2, 1. https://doi.org/10.1186/S44316-024-00023-W.
  • 22.
    Borbolla-Jiménez, F.V.; Peña-Corona, S.I.; Farah, S.J.; et al. Films for Wound Healing Fabricated Using a Solvent Casting Technique. Pharmaceutics 2023, 15, 1914. https://doi.org/10.3390/PHARMACEUTICS15071914.
  • 23.
    Las Heras, K.; Garcia-Orue, I.; Rancan, F.; et al. Modulating the Immune System towards a Functional Chronic Wound Healing: A Biomaterials and Nanomedicine Perspective. Adv. Drug Deliv. Rev. 2024, 210, 115342. https://doi.org/10.1016/J.ADDR.2024.115342.
  • 24.
    Jonidi Shariatzadeh, F.; Currie, S.; Logsetty, S.; et al. Enhancing Wound Healing and Minimizing Scarring: A Comprehensive Review of Nanofiber Technology in Wound Dressings. Prog. Mater. Sci. 2025, 147, 101350. https://doi.org/10.1016/J.PMATSCI.2024.101350.
  • 25.
    Jangra, N.; Singla, A.; Puri, V.; et al. Herbal Bioactive-Loaded Biopolymeric Formulations for Wound Healing Applications. RSC Adv. 2025, 15, 12402–12442. https://doi.org/10.1039/D4RA08604J.
  • 26.
    Hunt, M.; Torres, M.; Bachar-Wikstrom, E.; et al. Cellular and Molecular Roles of Reactive Oxygen Species in Wound Healing. Commun. Biol. 2024, 7, 1534. https://doi.org/10.1038/s42003-024-07219-w.
  • 27.
    Joorabloo, A.; Liu, T. Recent Advances in Reactive Oxygen Species Scavenging Nanomaterials for Wound Healing. Exploration 2024, 4, 20230066. https://doi.org/10.1002/EXP.20230066.
  • 28.
    Jiang, Q.; Tang, L.; Xiao, S. Relationship between Ferroptosis and Healing of Diabetic Foot Ulcer: A Prospective Clinical Study. Front. Endocrinol. 2024, 15, 1412373. https://doi.org/10.3389/FENDO.2024.1412373.
  • 29.
    Sikder, M.M.; Li, X.; Akumwami, S.; et al. Reactive Oxygen Species: Role in Pathophysiology, and Mechanism of Endogenous and Dietary Antioxidants during Oxidative Stress. Chonnam Med. J. 2025, 61, 32. https://doi.org/10.4068/CMJ.2025.61.1.32.
  • 30.
    Golenia, A.; Olejnik, P. The Role of Oxidative Stress in Ischaemic Stroke and the Influence of Gut Microbiota. Antioxidants 2025, 14, 542. https://doi.org/10.3390/ANTIOX14050542.
  • 31.
    Ukaegbu, K.; Allen, E.; Svoboda, K.K.H. Reactive Oxygen Species and Antioxidants in Wound Healing: Mechanisms and Therapeutic Potential. Int. Wound J. 2025, 22, e70330. https://doi.org/10.1111/IWJ.70330.
  • 32.
    Kumar, D.; Pandey, S.; Shiekmydeen, J.; et al. Therapeutic Potential of Microneedle Assisted Drug Delivery for Wound Healing: Current State of the Art, Challenges, and Future Perspective. AAPS PharmSciTech 2025, 26, 25. https://doi.org/10.1208/S12249-024-03017-Z.
  • 33.
    Bartold, M.; Ivanovski, S. Biological Processes and Factors Involved in Soft and Hard Tissue Healing. Periodontol. 2000 2025, 97, 16–42. https://doi.org/10.1111/PRD.12546.
  • 34.
    Mohanto, N.; Mondal, H.; Park, Y.J.; et al. Therapeutic Delivery of Oxygen Using Artificial Oxygen Carriers Demonstrates the Possibility of Treating a Wide Range of Diseases. J. Nanobiotechnol. 2025, 23, 25. https://doi.org/10.1186/S12951-024-03060-9.
  • 35.
    Tong, Q.; Xu, Q.; Cai, J.; et al. Biofilm Formation in Cardiovascular Infection and Bioengineering Approaches for Treatment and Prevention. MedComm-Biomater. Appl. 2025, 4, e70003. https://doi.org/10.1002/MBA2.70003.
  • 36.
    Alberts, A.; Tudorache, D.I.; Niculescu, A.G.; et al. Advancements in Wound Dressing Materials: Highlighting Recent Progress in Hydrogels, Foams, and Antimicrobial Dressings. Gels 2025, 11, 123. https://doi.org/10.3390/GELS11020123.
  • 37.
    Wang, C.; Shahriar, S.M.S.; Su, Y.; et al. Versatile Nanomaterials Used in Combatting Biofilm Infections. Nanomedicine 2025, 20, 501–518. https://doi.org/10.1080/17435889.2025.2459049.
  • 38.
    Yang, D.T. Current Developments, Limitations and Future Directions of CAR T-Cell Therapy. In Proceedings of the International Conference on Modern Medicine and Global Health (ICMMGH 2023), Oxford, UK, 15 April 2023. https://doi.org/10.1117/12.3000298.
  • 39.
    Liu, A.B.; Tan, B.; Yang, P.; et al. The Role of Inflammatory Response and Metabolic Reprogramming in Sepsis-Associated Acute Kidney Injury: Mechanistic Insights and Therapeutic Potential. Front. Immunol. 2024, 15, 1487576. https://doi.org/10.3389/FIMMU.2024.1487576.
  • 40.
    Dawi, J.; Tumanyan, K.; Tomas, K.; et al. Diabetic Foot Ulcers: Pathophysiology, Immune Dysregulation, and Emerging Therapeutic Strategies. Biomedicines 2025, 13, 1076. https://doi.org/10.3390/BIOMEDICINES13051076.
  • 41.
    Raghavan, J.V.; Jhunjhunwala, S. Role of Innate Immune Cells in Chronic Diabetic Wounds. J. Indian Inst. Sci. 2023, 103, 249–271. https://doi.org/10.1007/S41745-022-00355-4.
  • 42.
    Robertson, S.A.; Moldenhauer, L.M.; Green, E.S.; et al. Immune Determinants of Endometrial Receptivity: A Biological Perspective. Fertil. Steril. 2022, 117, 1107–1120. https://doi.org/10.1016/J.FERTNSTERT.2022.04.023.
  • 43.
    Dong, R.; Zhang, H.; Guo, B. Emerging Hemostatic Materials for Non-Compressible Hemorrhage Control. Natl. Sci. Rev. 2022, 9, nwac162. https://doi.org/10.1093/NSR/NWAC162.
  • 44.
    Ghimire, S.; Sarkar, P.; Rigby, K.; et al. Polymeric Materials for Hemostatic Wound Healing. Pharmaceutics 2021, 13, 2127. https://doi.org/10.3390/PHARMACEUTICS13122127.
  • 45.
    Locatelli, L.; Colciago, A.; Castiglioni, S.; et al. Platelets in Wound Healing: What Happens in Space? Front. Bioeng. Biotechnol. 2021, 9, 716184. https://doi.org/10.3389/FBIOE.2021.716184.
  • 46.
    Guo, Y.; Wang, M.; Liu, Q.; et al. Recent Advances in the Medical Applications of Hemostatic Materials. Theranostics 2023, 13, 161. https://doi.org/10.7150/THNO.79639.
  • 47.
    Yang, N.; Venezuela, J.; Almathami, S.; et al. Zinc-Nutrient Element Based Alloys for Absorbable Wound Closure Devices Fabrication: Current Status, Challenges, and Future Prospects. Biomaterials 2022, 280, 121301. https://doi.org/10.1016/J.BIOMATERIALS.2021.121301.
  • 48.
    Napolitano, A.; Chool Boo, Y. Ascorbic Acid (Vitamin C) as a Cosmeceutical to Increase Dermal Collagen for Skin Antiaging Purposes: Emerging Combination Therapies. Antioxidants 2022, 11, 1663. https://doi.org/10.3390/ANTIOX11091663.
  • 49.
    Vivcharenko, V.; Przekora, A. Modifications of Wound Dressings with Bioactive Agents to Achieve Improved Pro-Healing Properties. Appl. Sci. 2021, 11, 4114. https://doi.org/10.3390/APP11094114.
