- 1.
Nguyen Ngoc, D.; Latalski, M.; Danielewicz, A.; et al. Application of Antimicrobial Peptides (AMPs) in Treatment of Osteomyelitis in Human and Veterinary Orthopedics. J. Funct. Biomater. 2025, 16, 90. https://doi.org/10.3390/JFB16030090.
- 2.
Ansari, M.; Darvishi, A. A Review of the Current State of Natural Biomaterials in Wound Healing Applications. Front. Bioeng. Biotechnol. 2024, 12, 1309541. https://doi.org/10.3389/FBIOE.2024.1309541.
- 3.
Hussein, R.S.; Bin Dayel, S.; Abahussein, O.; El-Sherbiny, A.A. Influences on Skin and Intrinsic Aging: Biological, Environmental, and Therapeutic Insights. J. Cosmet. Dermatol. 2024, 24, e16688. https://doi.org/10.1111/JOCD.16688.
- 4.
Chylińska, N.; Maciejczyk, M. Hyaluronic Acid and Skin: Its Role in Aging and Wound-Healing Processes. Gels 2025, 11, 281. https://doi.org/10.3390/GELS11040281.
- 5.
Xin, H.; Cai, Z.; Hao, J.; et al. Macro/Microgel-Encapsulated, Biofilm-Armored Living Probiotic Platform for Regenerating Bacteria-Infected Diabetic Wounds. Adv. Healthc. Mater. 2025, 14, 2403476. https://doi.org/10.1002/ADHM.202403476.
- 6.
Wang, J.; Ge, X.; Xiang, Y.; et al. An Ionic Liquid Functionalized Sericin Hydrogel for Drug-Resistant Bacteria-Infected Diabetic Wound Healing. Chin. Chem. Lett. 2025, 36, 109819. https://doi.org/10.1016/J.CCLET.2024.109819.
- 7.
Klarak, J.; Brito, A.C.M.; Moreira, L.F.; et al. Using Network Analysis and Large-Language Models to Obtain a Landscape of the Literature on Dressing Materials for Wound Healing: The Predominance of Chitosan and Other Biomacromolecules: A Review. Int. J. Biol. Macromol. 2025, 306, 141565. https://doi.org/10.1016/J.IJBIOMAC.2025.141565.
- 8.
Schilrreff, P.; Alexiev, U. Chronic Inflammation in Non-Healing Skin Wounds and Promising Natural Bioactive Compounds Treatment. Int. J. Mol. Sci. 2022, 23, 4928. https://doi.org/10.3390/IJMS23094928.
- 9.
Lu, Q.; Tang, X.; Tao, B.; et al. Multifunctional Hyaluronic Acid Microneedle Patch Enhances Diabetic Wound Healing in Diabetic Infections. Int. J. Biol. Macromol. 2025, 296, 139685. https://doi.org/10.1016/J.IJBIOMAC.2025.139685.
- 10.
Tamnna Sharma, T.; Mittal, R.; Kaushik, P. Advances in Polymer-Based Scaffolding for Enhanced Wound Healing: A Comprehensive Review. Int. J. Polym. Mater. Polym. Biomater. 2025, 74, 684–702. https://doi.org/10.1080/00914037.2024.2367208.
- 11.
Aminnezhad, S.; Hama, N.H.; Hasan, A.H.; et al. Applications of Biocompatible Polymeric Nanomaterials in Three-Dimensional (3D) Scaffolds: Bacterial Infections and Diabetes. Int. J. Biol. Macromol. 2025, 301, 140331. https://doi.org/10.1016/J.IJBIOMAC.2025.140331.
- 12.
Uberoi, A.; McCready-Vangi, A.; Grice, E.A. The Wound Microbiota: Microbial Mechanisms of Impaired Wound Healing and Infection. Nat. Rev. Microbiol. 2024, 22, 507–521. https://doi.org/10.1038/s41579-024-01035-z.
- 13.
Ray, H.; Weis, C.; Nwaeze, C.; Zhou, V.; et al. Development and Control of Biofilms in Diabetic Foot Infections: A Narrative Review. Acta Microbiol. Hell. 2025, 70, 9. https://doi.org/10.3390/AMH70010009.
- 14.
Li, S.; Lin, B.; Xiong, Y.; et al. Artificial Spidroin Bioelectronic Dressings for Intelligent Wound Management. J. Mater. Chem. C 2024, 12, 12708–12720. https://doi.org/10.1039/D4TC02467B.
- 15.
Blume, S.Y.; Garg, A.; Martí-Mateos, Y.; et al. HypoxyStat, a Small-Molecule Form of Hypoxia Therapy That Increases Oxygen-Hemoglobin Affinity. Cell 2025, 188, 1580–1588.e11. https://doi.org/10.1016/j.cell.2025.01.029.
- 16.
Ntentakis, D.P.; Ntentaki, A.M.; Delavogia, E.; et al. Dissolved Oxygen Technologies as a Novel Strategy for Non-Healing Wounds: A Critical Review. Wound Repair Regen. 2021, 29, 1062–1079. https://doi.org/10.1111/WRR.12972.
- 17.
Gardeazabal, L.; Izeta, A. Elastin and Collagen Fibres in Cutaneous Wound Healing. Exp. Dermatol. 2024, 33, e15052. https://doi.org/10.1111/EXD.15052.
- 18.
Catanzano, O.; Quaglia, F.; Boateng, J.S. Wound Dressings as Growth Factor Delivery Platforms for Chronic Wound Healing. Expert Opin. Drug Deliv. 2021, 18, 737–759. https://doi.org/10.1080/17425247.2021.1867096.
- 19.
Ottaviano, L.; Buoso, S.; Zamboni, R.; et al. Natural Protein Films from Textile Waste for Wound Healing and Wound Dressing Applications. J. Funct. Biomater. 2025, 16, 20. https://doi.org/10.3390/JFB16010020.
- 20.
Saraiva, M.M.; da Silva Campelo, M.; Câmara Neto, J.F.; et al. Alginate/Polyvinyl Alcohol Films for Wound Healing: Advantages and Challenges. J. Biomed. Mater. Res. Part B Appl. Biomater. 2023, 111, 220–233. https://doi.org/10.1002/JBM.B.35146.
- 21.
Gupta, M.N.; Rangaraju, A.; Ambre, P. Sustainable Dressings for Wound Healing. Biotechnol. Sustain. Mater. 2025, 2, 1. https://doi.org/10.1186/S44316-024-00023-W.
- 22.
Borbolla-Jiménez, F.V.; Peña-Corona, S.I.; Farah, S.J.; et al. Films for Wound Healing Fabricated Using a Solvent Casting Technique. Pharmaceutics 2023, 15, 1914. https://doi.org/10.3390/PHARMACEUTICS15071914.
- 23.
Las Heras, K.; Garcia-Orue, I.; Rancan, F.; et al. Modulating the Immune System towards a Functional Chronic Wound Healing: A Biomaterials and Nanomedicine Perspective. Adv. Drug Deliv. Rev. 2024, 210, 115342. https://doi.org/10.1016/J.ADDR.2024.115342.
- 24.
Jonidi Shariatzadeh, F.; Currie, S.; Logsetty, S.; et al. Enhancing Wound Healing and Minimizing Scarring: A Comprehensive Review of Nanofiber Technology in Wound Dressings. Prog. Mater. Sci. 2025, 147, 101350. https://doi.org/10.1016/J.PMATSCI.2024.101350.
- 25.
Jangra, N.; Singla, A.; Puri, V.; et al. Herbal Bioactive-Loaded Biopolymeric Formulations for Wound Healing Applications. RSC Adv. 2025, 15, 12402–12442. https://doi.org/10.1039/D4RA08604J.
- 26.
Hunt, M.; Torres, M.; Bachar-Wikstrom, E.; et al. Cellular and Molecular Roles of Reactive Oxygen Species in Wound Healing. Commun. Biol. 2024, 7, 1534. https://doi.org/10.1038/s42003-024-07219-w.
- 27.
Joorabloo, A.; Liu, T. Recent Advances in Reactive Oxygen Species Scavenging Nanomaterials for Wound Healing. Exploration 2024, 4, 20230066. https://doi.org/10.1002/EXP.20230066.
- 28.
Jiang, Q.; Tang, L.; Xiao, S. Relationship between Ferroptosis and Healing of Diabetic Foot Ulcer: A Prospective Clinical Study. Front. Endocrinol. 2024, 15, 1412373. https://doi.org/10.3389/FENDO.2024.1412373.
- 29.
Sikder, M.M.; Li, X.; Akumwami, S.; et al. Reactive Oxygen Species: Role in Pathophysiology, and Mechanism of Endogenous and Dietary Antioxidants during Oxidative Stress. Chonnam Med. J. 2025, 61, 32. https://doi.org/10.4068/CMJ.2025.61.1.32.
- 30.
Golenia, A.; Olejnik, P. The Role of Oxidative Stress in Ischaemic Stroke and the Influence of Gut Microbiota. Antioxidants 2025, 14, 542. https://doi.org/10.3390/ANTIOX14050542.
- 31.
Ukaegbu, K.; Allen, E.; Svoboda, K.K.H. Reactive Oxygen Species and Antioxidants in Wound Healing: Mechanisms and Therapeutic Potential. Int. Wound J. 2025, 22, e70330. https://doi.org/10.1111/IWJ.70330.
- 32.
Kumar, D.; Pandey, S.; Shiekmydeen, J.; et al. Therapeutic Potential of Microneedle Assisted Drug Delivery for Wound Healing: Current State of the Art, Challenges, and Future Perspective. AAPS PharmSciTech 2025, 26, 25. https://doi.org/10.1208/S12249-024-03017-Z.
- 33.
Bartold, M.; Ivanovski, S. Biological Processes and Factors Involved in Soft and Hard Tissue Healing. Periodontol. 2000 2025, 97, 16–42. https://doi.org/10.1111/PRD.12546.
- 34.
Mohanto, N.; Mondal, H.; Park, Y.J.; et al. Therapeutic Delivery of Oxygen Using Artificial Oxygen Carriers Demonstrates the Possibility of Treating a Wide Range of Diseases. J. Nanobiotechnol. 2025, 23, 25. https://doi.org/10.1186/S12951-024-03060-9.
- 35.
Tong, Q.; Xu, Q.; Cai, J.; et al. Biofilm Formation in Cardiovascular Infection and Bioengineering Approaches for Treatment and Prevention. MedComm-Biomater. Appl. 2025, 4, e70003. https://doi.org/10.1002/MBA2.70003.
- 36.
Alberts, A.; Tudorache, D.I.; Niculescu, A.G.; et al. Advancements in Wound Dressing Materials: Highlighting Recent Progress in Hydrogels, Foams, and Antimicrobial Dressings. Gels 2025, 11, 123. https://doi.org/10.3390/GELS11020123.
- 37.
Wang, C.; Shahriar, S.M.S.; Su, Y.; et al. Versatile Nanomaterials Used in Combatting Biofilm Infections. Nanomedicine 2025, 20, 501–518. https://doi.org/10.1080/17435889.2025.2459049.
- 38.
Yang, D.T. Current Developments, Limitations and Future Directions of CAR T-Cell Therapy. In Proceedings of the International Conference on Modern Medicine and Global Health (ICMMGH 2023), Oxford, UK, 15 April 2023. https://doi.org/10.1117/12.3000298.
- 39.
Liu, A.B.; Tan, B.; Yang, P.; et al. The Role of Inflammatory Response and Metabolic Reprogramming in Sepsis-Associated Acute Kidney Injury: Mechanistic Insights and Therapeutic Potential. Front. Immunol. 2024, 15, 1487576. https://doi.org/10.3389/FIMMU.2024.1487576.