  • 50.
    Ballouze, R.; Marahat, M.H.; Mohamad, S.; et al. Biocompatible Magnesium-Doped Biphasic Calcium Phosphate for Bone Regeneration. J. Biomed. Mater. Res. Part B Appl. Biomater. 2021, 109, 1426–1435. https://doi.org/10.1002/JBM.B.34802.
  • 51.
    Chelmu Voda, C.; Stefanopol, I.A.; Gurau, G.; et al. Update on the Study of Angiogenesis in Surgical Wounds in Patients with Childhood Obesity. Biomedicines 2025, 13, 375. https://doi.org/10.3390/BIOMEDICINES13020375.
  • 52.
    Vaidyanathan, L. Growth Factors in Wound Healing-A Review. Biomed. Pharmacol. J. 2021, 14, 1469–1480. https://doi.org/10.13005/bpj/2249.
  • 53.
    Azmir, M.S.N.A.; Moni, M.N.; Gobetti, A.; et al. Advances in Modulating Mechanical Properties of Gelatin-Based Hydrogel in Tissue Engineering. Int. J. Polym. Mater. Polym. Biomater. 2024, 74, 215–250. https://doi.org/10.1080/00914037.2024.2330420.
  • 54.
    Su, J.; Liu, C.; Sun, A.; et al. Hemostatic and Antimicrobial Properties of Chitosan-Based Wound Healing Dressings: A Review. Int. J. Biol. Macromol. 2025, 306, 141570. https://doi.org/10.1016/J.IJBIOMAC.2025.141570.
  • 55.
    Gudur, A.S.; Gode, S.S.; Malpure, M.S.; et al. A Comprehensive Review on Transdermal Systems for Enhanced Wound Healing. Asian J. Pharm. Res. 2025, 15, 87–93. https://doi.org/10.52711/2231-5691.2025.00015.
  • 56.
    Gobi, R.; Babu, R.S. In-Vitro Investigation of Chitosan/Polyvinyl Alcohol/TiO2 Composite Membranes for Wound Regeneration. Biochem. Biophys. Res. Commun. 2025, 742, 151129. https://doi.org/10.1016/J.BBRC.2024.151129.
  • 57.
    DSouza, A.A.; Amiji, M.M. Dual-Polymer Carboxymethyl Cellulose and Poly(Ethylene Oxide)-Based Gels for the Prevention of Postsurgical Adhesions. J. Biomed. Mater. Res. Part A 2025, 113, e37852. https://doi.org/10.1002/JBM.A.37852.
  • 58.
    Chen, M.; Liu, J.; Lin, J.; et al. Progress in Polysaccharide-Based Hydrogels for Preventing Postoperative Adhesions: A Review. Gels 2025, 11, 188. https://doi.org/10.3390/GELS11030188.
  • 59.
    Brouki Milan, P.; Masoumi, F.; Biazar, E.; et al. Exploiting the Potential of Decellularized Extracellular Matrix (ECM) in Tissue Engineering: A Review Study. Macromol. Biosci. 2024, 25, 2400322. https://doi.org/10.1002/MABI.202400322.
  • 60.
    Liu, J.; Song, Q.; Yin, W.; et al. Bioactive Scaffolds for Tissue Engineering: A Review of Decellularized Extracellular Matrix Applications and Innovations. Exploration 2024, 5, 20230078. https://doi.org/10.1002/EXP.20230078.
  • 61.
    Debnath, S.; Agrawal, A.; Jain, N.; et al. Collagen as a Bio-Ink for 3D Printing: A Critical Review. J. Mater. Chem. B 2025, 13, 1890–1919. https://doi.org/10.1039/D4TB01060D.
  • 62.
    Luo, P.; Huang, R.; Wu, Y.; et al. Tailoring the Multiscale Mechanics of Tunable Decellularized Extracellular Matrix (DECM) for Wound Healing through Immunomodulation. Bioact. Mater. 2023, 28, 95–111. https://doi.org/10.1016/J.BIOACTMAT.2023.05.011.
  • 63.
    Chen, W.; Chen, M.; Chen, S.; et al. Decellularization of Fish Tissues for Tissue Engineering and Regenerative Medicine Applications. Regen. Biomater. 2025, 12, rbae138. https://doi.org/10.1093/RB/RBAE138.
  • 64.
    Wang, J.; Chen, X.; Li, R.; et al. Standardization and Consensus in the Development and Application of Bone Organoids. Theranostics 2025, 15, 682. https://doi.org/10.7150/THNO.105840.
  • 65.
    Hoang, V.T.; Nguyen, Q.T.; Phan, T.T.K.; et al. Tissue Engineering and Regenerative Medicine: Perspectives and Challenges. MedComm 2025, 6, e70192. https://doi.org/10.1002/MCO2.70192.
  • 66.
    Pourjabbar, B.; Biazar, E.; Heidari Keshel, S.; et al. Bio-Polymeric Hydrogels for Regeneration of Corneal Epithelial Tissue*. Int. J. Polym. Mater. Polym. Biomater. 2022, 71, 797–815. https://doi.org/10.1080/00914037.2021.1909586.
  • 67.
    Bagheri, L.; Jafari-Gharabaghlou, D.; Dashti, M.R.; et al. An Update on Implication of POSS-Based Nanocomposites in Bone Tissue Engineering: A Review. J. Biomater. Sci. Polym. Ed. 2025, 1–24. https://doi.org/10.1080/09205063.2025.2455234.
  • 68.
    Radmanesh, S.; Shabangiz, S.; Koupaei, N.; et al. 3D Printed Bio Polymeric Materials as a New Perspective for Wound Dressing and Skin Tissue Engineering Applications: A Review. J. Polym. Res. 2022, 29, 50. https://doi.org/10.1007/S10965-022-02899-6.
  • 69.
    Wu, D.T.; Munguia-Lopez, J.G.; Cho, Y.W.; et al. Polymeric Scaffolds for Dental, Oral, and Craniofacial Regenerative Medicine. Molecules 2021, 26, 7043. https://doi.org/10.3390/MOLECULES26227043.
  • 70.
    Chen, X.; Sun, Z.; Peng, X.; et al. Graphene Oxide/Black Phosphorus Functionalized Collagen Scaffolds with Enhanced Near-Infrared Controlled In Situ Biomineralization for Promoting Infectious Bone Defect Repair through PI3K/Akt Pathway. ACS Appl. Mater. Interfaces 2024, 16, 50369–50388. https://doi.org/10.1021/ACSAMI.4C10284.
  • 71.
    Riaz, Z.; Baddi, S.; Gao, F.; et al. Gallic Acid-Doped Multifunctional Hybrid Hydrogel for Antioxidant and Antibacterial Studies. Eur. Polym. J. 2024, 206, 112778. https://doi.org/10.1016/J.EURPOLYMJ.2024.112778.
  • 72.
    Palmese, L.L.; Thapa, R.K.; Sullivan, M.O.; et al. Supramolecular Co-Assembled Hybrid Hydrogels for Antibacterial Therapy. Supramol. Mater. 2019, 3, 143–157. https://doi.org/10.1016/J.COCHE.2019.02.010.
  • 73.
    Zhang, X.; Qin, M.; Xu, M.; et al. The Fabrication of Antibacterial Hydrogels for Wound Healing. Eur. Polym. J. 2021, 146, 110268. https://doi.org/10.1016/J.EURPOLYMJ.2021.110268.
  • 74.
    Liang, Y.; He, J.; Guo, B. Functional Hydrogels as Wound Dressing to Enhance Wound Healing. ACS Nano 2021, 15, 12687–12722. https://doi.org/10.1021/ACSNANO.1C04206.
  • 75.
    Riaz, Z.; Baddi, S.; Gao, F.; et al. Supramolecular Polymer Co-Assembled Multifunctional Chiral Hybrid Hydrogels with Adhesive, Self-Healing and Antibacterial Properties. Gels 2024, 10, 489. https://doi.org/10.3390/gels10080489.
  • 76.
    Riaz, Z.; Baddi, S.; Gao, F.; et al. Mxene‐Based Supramolecular Composite Hydrogels for Antioxidant and Photothermal Antibacterial Activities. Macromol. Biosci. 2023, 23, 2300082. https://doi.org/10.1002/mabi.202300082.
  • 77.
    Alsakhawy, M.A.; Abdelmonsif, D.A.; Haroun, M.; et al. Naringin-Loaded Arabic Gum/Pectin Hydrogel as a Potential Wound Healing Material. Int. J. Biol. Macromol. 2022, 222, 701–714. https://doi.org/10.1016/J.IJBIOMAC.2022.09.200.
  • 78.
    Ding, Y.; Zong, Q.; Zhang, Q.; et al. Gum Arabic Based Multifunctional Antibacterial Adhesion Hydrogel Dressings Loaded with Doxycycline Hydrochloride for Wound Healing. Int. J. Biol. Macromol. 2025, 306, 141284. https://doi.org/10.1016/J.IJBIOMAC.2025.141284.
  • 79.
    Karimzadeh, F.; Soltani Fard, E.; Nadi, A.; et al. Advances in Skin Gene Therapy: Utilizing Innovative Dressing Scaffolds for Wound Healing, a Comprehensive Review. J. Mater. Chem. B 2024, 12, 6033–6062. https://doi.org/10.1039/D4TB00966E.
  • 80.
    Sarvari, R.; Nouri, M.; Agbolaghi, S.; et al. A Summary on Non-Viral Systems for Gene Delivery Based on Natural and Synthetic Polymers. Int. J. Polym. Mater. Polym. Biomater. 2022, 71, 246–265. https://doi.org/10.1080/00914037.2020.1825081.
  • 81.
    Ali, M.; Ullah, S.; Ullah, S.; et al. Innovative Biopolymers Composite Based Thin Film for Wound Healing Applications. Sci. Rep. 2024, 14, 27415. https://doi.org/10.1038/S41598-024-79121-8.
  • 82.
    Xu, Y.; Yao, Y.; Gao, J. Cell-Derived Matrix: Production, Decellularization, and Application of Wound Repair. Stem Cells Int. 2024, 2024, 7398473. https://doi.org/10.1155/2024/7398473.
  • 83.
    Zhang, Y.; Zhang, C.; Li, Y.; et al. Evolution of Biomimetic ECM Scaffolds from Decellularized Tissue Matrix for Tissue Engineering: A Comprehensive Review. Int. J. Biol. Macromol. 2023, 246, 125672. https://doi.org/10.1016/J.IJBIOMAC.2023.125672.
  • 84.
    Rosadas, M.; Silva, I.V.; Costa, J.B.; et al. Decellularized Dermal Matrices: Unleashing the Potential in Tissue Engineering and Regenerative Medicine. Front. Mater. 2023, 10, 1285948. https://doi.org/10.3389/FMATS.2023.1285948.
  • 85.
    Xiao, H.; Chen, X.; Liu, X.; et al. Recent Advances in Decellularized Biomaterials for Wound Healing. Mater. Today Bio 2023, 19, 100589. https://doi.org/10.1016/J.MTBIO.2023.100589.
  • 86.
    Solarte David, V.A.; Güiza-Argüello, V.R.; Arango-Rodríguez, M.L.; et al. Decellularized Tissues for Wound Healing: Towards Closing the Gap Between Scaffold Design and Effective Extracellular Matrix Remodeling. Front. Bioeng. Biotechnol. 2022, 10, 821852. https://doi.org/10.3389/FBIOE.2022.821852.
  • 87.
    Reddy, M.S.B.; Ponnamma, D.; Choudhary, R.; et al. A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds. Polymers 2021, 13, 1105. https://doi.org/10.3390/POLYM13071105.
  • 88.
    Echeverria Molina, M.I.; Malollari, K.G.; Komvopoulos, K. Design Challenges in Polymeric Scaffolds for Tissue Engineering. Front. Bioeng. Biotechnol. 2021, 9, 617141. https://doi.org/10.3389/FBIOE.2021.617141.
  • 89.
    Singaravelu, S.; Abrahamse, H.; Dhilip Kumar, S.S. Three-Dimensional Bio-Derived Materials for Biomedical Applications: Challenges and Opportunities. RSC Adv. 2025, 15, 9375–9397. https://doi.org/10.1039/D4RA07531E.
  • 90.
    Sadeghianmaryan, A.; Ahmadian, N.; Wheatley, S.; et al. Advancements in 3D-Printable Polysaccharides, Proteins, and Synthetic Polymers for Wound Dressing and Skin Scaffolding—A Review. Int. J. Biol. Macromol. 2024, 266, 131207. https://doi.org/10.1016/J.IJBIOMAC.2024.131207.
  • 91.
    Olteanu, G.; Neacșu, S.M.; Joița, F.A.; et al. Advancements in Regenerative Hydrogels in Skin Wound Treatment: A Comprehensive Review. Int. J. Mol. Sci. 2024, 25, 3849. https://doi.org/10.3390/IJMS25073849.
  • 92.
    Xu, Y.; Hu, Q.; Wei, Z.; et al. Advanced Polymer Hydrogels That Promote Diabetic Ulcer Healing: Mechanisms, Classifications, and Medical Applications. Biomater. Res. 2023, 27, 36. https://doi.org/10.1186/S40824-023-00379-6.
  • 93.
    Pirsa, S.; Khodaei, S.M.; Karimi Sani, I.; et al. Hydrogels and Biohydrogels: Investigation of Origin of Production, Production Methods, and Application. Polym. Bull. 2022, 80, 10593–10632. https://doi.org/10.1007/S00289-022-04580-W.
  • 94.
    Zhou, Y.; Wang, M.; Yan, C.; et al. Advances in the Application of Electrospun Drug-Loaded Nanofibers in the Treatment of Oral Ulcers. Biomolecules 2022, 12, 1254. https://doi.org/10.3390/BIOM12091254.
  • 95.
    Mahdian, M.; Tabatabai, T.S.; Abpeikar, Z.; et al. Nerve Regeneration Using Decellularized Tissues: Challenges and Opportunities. Front. Neurosci. 2023, 17, 1295563. https://doi.org/10.3389/FNINS.2023.1295563/XML/NLM.
  • 96.
    Zheng, Z.; Zhang, H.; Yang, J.; et al. Recent Advances in Structural and Functional Design of Electrospun Nanofibers for Wound Healing. J. Mater. Chem. B 2025, 13, 5226–5263. https://doi.org/10.1039/D4TB02718C.
  • 97.
    Palani, N.; Vijayakumar, P.; Monisha, P.; et al. Electrospun Nanofibers Synthesized from Polymers Incorporated with Bioactive Compounds for Wound Healing. J. Nanobiotechnol. 2024, 22, 211. https://doi.org/10.1186/S12951-024-02491-8.
  • 98.
    Liu, Q.; Luo, S.; Peng, J.; et al. Electrospun Nanofibers from Plant Natural Products: A New Approach Toward Efficient Wound Healing. Int. J. Nanomed. 2024, 19, 13973–13990. https://doi.org/10.2147/IJN.S501970.
  • 99.
    Homaeigohar, S.; Boccaccini, A.R. Nature-Derived and Synthetic Additives to Poly(ɛ-Caprolactone) Nanofibrous Systems for Biomedicine; an Updated Overview. Front. Chem. 2022, 9, 809676. https://doi.org/10.3389/FCHEM.2021.809676
  • 100.
    Ahmadian, E.; Eftekhari, A.; Janas, D.; et al. Nanofiber Scaffolds Based on Extracellular Matrix for Articular Cartilage Engineering: A Perspective. Nanotheranostics 2023, 7, 61. https://doi.org/10.7150/NTNO.78611.
  • 101.
    Huang, T.; Zeng, Y.E.; Li, C.; et al. Application and Development of Electrospun Nanofiber Scaffolds for Bone Tissue Engineering. ACS Biomater. Sci. Eng. 2024, 10, 4114–4144. https://doi.org/10.1021/ACSBIOMATERIALS.4C00028.
  • 102.
    Siafaka, P.I.; Özcan Bülbül, E.; Miliotou, A.N.; et al. Delivering Active Molecules to the Eye; the Concept of Electrospinning as Potent Tool for Drug Delivery Systems. J. Drug Deliv. Sci. Technol. 2023, 84, 104565. https://doi.org/10.1016/J.JDDST.2023.104565.