- 40.
Dawi, J.; Tumanyan, K.; Tomas, K.; et al. Diabetic Foot Ulcers: Pathophysiology, Immune Dysregulation, and Emerging Therapeutic Strategies. Biomedicines 2025, 13, 1076. https://doi.org/10.3390/BIOMEDICINES13051076.
- 41.
Raghavan, J.V.; Jhunjhunwala, S. Role of Innate Immune Cells in Chronic Diabetic Wounds. J. Indian Inst. Sci. 2023, 103, 249–271. https://doi.org/10.1007/S41745-022-00355-4.
- 42.
Robertson, S.A.; Moldenhauer, L.M.; Green, E.S.; et al. Immune Determinants of Endometrial Receptivity: A Biological Perspective. Fertil. Steril. 2022, 117, 1107–1120. https://doi.org/10.1016/J.FERTNSTERT.2022.04.023.
- 43.
Dong, R.; Zhang, H.; Guo, B. Emerging Hemostatic Materials for Non-Compressible Hemorrhage Control. Natl. Sci. Rev. 2022, 9, nwac162. https://doi.org/10.1093/NSR/NWAC162.
- 44.
Ghimire, S.; Sarkar, P.; Rigby, K.; et al. Polymeric Materials for Hemostatic Wound Healing. Pharmaceutics 2021, 13, 2127. https://doi.org/10.3390/PHARMACEUTICS13122127.
- 45.
Locatelli, L.; Colciago, A.; Castiglioni, S.; et al. Platelets in Wound Healing: What Happens in Space? Front. Bioeng. Biotechnol. 2021, 9, 716184. https://doi.org/10.3389/FBIOE.2021.716184.
- 46.
Guo, Y.; Wang, M.; Liu, Q.; et al. Recent Advances in the Medical Applications of Hemostatic Materials. Theranostics 2023, 13, 161. https://doi.org/10.7150/THNO.79639.
- 47.
Yang, N.; Venezuela, J.; Almathami, S.; et al. Zinc-Nutrient Element Based Alloys for Absorbable Wound Closure Devices Fabrication: Current Status, Challenges, and Future Prospects. Biomaterials 2022, 280, 121301. https://doi.org/10.1016/J.BIOMATERIALS.2021.121301.
- 48.
Napolitano, A.; Chool Boo, Y. Ascorbic Acid (Vitamin C) as a Cosmeceutical to Increase Dermal Collagen for Skin Antiaging Purposes: Emerging Combination Therapies. Antioxidants 2022, 11, 1663. https://doi.org/10.3390/ANTIOX11091663.
- 49.
Vivcharenko, V.; Przekora, A. Modifications of Wound Dressings with Bioactive Agents to Achieve Improved Pro-Healing Properties. Appl. Sci. 2021, 11, 4114. https://doi.org/10.3390/APP11094114.
- 50.
Ballouze, R.; Marahat, M.H.; Mohamad, S.; et al. Biocompatible Magnesium-Doped Biphasic Calcium Phosphate for Bone Regeneration. J. Biomed. Mater. Res. Part B Appl. Biomater. 2021, 109, 1426–1435. https://doi.org/10.1002/JBM.B.34802.
- 51.
Chelmu Voda, C.; Stefanopol, I.A.; Gurau, G.; et al. Update on the Study of Angiogenesis in Surgical Wounds in Patients with Childhood Obesity. Biomedicines 2025, 13, 375. https://doi.org/10.3390/BIOMEDICINES13020375.
- 52.
Vaidyanathan, L. Growth Factors in Wound Healing-A Review. Biomed. Pharmacol. J. 2021, 14, 1469–1480. https://doi.org/10.13005/bpj/2249.
- 53.
Azmir, M.S.N.A.; Moni, M.N.; Gobetti, A.; et al. Advances in Modulating Mechanical Properties of Gelatin-Based Hydrogel in Tissue Engineering. Int. J. Polym. Mater. Polym. Biomater. 2024, 74, 215–250. https://doi.org/10.1080/00914037.2024.2330420.
- 54.
Su, J.; Liu, C.; Sun, A.; et al. Hemostatic and Antimicrobial Properties of Chitosan-Based Wound Healing Dressings: A Review. Int. J. Biol. Macromol. 2025, 306, 141570. https://doi.org/10.1016/J.IJBIOMAC.2025.141570.
- 55.
Gudur, A.S.; Gode, S.S.; Malpure, M.S.; et al. A Comprehensive Review on Transdermal Systems for Enhanced Wound Healing. Asian J. Pharm. Res. 2025, 15, 87–93. https://doi.org/10.52711/2231-5691.2025.00015.
- 56.
Gobi, R.; Babu, R.S. In-Vitro Investigation of Chitosan/Polyvinyl Alcohol/TiO2 Composite Membranes for Wound Regeneration. Biochem. Biophys. Res. Commun. 2025, 742, 151129. https://doi.org/10.1016/J.BBRC.2024.151129.
- 57.
DSouza, A.A.; Amiji, M.M. Dual-Polymer Carboxymethyl Cellulose and Poly(Ethylene Oxide)-Based Gels for the Prevention of Postsurgical Adhesions. J. Biomed. Mater. Res. Part A 2025, 113, e37852. https://doi.org/10.1002/JBM.A.37852.
- 58.
Chen, M.; Liu, J.; Lin, J.; et al. Progress in Polysaccharide-Based Hydrogels for Preventing Postoperative Adhesions: A Review. Gels 2025, 11, 188. https://doi.org/10.3390/GELS11030188.
- 59.
Brouki Milan, P.; Masoumi, F.; Biazar, E.; et al. Exploiting the Potential of Decellularized Extracellular Matrix (ECM) in Tissue Engineering: A Review Study. Macromol. Biosci. 2024, 25, 2400322. https://doi.org/10.1002/MABI.202400322.