  • 103.
    Dai, X.; Nie, W.; Shen, H.; et al. Electrospinning Based Biomaterials for Biomimetic Fabrication, Bioactive Protein Delivery and Wound Regenerative Repair. Regen. Biomater. 2025, 12, rbae139. https://doi.org/10.1093/RB/RBAE139.
  • 104.
    Aazmi, A.; Zhang, D.; Mazzaglia, C.; et al. Biofabrication Methods for Reconstructing Extracellular Matrix Mimetics. Bioact. Mater. 2024, 31, 475–496. https://doi.org/10.1016/J.BIOACTMAT.2023.08.018.
  • 105.
    Gao, N.; Yu, J.; Chen, S.; et al. Interfacial Polymerization for Controllable Fabrication of Nanostructured Conducting Polymers and Their Composites. Synth. Met. 2021, 273, 116693. https://doi.org/10.1016/J.SYNTHMET.2020.116693.
  • 106.
    Chamanehpour, E.; Thouti, S.; Rubahn, H.G.; et al. Smart Nanofibers: Synthesis, Properties, and Scopes in Future Advanced Technologies. Adv. Mater. Technol. 2024, 9, 2301392. https://doi.org/10.1002/ADMT.202301392.
  • 107.
    Zhang, Y.; Zheng, Z.; Zhu, S.; et al. Electroactive Electrospun Nanofibrous Scaffolds: Innovative Approaches for Improved Skin Wound Healing. Adv. Sci. 2025, 12, 2416267. https://doi.org/10.1002/ADVS.202416267.
  • 108.
    Kitana, W.; Apsite, I.; Ionov, L. 3D (Bio) Printing Combined Fiber Fabrication Methods for Tissue Engineering Applications: Possibilities and Limitations. Adv. Funct. Mater. 2025, 2500450. https://doi.org/10.1002/ADFM.202500450.
  • 109.
    Shehata, N.; Nair, R. Different Characterizations and Recent Applications of Piezoelectric Nanofibers. In Energy Harvesting Properties of Electrospun Nanofibers, 2nd ed.; IOP Publishing Ltd.: Bristol, UK, 2025; pp. 4.1–4.35. https://doi.org/10.1088/978-0-7503-5487-5CH4.
  • 110.
    Datta, D.; Bandi, S.P.; Colaco, V.; et al. Cellulose-Based Nanofibers Infused with Biotherapeutics for Enhanced Wound-Healing Applications. ACS Polym. Au 2025, 5, 80–104. https://doi.org/10.1021/ACSPOLYMERSAU.4C00092.
  • 111.
    Liu, R.; Hou, L.; Yue, G.; et al. Progress of Fabrication and Applications of Electrospun Hierarchically Porous Nanofibers. Adv. Fiber Mater. 2022, 4, 604–630. https://doi.org/10.1007/S42765-022-00132-Z.
  • 112.
    Chen, Y.; Dong, X.; Shafiq, M.; et al. Recent Advancements on Three-Dimensional Electrospun Nanofiber Scaffolds for Tissue Engineering. Adv. Fiber Mater. 2022, 4, 959–986. https://doi.org/10.1007/S42765-022-00170-7.
  • 113.
    Zeinali, R.; Del Valle, L.J.; Torras, J.; et al. Recent Progress on Biodegradable Tissue Engineering Scaffolds Prepared by Thermally-Induced Phase Separation (TIPS). Int. J. Mol. Sci. 2021, 22, 3504. https://doi.org/10.3390/IJMS22073504.
  • 114.
    Shenoy, D.; Chivukula, S.; Erdogan, N.; et al. Self-Assembled Peptide-Based Nanofibers for Cardiovascular Tissue Regeneration. J. Mater. Chem. B 2025, 13, 844–857. https://doi.org/10.1039/D4TB01235F.
  • 115.
    Zhang, J.; Chang, R.; Li, S.; et al. Peptide-Coordination Self-Assembly: Supramolecular Design and Biomedical Applications. Colloids Surf. A Physicochem. Eng. Asp. 2024, 693, 134076. https://doi.org/10.1016/J.COLSURFA.2024.134076.
  • 116.
    Aslam Khan, M.U.; Aslam, M.A.; Bin Abdullah, M.F.; et al. Current Perspectives of Protein in Bone Tissue Engineering: Bone Structure, Ideal Scaffolds, Fabrication Techniques, Applications, Scopes, and Future Advances. ACS Appl. Bio Mater. 2024, 7, 5082–5106. https://doi.org/10.1021/ACSABM.4C00362.
  • 117.
    Kuang, G.; Lin, X.; Li, J.; et al. Electrospun Nanofibers-Derived Functional Scaffolds for Cancer Therapy. Chem. Eng. J. 2024, 489, 151253. https://doi.org/10.1016/J.CEJ.2024.151253.
  • 118.
    Jiang, X.; Zeng, Y.E.; Li, C.; et al. Enhancing Diabetic Wound Healing: Advances in Electrospun Scaffolds from Pathogenesis to Therapeutic Applications. Front. Bioeng. Biotechnol. 2024, 12, 1354286. https://doi.org/10.3389/FBIOE.2024.1354286.
  • 119.
    Eslahi, N.; Soleimani, F.; Lotfi, R.; et al. How Biomimetic Nanofibers Advance the Realm of Cutaneous Wound Management: The State-of-the-Art and Future Prospects. Prog. Mater. Sci. 2024, 145, 101293. https://doi.org/10.1016/J.PMATSCI.2024.101293.
  • 120.
    Dong, Y.; Fu, S.; Yu, J.; et al. Emerging Smart Micro/Nanofiber-Based Materials for Next-Generation Wound Dressings. Adv. Funct. Mater. 2024, 34, 2311199. https://doi.org/10.1002/ADFM.202311199.
  • 121.
    Liu, X.; Xu, H.; Zhang, M.; et al. Electrospun Medicated Nanofibers for Wound Healing: Review. Membranes 2021, 11, 770. https://doi.org/10.3390/MEMBRANES11100770.
  • 122.
    Gao, C.; Zhang, L.; Wang, J.; et al. Electrospun Nanofibers Promote Wound Healing: Theories, Techniques, and Perspectives. J. Mater. Chem. B 2021, 9, 3106–3130. https://doi.org/10.1039/D1TB00067E.
  • 123.
    Liu, Y.; Li, C.; Feng, Z.; et al. Advances in the Preparation of Nanofiber Dressings by Electrospinning for Promoting Diabetic Wound Healing. Biomolecules 2022, 12, 1727. https://doi.org/10.3390/BIOM12121727.
  • 124.
    CeCe, R.; Jining, L.; Islam, M.; et al. An Overview of the Electrospinning of Polymeric Nanofibers for Biomedical Applications Related to Drug Delivery. Adv. Eng. Mater. 2024, 26, 2301297. https://doi.org/10.1002/ADEM.202301297.
  • 125.
    Ji, D.; Lin, Y.; Guo, X.; et al. Electrospinning of Nanofibres. Nat. Rev. Methods Primers 2024, 4, 1. https://doi.org/10.1038/s43586-023-00278-z.
  • 126.
    Zheng, Q.; Xi, Y.; Weng, Y. Functional Electrospun Nanofibers: Fabrication, Properties, and Applications in Wound-Healing Process. RSC Adv. 2024, 14, 3359–3378. https://doi.org/10.1039/D3RA07075A.
  • 127.
    Hosseini Ravandi, S.A.; Sadrjahani, M.; Valipouri, A.; et al. Recently Developed Electrospinning Methods: A Review. Text. Res. J. 2022, 92, 5130–5145. https://doi.org/10.1177/00405175211069880.
  • 128.
    Liyanage, A.A.H. Design and Optimization: Multi-Needle Electrospun Mwcnts/Epoxy Nanofiber Scaffolds for High Volume Production to Enhance Physical and Mechanical Properties of CFRP. Master’s Thesis, Purdue University Graduate School, West Lafayette, IN, USA, 2021. https://doi.org/10.25394/PGS.17139095.V1.
  • 129.
    Liu, J.; Dong, S.; Liu, Y.; et al. Fluid and Electric Field Simulation and Optimization of the Multi-Vane and Multi-Slit Electrospinning Nozzle. Nanomaterials 2025, 15, 461. https://doi.org/10.3390/NANO15060461.