- 60.
Liu, J.; Song, Q.; Yin, W.; et al. Bioactive Scaffolds for Tissue Engineering: A Review of Decellularized Extracellular Matrix Applications and Innovations. Exploration 2024, 5, 20230078. https://doi.org/10.1002/EXP.20230078.
- 61.
Debnath, S.; Agrawal, A.; Jain, N.; et al. Collagen as a Bio-Ink for 3D Printing: A Critical Review. J. Mater. Chem. B 2025, 13, 1890–1919. https://doi.org/10.1039/D4TB01060D.
- 62.
Luo, P.; Huang, R.; Wu, Y.; et al. Tailoring the Multiscale Mechanics of Tunable Decellularized Extracellular Matrix (DECM) for Wound Healing through Immunomodulation. Bioact. Mater. 2023, 28, 95–111. https://doi.org/10.1016/J.BIOACTMAT.2023.05.011.
- 63.
Chen, W.; Chen, M.; Chen, S.; et al. Decellularization of Fish Tissues for Tissue Engineering and Regenerative Medicine Applications. Regen. Biomater. 2025, 12, rbae138. https://doi.org/10.1093/RB/RBAE138.
- 64.
Wang, J.; Chen, X.; Li, R.; et al. Standardization and Consensus in the Development and Application of Bone Organoids. Theranostics 2025, 15, 682. https://doi.org/10.7150/THNO.105840.
- 65.
Hoang, V.T.; Nguyen, Q.T.; Phan, T.T.K.; et al. Tissue Engineering and Regenerative Medicine: Perspectives and Challenges. MedComm 2025, 6, e70192. https://doi.org/10.1002/MCO2.70192.
- 66.
Pourjabbar, B.; Biazar, E.; Heidari Keshel, S.; et al. Bio-Polymeric Hydrogels for Regeneration of Corneal Epithelial Tissue*. Int. J. Polym. Mater. Polym. Biomater. 2022, 71, 797–815. https://doi.org/10.1080/00914037.2021.1909586.
- 67.
Bagheri, L.; Jafari-Gharabaghlou, D.; Dashti, M.R.; et al. An Update on Implication of POSS-Based Nanocomposites in Bone Tissue Engineering: A Review. J. Biomater. Sci. Polym. Ed. 2025, 1–24. https://doi.org/10.1080/09205063.2025.2455234.
- 68.
Radmanesh, S.; Shabangiz, S.; Koupaei, N.; et al. 3D Printed Bio Polymeric Materials as a New Perspective for Wound Dressing and Skin Tissue Engineering Applications: A Review. J. Polym. Res. 2022, 29, 50. https://doi.org/10.1007/S10965-022-02899-6.
- 69.
Wu, D.T.; Munguia-Lopez, J.G.; Cho, Y.W.; et al. Polymeric Scaffolds for Dental, Oral, and Craniofacial Regenerative Medicine. Molecules 2021, 26, 7043. https://doi.org/10.3390/MOLECULES26227043.
- 70.
Chen, X.; Sun, Z.; Peng, X.; et al. Graphene Oxide/Black Phosphorus Functionalized Collagen Scaffolds with Enhanced Near-Infrared Controlled In Situ Biomineralization for Promoting Infectious Bone Defect Repair through PI3K/Akt Pathway. ACS Appl. Mater. Interfaces 2024, 16, 50369–50388. https://doi.org/10.1021/ACSAMI.4C10284.
- 71.
Riaz, Z.; Baddi, S.; Gao, F.; et al. Gallic Acid-Doped Multifunctional Hybrid Hydrogel for Antioxidant and Antibacterial Studies. Eur. Polym. J. 2024, 206, 112778. https://doi.org/10.1016/J.EURPOLYMJ.2024.112778.
- 72.
Palmese, L.L.; Thapa, R.K.; Sullivan, M.O.; et al. Supramolecular Co-Assembled Hybrid Hydrogels for Antibacterial Therapy. Supramol. Mater. 2019, 3, 143–157. https://doi.org/10.1016/J.COCHE.2019.02.010.
- 73.
Zhang, X.; Qin, M.; Xu, M.; et al. The Fabrication of Antibacterial Hydrogels for Wound Healing. Eur. Polym. J. 2021, 146, 110268. https://doi.org/10.1016/J.EURPOLYMJ.2021.110268.
- 74.
Liang, Y.; He, J.; Guo, B. Functional Hydrogels as Wound Dressing to Enhance Wound Healing. ACS Nano 2021, 15, 12687–12722. https://doi.org/10.1021/ACSNANO.1C04206.
- 75.
Riaz, Z.; Baddi, S.; Gao, F.; et al. Supramolecular Polymer Co-Assembled Multifunctional Chiral Hybrid Hydrogels with Adhesive, Self-Healing and Antibacterial Properties. Gels 2024, 10, 489. https://doi.org/10.3390/gels10080489.
- 76.
Riaz, Z.; Baddi, S.; Gao, F.; et al. Mxene‐Based Supramolecular Composite Hydrogels for Antioxidant and Photothermal Antibacterial Activities. Macromol. Biosci. 2023, 23, 2300082. https://doi.org/10.1002/mabi.202300082.
- 77.
Alsakhawy, M.A.; Abdelmonsif, D.A.; Haroun, M.; et al. Naringin-Loaded Arabic Gum/Pectin Hydrogel as a Potential Wound Healing Material. Int. J. Biol. Macromol. 2022, 222, 701–714. https://doi.org/10.1016/J.IJBIOMAC.2022.09.200.
- 78.
Ding, Y.; Zong, Q.; Zhang, Q.; et al. Gum Arabic Based Multifunctional Antibacterial Adhesion Hydrogel Dressings Loaded with Doxycycline Hydrochloride for Wound Healing. Int. J. Biol. Macromol. 2025, 306, 141284. https://doi.org/10.1016/J.IJBIOMAC.2025.141284.
- 79.