  • 130.
    Hanna Sofia, S. H. Simulation And Experimental Study of Multi-Nozzle Arrangements on Electrospun Jets and Their Resultant Nanofibrous Properties. Ph.D. Thesis, Universiti Malaya, Kuala Lumpur, Malaysia, 2024.
  • 131.
    Alli, Y.A.; Bamisaye, A.; Onawole, A.T.; et al. coaxial electrospinning: design, characterization, mechanistic insights and their emerging applications in solar cells. Nano Energy 2024, 131, 110203. https://doi.org/10.1016/J.NANOEN.2024.110203.
  • 132.
    Weng, J.; Zou, Y.; Zhang, Y.; et al. Stable Encapsulation of Camellia Oil in Core–Shell Zein Nanofibers Fabricated by Emulsion Electrospinning. Food Chem. 2023, 429, 136860. https://doi.org/10.1016/J.FOODCHEM.2023.136860.
  • 133.
    Bullon, J.; Marquez, R.; Zambrano, F.; et al. Unique Fiber Morphologies from Emulsion Electrospinning—A Case Study of Poly(ε-Caprolactone) and Its Applications. Colloids Interfaces 2023, 7, 19. https://doi.org/10.3390/COLLOIDS7010019.
  • 134.
    Thillaipandian, H.; Pitchaimuthu, P.; Chandrasekaran, D.; et al. Recent Developments in Electrospinning Spinneret and Collector Assembly for Biomedical Applications. Adv. Polym. Sci. 2023, 291, 1–21. https://doi.org/10.1007/12_2022_134.
  • 135.
    Cassella, E.J.; Spooner, E.L.K.; Thornber, T.; et al. Gas-Assisted Spray Coating of Perovskite Solar Cells Incorporating Sprayed Self-Assembled Monolayers. Adv. Sci. 2022, 9, 2104848. https://doi.org/10.1002/ADVS.202104848.
  • 136.
    Dzierzkowska, E.; Scisłowska-Czarnecka, A.; Kudzin, M.; et al. Effects of Process Parameters on Structure and Properties of Melt-Blown Poly(Lactic Acid) Nonwovens for Skin Regeneration. J. Funct. Biomater. 2021, 12, 16. https://doi.org/10.3390/JFB12010016.
  • 137.
    Mowafi, S.; El-Sayed, H. Production and Utilization of Keratin and Sericin-Based Electro-Spun Nanofibers: A Comprehensive Review. J. Nat. Fibers 2023, 20, 2192544. https://doi.org/10.1080/15440478.2023.2192544.
  • 138.
    Keirouz, A.; Wang, Z.; Reddy, V.S.; et al. The History of Electrospinning: Past, Present, and Future Developments. Adv. Mater. Technol. 2023, 8, 2201723. https://doi.org/10.1002/ADMT.202201723.
  • 139.
    Bahú, J.O.; de Andrade, L.R.M.; Crivellin, S.; et al. Rotary Jet Spinning (RJS): A Key Process to Produce Biopolymeric Wound Dressings. Pharmaceutics 2022, 14, 2500. https://doi.org/10.3390/PHARMACEUTICS14112500.
  • 140.
    Nadaf, A.; Gupta, A.; Hasan, N.; et al. Recent Update on Electrospinning and Electrospun Nanofibers: Current Trends and Their Applications. RSC Adv. 2022, 12, 23808–23828. https://doi.org/10.1039/D2RA02864F.
  • 141.
    Jayadevan, S.; Aliyana, A.K.; Stylios, G. An Overview of Advances and Challenges in Developing Nanofiber Yarns for Wearable Technology. Nano Energy 2024, 129, 110034. https://doi.org/10.1016/J.NANOEN.2024.110034.
  • 142.
    Rupp, H.; Binder, W.H. 3D Printing of Solvent-Free Supramolecular Polymers. Front. Chem. 2021, 9, 771974. https://doi.org/10.3389/FCHEM.2021.771974.
  • 143.
    Avossa, J.; Herwig, G.; Toncelli, C.; et al. Electrospinning Based on Benign Solvents: Current Definitions, Implications and Strategies. Green Chem. 2022, 24, 2347–2375. https://doi.org/10.1039/D1GC04252A.
  • 144.
    Bachs-Herrera, A.; Yousefzade, O.; Del Valle, L.J.; et al. Melt Electrospinning of Polymers: Blends, Nanocomposites, Additives and Applications. Appl. Sci. 2021, 11, 1808. https://doi.org/10.3390/APP11041808.
  • 145.
    Wang, Z.; Zhao, X.; Chen, Y.; et al. A Review of Designable Deep Eutectic Solvents for Green Fabrication of Advanced Functional Materials. RSC Sustain. 2025, 3, 738–756. https://doi.org/10.1039/D4SU00560K.
  • 146.
    Machado, N.D.; Mosquera, J.E.; Martini, R.E.; et al. Supercritical CO2-Assisted Impregnation/Deposition of Polymeric Materials with Pharmaceutical, Nutraceutical, and Biomedical Applications: A Review (2015–2021). J. Supercrit. Fluids 2022, 191, 105763. https://doi.org/10.1016/J.SUPFLU.2022.105763.
  • 147.
    Gavande, V.; Shaikh, V.; Lee, W.-K. Green Electrospun Polymer Nanofibers: Preparation, Challenges, and Applications. In Sustainable Green Nanomaterials; Apple Academic Press: Palm Bay, FL, USA, 2024; pp. 3–28. https://doi.org/10.1201/9781003501572-2.
  • 148.
    Kotrotsos, A. An Innovative Synergy between Solution Electrospinning Process Technique and Self-Healing of Materials. A Critical Review. Polym. Eng. Sci. 2021, 61, 5–21. https://doi.org/10.1002/PEN.25559.
  • 149.
    Nur, M.G.; Rahman, M.; Dip, T.M.; et al. Recent Advances in Bioactive Wound Dressings. Wound Repair Regen. 2024, 33, e13233. https://doi.org/10.1111/WRR.13233.
  • 150.
    Rezvani Ghomi, E.; Khosravi, F.; Neisiany, R.E.; et al. Advances in Electrospinning of Aligned Nanofiber Scaffolds Used for Wound Dressings. Curr. Opin. Biomed. Eng. 2022, 22, 100393. https://doi.org/10.1016/J.COBME.2022.100393.
  • 151.
    Wang, D.H.; Su, J.; Liu, Y.M.; et al. Recent Advances in Electrospun Magnetic Nanofibers and Their Applications. J. Mater. Chem. C 2022, 10, 4072–4095. https://doi.org/10.1039/D2TC00107A.
  • 152.
    Zhu, S.; Meng, X.; Yan, X.; et al. Evidence for Bicomponent Fibers: A Review. E-Polymers 2021, 21, 636–653. https://doi.org/10.1515/EPOLY-2021-0067.
  • 153.
    Zannini Luz, H.; dos Santos, L.A.L. Centrifugal Spinning for Biomedical Use: A Review. Crit. Rev. Solid State Mater. Sci. 2023, 48, 519–534. https://doi.org/10.1080/10408436.2022.2080640.
  • 154.
    Marjuban, S.M.H.; Rahman, M.; Duza, S.S.; et al. Recent Advances in Centrifugal Spinning and Their Applications in Tissue Engineering. Polymers 2023, 15, 1253. https://doi.org/10.3390/POLYM15051253.
  • 155.
    Bassam, A.; Du, M.; Li, Y.; et al. Engineering in NIR-Responsive Photothermal Materials and Their Application in Wound Healing Administration. Responsive Mater. 2025, 3, e20240031. https://doi.org/10.1002/RPM.20240031.
  • 156.
    Kukhta, N.A.; Marks, A.; Luscombe, C.K. Molecular Design Strategies toward Improvement of Charge Injection and Ionic Conduction in Organic Mixed Ionic-Electronic Conductors for Organic Electrochemical Transistors. Chem. Rev. 2022, 122, 4325–4355. https://doi.org/10.1021/ACS.CHEMREV.1C00266.
  • 157.
    Nazemi, M.M.; Khodabandeh, A.; Hadjizadeh, A. Near-Field Electrospinning: Crucial Parameters, Challenges, and Applications. ACS Appl. Bio Mater. 2022, 5, 394–412. https://doi.org/10.1021/ACSABM.1C00944.
  • 158.
    Dharmaraj, D.; Chavan, N.; Likhitha, U.; et al. Electrospun Nanofibers for Dermatological Delivery. J. Drug Deliv. Sci. Technol. 2024, 99, 105981. https://doi.org/10.1016/J.JDDST.2024.105981.
  • 159.
    Zhao, J.; Chen, L.; Ma, A.; et al. Recent Advances in Coaxial Electrospun Nanofibers for Wound Healing. Mater. Today Bio 2024, 29, 101309. https://doi.org/10.1016/J.MTBIO.2024.101309.
  • 160.
    Othman, H.; Awad, E.A.; Zaher, S.A.; et al. Electrospinning Process Parameters and Application: A Review. J. Text. Color. Polym. Sci. 2025, 22, 59–66. https://doi.org/10.21608/JTCPS.2024.259004.1268.
  • 161.
    Ahmadi Bonakdar, M.; Rodrigue, D. Electrospinning: Processes, Structures, and Materials. Macromol 2024, 4, 58–103. https://doi.org/10.3390/MACROMOL4010004.
  • 162.
    Karmakar, S.; Manna, S.; Jana, S. Nanofiber Technology in Biomedical Applications. In Advances in Pharmaceutical Technology for Drug Delivery Systems (PTDDS); Apple Academic Press: Palm Bay, FL, USA, 2025; pp. 245–271. https://doi.org/10.1201/9781003592679-8.
  • 163.
    Yessuf, A.M.; Bahri, M.; Kassa, T.S.; et al. Electrospun Polymeric Nanofibers: Current Trends in Synthesis, Surface Modification, and Biomedical Applications. ACS Appl. Bio Mater. 2024, 7, 4231–4253. https://doi.org/10.1021/ACSABM.4C00307.
  • 164.
    Patel, P.R.; Gundloori, R.V.N. A Review on Electrospun Nanofibers for Multiple Biomedical Applications. Polym. Adv. Technol. 2023, 34, 44–63. https://doi.org/10.1002/PAT.5896.
  • 165.
    Venmathi Maran, B.A.; Jeyachandran, S.; Kimura, M. A Review on the Electrospinning of Polymer Nanofibers and Its Biomedical Applications. J. Compos. Sci. 2024, 8, 32. https://doi.org/10.3390/JCS8010032.
  • 166.
    Hoskins, J.N.; Grayson, S.M. Synthesis and Degradation Behavior of Cyclic Poly(ε-Caprolactone). Macromolecules 2009, 42, 6406–6413. https://doi.org/10.1021/MA9011076.
  • 167.
    Polonio-Alcalá, E.; Casanova-Batlle, E.; Puig, T.; et al. The Solvent Chosen for the Manufacturing of Electrospun Polycaprolactone Scaffolds Influences Cell Behavior of Lung Cancer Cells. Sci. Rep. 2022, 12, 19440. https://doi.org/10.1038/S41598-022-23655-2.
  • 168.
    Oztemur, J.; Yalcin-Enis, I. Development of Biodegradable Webs of PLA/PCL Blends Prepared via Electrospinning: Morphological, Chemical, and Thermal Characterization. J. Biomed. Mater. Res.-Part B Appl. Biomater. 2021, 109, 1844–1856. https://doi.org/10.1002/JBM.B.34846.
  • 169.
    Oztemur, J.; Yalcin-Enis, I. Morphological Analysis of Fibrous Webs Electrospun from Polycaprolactone, Polylactic Acid and Their Blends in Chloroform Based Solvent Systems. Mater. Today Proc. 2021, 46, 2161–2166. https://doi.org/10.1016/J.MATPR.2021.02.638.
  • 170.
    Stricher, M.; Sarde, C.O.; Guénin, E.; et al. Cellulosic/Polyvinyl Alcohol Composite Hydrogel: Synthesis, Characterization and Applications in Tissue Engineering. Polymers 2021, 13, 3598. https://doi.org/10.3390/POLYM13203598/S1.
  • 171.
    Hosseini, F.S.; Laurencin, C.T. Advanced Electrospun Nanofibrous Stem Cell Niche for Bone Regenerative Engineering. Regen. Eng. Transl. Med. 2023, 9, 165–180. https://doi.org/10.1007/S40883-022-00274-X.
  • 172.
    Shen, W.; Ao, F.; Ge, X.; et al. Effects of Solvents on Electrospun Fibers and the Biological Application of Different Hydrophilic Electrospun Mats. Mater. Today Commun. 2022, 30, 103093. https://doi.org/10.1016/J.MTCOMM.2021.103093.
  • 173.
    Sharma, D.; Satapathy, B.K. Tuning Structural-Response of PLA/PCL Based Electrospun Nanofibrous Mats: Role of Dielectric-Constant and Electrical-Conductivity of the Solvent System. J. Biomater. Sci. Polym. Ed. 2022, 33, 1759–1793. https://doi.org/10.1080/09205063.2022.2073427.
  • 174.
    Anaya-Mancipe, J.M.; de Figueiredo, A.C.; Rabello, L.G.; et al. Evaluation of the Polycaprolactone Hydrolytic Degradation in Acid Solvent and Its Influence on the Electrospinning Process. J. Appl. Polym. Sci. 2024, 141, e55662. https://doi.org/10.1002/APP.55662.
  • 175.
    Sivan, M.; Madheswaran, D.; Hauzerova, S.; et al. AC Electrospinning: Impact of High Voltage and Solvent on the Electrospinnability and Productivity of Polycaprolactone Electrospun Nanofibrous Scaffolds. Mater. Today Chem. 2022, 26, 101025. https://doi.org/10.1016/J.MTCHEM.2022.101025.
  • 176.
    Zulkifli, M.Z.A.; Nordin, D.; Shaari, N.; et al. Overview of Electrospinning for Tissue Engineering Applications. Polymers 2023, 15, 2418. https://doi.org/10.3390/POLYM15112418.
  • 177.
    Canizales-Rodríguez, D.F.; Rodriguez-Felix, F.; Tapia-Hernández, J.A.; et al. Food Grade Nanofiber of Polylactic Acid by Electrospinning: Physicochemical Characterization of Solutions and Parameters of the Technique. J. Food Qual. 2024, 2024, 5579613. https://doi.org/10.1155/2024/5579613.
  • 178.
    Abdul Hameed, M.M.; Mohamed Khan, S.A.P.; Thamer, B.M.; et al. Electrospun Nanofibers for Drug Delivery Applications: Methods and Mechanism. Polym. Adv. Technol. 2023, 34, 6–23. https://doi.org/10.1002/PAT.5884.
  • 179.
    Guo, Y.; Wang, X.; Shen, Y.; et al. Research Progress, Models and Simulation of Electrospinning Technology: A Review. J. Mater. Sci. 2022, 57, 58–104. https://doi.org/10.1007/S10853-021-06575-W.
  • 180.
    Chen, X.; Wang, J.; Zhang, J.; et al. Development and Application of Electrospun Fiber-Based Multifunctional Sensors. Chem. Eng. J. 2024, 486, 150204. https://doi.org/10.1016/J.CEJ.2024.150204.
  • 181.
    Yeoh, S.G.; Liew, Y.K.; Low, M.L.; et al. Electrospun Metal–Organic Framework-Based Nanofibers with Natural Therapeutic Agents for Enhanced Diabetic Wound Healing. Discov. Mater. 2025, 5, 66. https://doi.org/10.1007/S43939-025-00227-5.
  • 182.
    Eldem, A.; Tekintaş, Y.; Ucuncu, M.; et al. Electrospun Nanofiber Platforms for Photodynamic Therapy: Role and Efficacy in Cancer, Antimicrobial, and Wound Healing Applications. Macromol. Mater. Eng. 2025, 310, 2500014. https://doi.org/10.1002/MAME.202500014.
  • 183.
    Eynde, V.; Sezer, F.; Deniz, S.; et al. Pharmacological Applications of Electrospun Nanofibers Loaded with Bioactive Natural Compounds and Extracts: A Systematic Review. Drugs Drug Candidates 2025, 4, 8. https://doi.org/10.3390/DDC4010008.
  • 184.