Karimzadeh, F.; Soltani Fard, E.; Nadi, A.; et al. Advances in Skin Gene Therapy: Utilizing Innovative Dressing Scaffolds for Wound Healing, a Comprehensive Review. J. Mater. Chem. B 2024, 12, 6033–6062. https://doi.org/10.1039/D4TB00966E.
- 80.
Sarvari, R.; Nouri, M.; Agbolaghi, S.; et al. A Summary on Non-Viral Systems for Gene Delivery Based on Natural and Synthetic Polymers. Int. J. Polym. Mater. Polym. Biomater. 2022, 71, 246–265. https://doi.org/10.1080/00914037.2020.1825081.
- 81.
Ali, M.; Ullah, S.; Ullah, S.; et al. Innovative Biopolymers Composite Based Thin Film for Wound Healing Applications. Sci. Rep. 2024, 14, 27415. https://doi.org/10.1038/S41598-024-79121-8.
- 82.
Xu, Y.; Yao, Y.; Gao, J. Cell-Derived Matrix: Production, Decellularization, and Application of Wound Repair. Stem Cells Int. 2024, 2024, 7398473. https://doi.org/10.1155/2024/7398473.
- 83.
Zhang, Y.; Zhang, C.; Li, Y.; et al. Evolution of Biomimetic ECM Scaffolds from Decellularized Tissue Matrix for Tissue Engineering: A Comprehensive Review. Int. J. Biol. Macromol. 2023, 246, 125672. https://doi.org/10.1016/J.IJBIOMAC.2023.125672.
- 84.
Rosadas, M.; Silva, I.V.; Costa, J.B.; et al. Decellularized Dermal Matrices: Unleashing the Potential in Tissue Engineering and Regenerative Medicine. Front. Mater. 2023, 10, 1285948. https://doi.org/10.3389/FMATS.2023.1285948.
- 85.
Xiao, H.; Chen, X.; Liu, X.; et al. Recent Advances in Decellularized Biomaterials for Wound Healing. Mater. Today Bio 2023, 19, 100589. https://doi.org/10.1016/J.MTBIO.2023.100589.
- 86.
Solarte David, V.A.; Güiza-Argüello, V.R.; Arango-Rodríguez, M.L.; et al. Decellularized Tissues for Wound Healing: Towards Closing the Gap Between Scaffold Design and Effective Extracellular Matrix Remodeling. Front. Bioeng. Biotechnol. 2022, 10, 821852. https://doi.org/10.3389/FBIOE.2022.821852.
- 87.
Reddy, M.S.B.; Ponnamma, D.; Choudhary, R.; et al. A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds. Polymers 2021, 13, 1105. https://doi.org/10.3390/POLYM13071105.
- 88.
Echeverria Molina, M.I.; Malollari, K.G.; Komvopoulos, K. Design Challenges in Polymeric Scaffolds for Tissue Engineering. Front. Bioeng. Biotechnol. 2021, 9, 617141. https://doi.org/10.3389/FBIOE.2021.617141.
- 89.
Singaravelu, S.; Abrahamse, H.; Dhilip Kumar, S.S. Three-Dimensional Bio-Derived Materials for Biomedical Applications: Challenges and Opportunities. RSC Adv. 2025, 15, 9375–9397. https://doi.org/10.1039/D4RA07531E.
- 90.
Sadeghianmaryan, A.; Ahmadian, N.; Wheatley, S.; et al. Advancements in 3D-Printable Polysaccharides, Proteins, and Synthetic Polymers for Wound Dressing and Skin Scaffolding—A Review. Int. J. Biol. Macromol. 2024, 266, 131207. https://doi.org/10.1016/J.IJBIOMAC.2024.131207.
- 91.
Olteanu, G.; Neacșu, S.M.; Joița, F.A.; et al. Advancements in Regenerative Hydrogels in Skin Wound Treatment: A Comprehensive Review. Int. J. Mol. Sci. 2024, 25, 3849. https://doi.org/10.3390/IJMS25073849.
- 92.
Xu, Y.; Hu, Q.; Wei, Z.; et al. Advanced Polymer Hydrogels That Promote Diabetic Ulcer Healing: Mechanisms, Classifications, and Medical Applications. Biomater. Res. 2023, 27, 36. https://doi.org/10.1186/S40824-023-00379-6.
- 93.
Pirsa, S.; Khodaei, S.M.; Karimi Sani, I.; et al. Hydrogels and Biohydrogels: Investigation of Origin of Production, Production Methods, and Application. Polym. Bull. 2022, 80, 10593–10632. https://doi.org/10.1007/S00289-022-04580-W.
- 94.
Zhou, Y.; Wang, M.; Yan, C.; et al. Advances in the Application of Electrospun Drug-Loaded Nanofibers in the Treatment of Oral Ulcers. Biomolecules 2022, 12, 1254. https://doi.org/10.3390/BIOM12091254.
- 95.
Mahdian, M.; Tabatabai, T.S.; Abpeikar, Z.; et al. Nerve Regeneration Using Decellularized Tissues: Challenges and Opportunities. Front. Neurosci. 2023, 17, 1295563. https://doi.org/10.3389/FNINS.2023.1295563/XML/NLM.
- 96.
Zheng, Z.; Zhang, H.; Yang, J.; et al. Recent Advances in Structural and Functional Design of Electrospun Nanofibers for Wound Healing. J. Mater. Chem. B 2025, 13, 5226–5263. https://doi.org/10.1039/D4TB02718C.
- 97.
Palani, N.; Vijayakumar, P.; Monisha, P.; et al. Electrospun Nanofibers Synthesized from Polymers Incorporated with Bioactive Compounds for Wound Healing. J. Nanobiotechnol. 2024, 22, 211. https://doi.org/10.1186/S12951-024-02491-8.
- 98.
Liu, Q.; Luo, S.; Peng, J.; et al. Electrospun Nanofibers from Plant Natural Products: A New Approach Toward Efficient Wound Healing. Int. J. Nanomed. 2024, 19, 13973–13990. https://doi.org/10.2147/IJN.S501970.
- 99.
Homaeigohar, S.; Boccaccini, A.R. Nature-Derived and Synthetic Additives to Poly(ɛ-Caprolactone) Nanofibrous Systems for Biomedicine; an Updated Overview. Front. Chem. 2022, 9, 809676. https://doi.org/10.3389/FCHEM.2021.809676
- 100.
Ahmadian, E.; Eftekhari, A.; Janas, D.; et al. Nanofiber Scaffolds Based on Extracellular Matrix for Articular Cartilage Engineering: A Perspective. Nanotheranostics 2023, 7, 61. https://doi.org/10.7150/NTNO.78611.
- 101.
Huang, T.; Zeng, Y.E.; Li, C.; et al. Application and Development of Electrospun Nanofiber Scaffolds for Bone Tissue Engineering. ACS Biomater. Sci. Eng. 2024, 10, 4114–4144. https://doi.org/10.1021/ACSBIOMATERIALS.4C00028.
- 102.
Siafaka, P.I.; Özcan Bülbül, E.; Miliotou, A.N.; et al. Delivering Active Molecules to the Eye; the Concept of Electrospinning as Potent Tool for Drug Delivery Systems. J. Drug Deliv. Sci. Technol. 2023, 84, 104565. https://doi.org/10.1016/J.JDDST.2023.104565.
- 103.
Dai, X.; Nie, W.; Shen, H.; et al. Electrospinning Based Biomaterials for Biomimetic Fabrication, Bioactive Protein Delivery and Wound Regenerative Repair. Regen. Biomater. 2025, 12, rbae139. https://doi.org/10.1093/RB/RBAE139.
- 104.
Aazmi, A.; Zhang, D.; Mazzaglia, C.; et al. Biofabrication Methods for Reconstructing Extracellular Matrix Mimetics. Bioact. Mater. 2024, 31, 475–496. https://doi.org/10.1016/J.BIOACTMAT.2023.08.018.
- 105.
Gao, N.; Yu, J.; Chen, S.; et al. Interfacial Polymerization for Controllable Fabrication of Nanostructured Conducting Polymers and Their Composites. Synth. Met. 2021, 273, 116693. https://doi.org/10.1016/J.SYNTHMET.2020.116693.
- 106.
Chamanehpour, E.; Thouti, S.; Rubahn, H.G.; et al. Smart Nanofibers: Synthesis, Properties, and Scopes in Future Advanced Technologies. Adv. Mater. Technol. 2024, 9, 2301392. https://doi.org/10.1002/ADMT.202301392.
- 107.
Zhang, Y.; Zheng, Z.; Zhu, S.; et al. Electroactive Electrospun Nanofibrous Scaffolds: Innovative Approaches for Improved Skin Wound Healing. Adv. Sci. 2025, 12, 2416267. https://doi.org/10.1002/ADVS.202416267.
- 108.
Kitana, W.; Apsite, I.; Ionov, L. 3D (Bio) Printing Combined Fiber Fabrication Methods for Tissue Engineering Applications: Possibilities and Limitations. Adv. Funct. Mater. 2025, 2500450. https://doi.org/10.1002/ADFM.202500450.
- 109.
Shehata, N.; Nair, R. Different Characterizations and Recent Applications of Piezoelectric Nanofibers. In Energy Harvesting Properties of Electrospun Nanofibers, 2nd ed.; IOP Publishing Ltd.: Bristol, UK, 2025; pp. 4.1–4.35. https://doi.org/10.1088/978-0-7503-5487-5CH4.
- 110.
Datta, D.; Bandi, S.P.; Colaco, V.; et al. Cellulose-Based Nanofibers Infused with Biotherapeutics for Enhanced Wound-Healing Applications. ACS Polym. Au 2025, 5, 80–104. https://doi.org/10.1021/ACSPOLYMERSAU.4C00092.
- 111.
Liu, R.; Hou, L.; Yue, G.; et al. Progress of Fabrication and Applications of Electrospun Hierarchically Porous Nanofibers. Adv. Fiber Mater. 2022, 4, 604–630. https://doi.org/10.1007/S42765-022-00132-Z.
- 112.
Chen, Y.; Dong, X.; Shafiq, M.; et al. Recent Advancements on Three-Dimensional Electrospun Nanofiber Scaffolds for Tissue Engineering. Adv. Fiber Mater. 2022, 4, 959–986. https://doi.org/10.1007/S42765-022-00170-7.
- 113.
Zeinali, R.; Del Valle, L.J.; Torras, J.; et al. Recent Progress on Biodegradable Tissue Engineering Scaffolds Prepared by Thermally-Induced Phase Separation (TIPS). Int. J. Mol. Sci. 2021, 22, 3504. https://doi.org/10.3390/IJMS22073504.
- 114.
Shenoy, D.; Chivukula, S.; Erdogan, N.; et al. Self-Assembled Peptide-Based Nanofibers for Cardiovascular Tissue Regeneration. J. Mater. Chem. B 2025, 13, 844–857. https://doi.org/10.1039/D4TB01235F.
- 115.
Zhang, J.; Chang, R.; Li, S.; et al. Peptide-Coordination Self-Assembly: Supramolecular Design and Biomedical Applications. Colloids Surf. A Physicochem. Eng. Asp. 2024, 693, 134076. https://doi.org/10.1016/J.COLSURFA.2024.134076.
- 116.
Aslam Khan, M.U.; Aslam, M.A.; Bin Abdullah, M.F.; et al. Current Perspectives of Protein in Bone Tissue Engineering: Bone Structure, Ideal Scaffolds, Fabrication Techniques, Applications, Scopes, and Future Advances. ACS Appl. Bio Mater. 2024, 7, 5082–5106. https://doi.org/10.1021/ACSABM.4C00362.