    Chen, L.; Wu, P.; Zhu, Y.; et al. Electrospinning Strategies Targeting Fibroblast for Wound Healing of Diabetic Foot Ulcers. APL Bioeng. 2025, 9, 11501. https://doi.org/10.1063/5.0235412/3337246.
  • 185.
    Tamilarasi, G.P.; Sabarees, G.; Krishnan, M.; et al. Electrospun Scaffold-Based Antibiotic Therapeutics for Chronic Wound Recovery. Mini-Reviews Med. Chem. 2023, 23, 1653–1677. https://doi.org/10.2174/1389557523666230221155544.
  • 186.
    Toledano-Osorio, M.; Vallecillo, C.; Vallecillo-Rivas, M.; et al. Antibiotic-Loaded Polymeric Barrier Membranes for Guided Bone/Tissue Regeneration: A Mini-Review. Polymers 2022, 14, 840. https://doi.org/10.3390/POLYM14040840.
  • 187.
    Alven, S.; Buyana, B.; Feketshane, Z.; et al. Electrospun Nanofibers/Nanofibrous Scaffolds Loaded with Silver Nanoparticles as Effective Antibacterial Wound Dressing Materials. Pharmaceutics 2021, 13, 964. https://doi.org/10.3390/PHARMACEUTICS13070964.
  • 188.
    Mercante, L.A.; Teodoro, K.B.R.; dos Santos, D.M.; et al. Recent Progress in Stimuli-Responsive Antimicrobial Electrospun Nanofibers. Polymers 2023, 15, 4299. https://doi.org/10.3390/POLYM15214299.
  • 189.
    Chen, S.; Xie, Y.; Ma, K.; et al. Electrospun Nanofibrous Membranes Meet Antibacterial Nanomaterials: From Preparation Strategies to Biomedical Applications. Bioact. Mater. 2024, 42, 478–518. https://doi.org/10.1016/J.BIOACTMAT.2024.09.003.
  • 190.
    Mousavi, S.-M.; Nejad, Z.M.; Hashemi, S.A.; et al. Bioactive Agent-Loaded Electrospun Nanofiber Membranes for Accelerating Healing Process: A Review. Membranes 2021, 11, 702. https://doi.org/10.3390/MEMBRANES11090702.
  • 191.
    Epicoco, L.; Pellegrino, R.; Madaghiele, M.; et al. Recent Advances in Functionalized Electrospun Membranes for Periodontal Regeneration. Pharmaceutics 2023, 15, 2725. https://doi.org/10.3390/PHARMACEUTICS15122725.
  • 192.
    Felgueiras, H.P. Emerging Antimicrobial and Immunomodulatory Fiber-Based Scaffolding Systems for Treating Diabetic Foot Ulcers. Pharmaceutics 2023, 15, 258. https://doi.org/10.3390/PHARMACEUTICS15010258.
  • 193.
    Venugopal, D.; Vishwakarma, S.; Kaur, I.; et al. Electrospun Fiber-Based Strategies for Controlling Early Innate Immune Cell Responses: Towards Immunomodulatory Mesh Designs That Facilitate Robust Tissue Repair. Acta Biomater. 2023, 163, 228–247. https://doi.org/10.1016/J.ACTBIO.2022.06.004.
  • 194.
    Cao, Y.; Sun, J.; Qin, S.; et al. Advances and Challenges in Immune-Modulatory Biomaterials for Wound Healing Applications. Pharmaceutics 2024, 16, 990. https://doi.org/10.3390/PHARMACEUTICS16080990.
  • 195.
    Xu, Y.; Saiding, Q.; Zhou, X.; et al. Electrospun Fiber-Based Immune Engineering in Regenerative Medicine. Smart Med. 2024, 3, e20230034. https://doi.org/10.1002/SMMD.20230034.
  • 196.
    Abedi, N.; Sadeghian, A.; Kouhi, M.; et al. Immunomodulation in Bone Tissue Engineering: Recent Advancements in Scaffold Design and Biological Modifications for Enhanced Regeneration. ACS Biomater. Sci. Eng. 2025, 11, 1269–1290. https://doi.org/10.1021/ACSBIOMATERIALS.4C01613.
  • 197.
    Ju, Y.; Luo, Y.; Li, R.; et al. Multifunctional Combined Drug-Loaded Nanofibrous Dressings with Anti-Inflammatory, Antioxidant Stress and Microenvironment Improvement for Diabetic Wounds. RSC Adv. 2024, 14, 29606–29623. https://doi.org/10.1039/D4RA04860A.
  • 198.
    Mandras, N.; Luganini, A.; Argenziano, M.; et al. Design, Characterization, and Biological Activities of Erythromycin-Loaded Nanodroplets to Counteract Infected Chronic Wounds Due to Streptococcus Pyogenes. Int. J. Mol. Sci. 2023, 24, 1865. https://doi.org/10.3390/IJMS24031865.
  • 199.
    He, Y.; Chang, Q.; Lu, F. Oxygen-Releasing Biomaterials for Chronic Wounds Breathing: From Theoretical Mechanism to Application Prospect. Mater. Today Bio 2023, 20, 100687. https://doi.org/10.1016/J.MTBIO.2023.100687.
  • 200.
    Salim, S.A.; Salaheldin, T.A.; Elmazar, M.M.; et al. Smart Biomaterials for Enhancing Cancer Therapy by Overcoming Tumor Hypoxia: A Review. RSC Adv. 2022, 12, 33835–33851. https://doi.org/10.1039/D2RA06036A.
  • 201.
    Mohsin, F.; Javaid, S.; Tariq, M.; et al. Molecular Immunological Mechanisms of Impaired Wound Healing in Diabetic Foot Ulcers (DFU), Current Therapeutic Strategies and Future Directions. Int. Immunopharmacol. 2024, 139, 112713. https://doi.org/10.1016/J.INTIMP.2024.112713.
  • 202.
    Bayraktar, S.; Üstün, C.; Kehr, N.S. Oxygen Delivery Biomaterials in Wound Healing Applications. Macromol. Biosci. 2024, 24, 2300363. https://doi.org/10.1002/MABI.202300363.
  • 203.
    Seifu, D.G.; Isimjan, T.T.; Mequanint, K. Tissue Engineering Scaffolds Containing Embedded Fluorinated-Zeolite Oxygen Vectors. Acta Biomater. 2011, 7, 3670–3678. https://doi.org/10.1016/J.ACTBIO.2011.06.010.
  • 204.
    Schenck, T.L.; Hopfner, U.; Chávez, M.N.; et al. Photosynthetic Biomaterials: A Pathway towards Autotrophic Tissue Engineering. Acta Biomater. 2015, 15, 39–47. https://doi.org/10.1016/J.ACTBIO.2014.12.012.
  • 205.
    Wyrwa, R.; Otto, K.; Voigt, S.; et al. Electrospun Mucosal Wound Dressings Containing Styptics for Bleeding Control. Mater. Sci. Eng. C 2018, 93, 419–428. https://doi.org/10.1016/J.MSEC.2018.07.066.
  • 206.
    Yang, Y.; Du, Y.; Zhang, J.; et al. Structural and Functional Design of Electrospun Nanofibers for Hemostasis and Wound Healing. Adv. Fiber Mater. 2022, 4, 1027–1057. https://doi.org/10.1007/S42765-022-00178-Z.
  • 207.
    Sasmal, P.K.; Ganguly, S. Polymer in Hemostasis and Follow-up Wound Healing. J. Appl. Polym. Sci. 2023, 140, e53559. https://doi.org/10.1002/APP.53559.
  • 208.
    Ranjith, R.; Balraj, S.; Ganesh, J.; et al. Therapeutic Agents Loaded Chitosan-Based Nanofibrous Mats as Potential Wound Dressings: A Review. Mater. Today Chem. 2019, 12, 386–395. https://doi.org/10.1016/J.MTCHEM.2019.03.008.
  • 209.
    Karamichos, D.; Futila Bukatuka, C.; Mbituyimana, B.; et al. Recent Trends in the Application of Cellulose-Based Hemostatic and Wound Healing Dressings. J. Funct. Biomater. 2025, 16, 151. https://doi.org/10.3390/JFB16050151.
  • 210.