- 117.
Kuang, G.; Lin, X.; Li, J.; et al. Electrospun Nanofibers-Derived Functional Scaffolds for Cancer Therapy. Chem. Eng. J. 2024, 489, 151253. https://doi.org/10.1016/J.CEJ.2024.151253.
- 118.
Jiang, X.; Zeng, Y.E.; Li, C.; et al. Enhancing Diabetic Wound Healing: Advances in Electrospun Scaffolds from Pathogenesis to Therapeutic Applications. Front. Bioeng. Biotechnol. 2024, 12, 1354286. https://doi.org/10.3389/FBIOE.2024.1354286.
- 119.
Eslahi, N.; Soleimani, F.; Lotfi, R.; et al. How Biomimetic Nanofibers Advance the Realm of Cutaneous Wound Management: The State-of-the-Art and Future Prospects. Prog. Mater. Sci. 2024, 145, 101293. https://doi.org/10.1016/J.PMATSCI.2024.101293.
- 120.
Dong, Y.; Fu, S.; Yu, J.; et al. Emerging Smart Micro/Nanofiber-Based Materials for Next-Generation Wound Dressings. Adv. Funct. Mater. 2024, 34, 2311199. https://doi.org/10.1002/ADFM.202311199.
- 121.
Liu, X.; Xu, H.; Zhang, M.; et al. Electrospun Medicated Nanofibers for Wound Healing: Review. Membranes 2021, 11, 770. https://doi.org/10.3390/MEMBRANES11100770.
- 122.
Gao, C.; Zhang, L.; Wang, J.; et al. Electrospun Nanofibers Promote Wound Healing: Theories, Techniques, and Perspectives. J. Mater. Chem. B 2021, 9, 3106–3130. https://doi.org/10.1039/D1TB00067E.
- 123.
Liu, Y.; Li, C.; Feng, Z.; et al. Advances in the Preparation of Nanofiber Dressings by Electrospinning for Promoting Diabetic Wound Healing. Biomolecules 2022, 12, 1727. https://doi.org/10.3390/BIOM12121727.
- 124.
CeCe, R.; Jining, L.; Islam, M.; et al. An Overview of the Electrospinning of Polymeric Nanofibers for Biomedical Applications Related to Drug Delivery. Adv. Eng. Mater. 2024, 26, 2301297. https://doi.org/10.1002/ADEM.202301297.
- 125.
Ji, D.; Lin, Y.; Guo, X.; et al. Electrospinning of Nanofibres. Nat. Rev. Methods Primers 2024, 4, 1. https://doi.org/10.1038/s43586-023-00278-z.
- 126.
Zheng, Q.; Xi, Y.; Weng, Y. Functional Electrospun Nanofibers: Fabrication, Properties, and Applications in Wound-Healing Process. RSC Adv. 2024, 14, 3359–3378. https://doi.org/10.1039/D3RA07075A.
- 127.
Hosseini Ravandi, S.A.; Sadrjahani, M.; Valipouri, A.; et al. Recently Developed Electrospinning Methods: A Review. Text. Res. J. 2022, 92, 5130–5145. https://doi.org/10.1177/00405175211069880.
- 128.
Liyanage, A.A.H. Design and Optimization: Multi-Needle Electrospun Mwcnts/Epoxy Nanofiber Scaffolds for High Volume Production to Enhance Physical and Mechanical Properties of CFRP. Master’s Thesis, Purdue University Graduate School, West Lafayette, IN, USA, 2021. https://doi.org/10.25394/PGS.17139095.V1.
- 129.
Liu, J.; Dong, S.; Liu, Y.; et al. Fluid and Electric Field Simulation and Optimization of the Multi-Vane and Multi-Slit Electrospinning Nozzle. Nanomaterials 2025, 15, 461. https://doi.org/10.3390/NANO15060461.
- 130.
Hanna Sofia, S. H. Simulation And Experimental Study of Multi-Nozzle Arrangements on Electrospun Jets and Their Resultant Nanofibrous Properties. Ph.D. Thesis, Universiti Malaya, Kuala Lumpur, Malaysia, 2024.
- 131.
Alli, Y.A.; Bamisaye, A.; Onawole, A.T.; et al. coaxial electrospinning: design, characterization, mechanistic insights and their emerging applications in solar cells. Nano Energy 2024, 131, 110203. https://doi.org/10.1016/J.NANOEN.2024.110203.
- 132.
Weng, J.; Zou, Y.; Zhang, Y.; et al. Stable Encapsulation of Camellia Oil in Core–Shell Zein Nanofibers Fabricated by Emulsion Electrospinning. Food Chem. 2023, 429, 136860. https://doi.org/10.1016/J.FOODCHEM.2023.136860.
- 133.
Bullon, J.; Marquez, R.; Zambrano, F.; et al. Unique Fiber Morphologies from Emulsion Electrospinning—A Case Study of Poly(ε-Caprolactone) and Its Applications. Colloids Interfaces 2023, 7, 19. https://doi.org/10.3390/COLLOIDS7010019.
- 134.
Thillaipandian, H.; Pitchaimuthu, P.; Chandrasekaran, D.; et al. Recent Developments in Electrospinning Spinneret and Collector Assembly for Biomedical Applications. Adv. Polym. Sci. 2023, 291, 1–21. https://doi.org/10.1007/12_2022_134.
- 135.
Cassella, E.J.; Spooner, E.L.K.; Thornber, T.; et al. Gas-Assisted Spray Coating of Perovskite Solar Cells Incorporating Sprayed Self-Assembled Monolayers. Adv. Sci. 2022, 9, 2104848. https://doi.org/10.1002/ADVS.202104848.
- 136.
Dzierzkowska, E.; Scisłowska-Czarnecka, A.; Kudzin, M.; et al. Effects of Process Parameters on Structure and Properties of Melt-Blown Poly(Lactic Acid) Nonwovens for Skin Regeneration. J. Funct. Biomater. 2021, 12, 16. https://doi.org/10.3390/JFB12010016.