    Hassanzadeh-Tabrizi, S.A. Alginate Based Hemostatic Materials for Bleeding Management: A Review. Int. J. Biol. Macromol. 2024, 274, 133218. https://doi.org/10.1016/J.IJBIOMAC.2024.133218.
  • 211.
    Cui, Y.; Huang, Z.; Lei, L.; et al. Robust Hemostatic Bandages Based on Nanoclay Electrospun Membranes. Nat. Commun. 2021, 12, 5922. https://doi.org/10.1038/s41467-021-26237-4.
  • 212.
    Mendes, L.G.; Ferreira, F.V.; Sielski, M.S.; et al. Electrospun Nanofibrous Architectures of Thrombin-Loaded Poly(Ethylene Oxide) for Fasterin VivoWound Clotting. ACS Appl. Bio Mater. 2021, 4, 5240–5250. https://doi.org/10.1021/ACSABM.1C00402.
  • 213.
    Nasser, S.; Ibrahim, M.; Atassi, Y. Hemostatic Wound Dressings Based on Drug Loaded Electrospun PLLA Nanofibrous Mats. Mater. Chem. Phys. 2021, 267, 124686. https://doi.org/10.1016/J.MATCHEMPHYS.2021.124686.
  • 214.
    Fadilah, N.I.M.; Phang, S.J.; Kamaruzaman, Net al. Antioxidant Biomaterials in Cutaneous Wound Healing and Tissue Regeneration: A Critical Review. Antioxidants 2023, 12, 787. https://doi.org/10.3390/ANTIOX12040787.
  • 215.
    Abedi, N.; Sajadi-Javan, Z.S.; Kouhi, M.; et al. Antioxidant Materials in Oral and Maxillofacial Tissue Regeneration: A Narrative Review of the Literature. Antioxidants 2023, 12, 594. https://doi.org/10.3390/ANTIOX12030594.
  • 216.
    Vilchez, A.; Acevedo, F.; Cea, M.; et al. Applications of Electrospun Nanofibers with Antioxidant Properties: A Review. Nanomaterials 2020, 10, 175. https://doi.org/10.3390/NANO10010175.
  • 217.
    Es-Sai, B.; Wahnou, H.; Benayad, S.; et al. Gamma-Tocopherol: A Comprehensive Review of Its Antioxidant, Anti-Inflammatory, and Anticancer Properties. Molecules 2025, 30, 653. https://doi.org/10.3390/MOLECULES30030653.
  • 218.
    Ravetti, S.; Clemente, C.; Brignone, S.; et al. Ascorbic Acid in Skin Health. Cosmetic 2019, 6, 58. https://doi.org/10.3390/COSMETICS6040058.
  • 219.
    Bengmark, S. Curcumin, an Atoxic Antioxidant and Natural NFκB, Cyclooxygenase-2, Lipooxygenase, and Inducible Nitric Oxide Synthase Inhibitor: A Shield against Acute and Chronic Diseases. J. Parenter. Enter. Nutr. 2006, 30, 45–51. https://doi.org/10.1177/014860710603000145.
  • 220.
    Caruso, F.; Incerpi, S.; Pedersen, J.; et al. Aromatic Polyphenol π-π Interactions with Superoxide Radicals Contribute to Radical Scavenging and Can Make Polyphenols Mimic Superoxide Dismutase Activity. Curr. Issues Mol. Biol. 2022, 44, 5209–5220. https://doi.org/10.3390/CIMB44110354/.
  • 221.
    Kumar, S.; Saxena, J.; Srivastava, V.K.; et al. The Interplay of Oxidative Stress and ROS Scavenging: Antioxidants as a Therapeutic Potential in Sepsis. Vaccines 2022, 10, 1575. https://doi.org/10.3390/VACCINES10101575.
  • 222.
    Wang, H.; Xu, X.; Chen, R.; et al. Bioinspired Antioxidant Defense System Constructed by Antioxidants-Eluting Electrospun F127-Based Fibers. ACS Appl. Mater. Interfaces 2017, 9, 38313–38322. https://doi.org/10.1021/ACSAMI.7B12395.
  • 223.
    Mukharya, A.; Pokale, R.; Roy, A.A.; et al. Targeting Diabetic and Chronic Wounds Using Topical Nano-Formulations Impregnated with Modern Microbiome-Driven Peptides and Probiotics. J. Drug Deliv. Sci. Technol. 2025, 105, 106590. https://doi.org/10.1016/J.JDDST.2024.106590.
  • 224.
    Alizadeh, A.M.; Mohseni, M.; Gerami, K.; et al. Electrospun Fibers Loaded with Probiotics: Fundamentals, Characterization, and Applications. Probiotics Antimicrob. Proteins 2024, 16, 1099–1116. https://doi.org/10.1007/S12602-023-10174-3.
  • 225.
    Feng, K.; Huangfu, L.; Liu, C.; et al. Electrospinning and Electrospraying: Emerging Techniques for Probiotic Stabilization and Application. Polymers 2023, 15, 2402. https://doi.org/10.3390/POLYM15102402.
  • 226.
    Sun, Q.; Yin, S.; He, Y.; et al. Biomaterials and Encapsulation Techniques for Probiotics: Current Status and Future Prospects in Biomedical Applications. Nanomaterials 2023, 13, 2185. https://doi.org/10.3390/NANO13152185.
  • 227.
    Khan, M.A.; Hussain, Z.; Ali, S.; et al. Fabrication of Electrospun Probiotic Functionalized Nanocomposite Scaffolds for Infection Control and Dermal Burn Healing in a Mice Model. ACS Biomater. Sci. Eng. 2019, 5, 6109–6116. https://doi.org/10.1021/ACSBIOMATERIALS.9B01002.
  • 228.
    Nasseri, S.; Sharifi, M. Therapeutic Potential of Antimicrobial Peptides for Wound Healing. Int. J. Pept. Res. Ther. 2022, 28, 38. https://doi.org/10.1007/S10989-021-10350-5.
  • 229.
    Saravanan, P.; Pooja, R.; Balachander, N.; et al. Anti-Inflammatory and Wound Healing Properties of Lactic Acid Bacteria and Its Peptides. Folia Microbiol. 2023, 68, 337–353. https://doi.org/10.1007/S12223-022-01030-Y.
  • 230.
    Lucian, B.I.; Cheregi, C.D.; Sebastian, H.M.; et al. Electrospun Nanofibers in Wound Healing: Real-World Evaluation of SpincareTM Technology. Bioengineering 2025, 12, 500. https://doi.org/10.3390/BIOENGINEERING12050500.
  • 231.
    Haik, J.; Ullman, Y.; Gur, E.; et al. Advances in the Use of Electrospun Nanofibrous Polymeric Matrix for Dermal Healing at the Donor Site After the Split-Thickness Skin Graft Excision: A Prospective, Randomized, Controlled, Open-Label, Multicenter Study. J. Burn Care Res. 2022, 43, 889–898. https://doi.org/10.1093/JBCR/IRAB216.
  • 232.
    Bagheri, A.; Norouzi, M.R.; Ghasemi-Mobarakeh, L.; et al. Clinical Assessment of Novel Nanofibrous Dressings for Cutaneous Leishmaniasis: A Trial-Based Study. Polym. Adv. Technol. 2024, 35, e6460. https://doi.org/10.1002/PAT.6460.
  • 233.
    Kossovich, L.Y.; Salkovskiy, Y.; Kirillova, I.V. Electrospun Chitosan Nanofiber Materials as Burn Dressing. In Proceedings of the 6th World Congress of Biomechanics (WCB 2010), Singapore, 1–6 August 2010; pp. 1212–1214. https://doi.org/10.1007/978-3-642-14515-5_307.
  • 234.
    Islam, R.; Maparathne, S.; Chinwangso, P.; et al. Review of Shape-Memory Polymer Nanocomposites and Their Applications. Appl. Sci. 2025, 15, 2419. https://doi.org/10.3390/APP15052419.
Share this article:
How to Cite
Riaz, Z.; Fong, Y. X.; Chan, Y. Y.; Lee, T.; Chan, V.; Ninan, N.; Truong, V. K. Therapeutics-Loaded Electrospun Nanofibers: Rational Design and Mechanistic Insights on Managing Chronic Wound Infection. Regenerative Medicine and Dentistry 2025, 2 (2), 9. https://doi.org/10.53941/rmd.2025.100009.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.