- 137.
Mowafi, S.; El-Sayed, H. Production and Utilization of Keratin and Sericin-Based Electro-Spun Nanofibers: A Comprehensive Review. J. Nat. Fibers 2023, 20, 2192544. https://doi.org/10.1080/15440478.2023.2192544.
- 138.
Keirouz, A.; Wang, Z.; Reddy, V.S.; et al. The History of Electrospinning: Past, Present, and Future Developments. Adv. Mater. Technol. 2023, 8, 2201723. https://doi.org/10.1002/ADMT.202201723.
- 139.
Bahú, J.O.; de Andrade, L.R.M.; Crivellin, S.; et al. Rotary Jet Spinning (RJS): A Key Process to Produce Biopolymeric Wound Dressings. Pharmaceutics 2022, 14, 2500. https://doi.org/10.3390/PHARMACEUTICS14112500.
- 140.
Nadaf, A.; Gupta, A.; Hasan, N.; et al. Recent Update on Electrospinning and Electrospun Nanofibers: Current Trends and Their Applications. RSC Adv. 2022, 12, 23808–23828. https://doi.org/10.1039/D2RA02864F.
- 141.
Jayadevan, S.; Aliyana, A.K.; Stylios, G. An Overview of Advances and Challenges in Developing Nanofiber Yarns for Wearable Technology. Nano Energy 2024, 129, 110034. https://doi.org/10.1016/J.NANOEN.2024.110034.
- 142.
Rupp, H.; Binder, W.H. 3D Printing of Solvent-Free Supramolecular Polymers. Front. Chem. 2021, 9, 771974. https://doi.org/10.3389/FCHEM.2021.771974.
- 143.
Avossa, J.; Herwig, G.; Toncelli, C.; et al. Electrospinning Based on Benign Solvents: Current Definitions, Implications and Strategies. Green Chem. 2022, 24, 2347–2375. https://doi.org/10.1039/D1GC04252A.
- 144.
Bachs-Herrera, A.; Yousefzade, O.; Del Valle, L.J.; et al. Melt Electrospinning of Polymers: Blends, Nanocomposites, Additives and Applications. Appl. Sci. 2021, 11, 1808. https://doi.org/10.3390/APP11041808.
- 145.
Wang, Z.; Zhao, X.; Chen, Y.; et al. A Review of Designable Deep Eutectic Solvents for Green Fabrication of Advanced Functional Materials. RSC Sustain. 2025, 3, 738–756. https://doi.org/10.1039/D4SU00560K.
- 146.
Machado, N.D.; Mosquera, J.E.; Martini, R.E.; et al. Supercritical CO2-Assisted Impregnation/Deposition of Polymeric Materials with Pharmaceutical, Nutraceutical, and Biomedical Applications: A Review (2015–2021). J. Supercrit. Fluids 2022, 191, 105763. https://doi.org/10.1016/J.SUPFLU.2022.105763.
- 147.
Gavande, V.; Shaikh, V.; Lee, W.-K. Green Electrospun Polymer Nanofibers: Preparation, Challenges, and Applications. In Sustainable Green Nanomaterials; Apple Academic Press: Palm Bay, FL, USA, 2024; pp. 3–28. https://doi.org/10.1201/9781003501572-2.
- 148.
Kotrotsos, A. An Innovative Synergy between Solution Electrospinning Process Technique and Self-Healing of Materials. A Critical Review. Polym. Eng. Sci. 2021, 61, 5–21. https://doi.org/10.1002/PEN.25559.
- 149.
Nur, M.G.; Rahman, M.; Dip, T.M.; et al. Recent Advances in Bioactive Wound Dressings. Wound Repair Regen. 2024, 33, e13233. https://doi.org/10.1111/WRR.13233.
- 150.
Rezvani Ghomi, E.; Khosravi, F.; Neisiany, R.E.; et al. Advances in Electrospinning of Aligned Nanofiber Scaffolds Used for Wound Dressings. Curr. Opin. Biomed. Eng. 2022, 22, 100393. https://doi.org/10.1016/J.COBME.2022.100393.
- 151.
Wang, D.H.; Su, J.; Liu, Y.M.; et al. Recent Advances in Electrospun Magnetic Nanofibers and Their Applications. J. Mater. Chem. C 2022, 10, 4072–4095. https://doi.org/10.1039/D2TC00107A.
- 152.
Zhu, S.; Meng, X.; Yan, X.; et al. Evidence for Bicomponent Fibers: A Review. E-Polymers 2021, 21, 636–653. https://doi.org/10.1515/EPOLY-2021-0067.
- 153.
Zannini Luz, H.; dos Santos, L.A.L. Centrifugal Spinning for Biomedical Use: A Review. Crit. Rev. Solid State Mater. Sci. 2023, 48, 519–534. https://doi.org/10.1080/10408436.2022.2080640.
- 154.
Marjuban, S.M.H.; Rahman, M.; Duza, S.S.; et al. Recent Advances in Centrifugal Spinning and Their Applications in Tissue Engineering. Polymers 2023, 15, 1253. https://doi.org/10.3390/POLYM15051253.
- 155.
Bassam, A.; Du, M.; Li, Y.; et al. Engineering in NIR-Responsive Photothermal Materials and Their Application in Wound Healing Administration. Responsive Mater. 2025, 3, e20240031. https://doi.org/10.1002/RPM.20240031.
- 156.
Kukhta, N.A.; Marks, A.; Luscombe, C.K. Molecular Design Strategies toward Improvement of Charge Injection and Ionic Conduction in Organic Mixed Ionic-Electronic Conductors for Organic Electrochemical Transistors. Chem. Rev. 2022, 122, 4325–4355. https://doi.org/10.1021/ACS.CHEMREV.1C00266.
- 157.
Nazemi, M.M.; Khodabandeh, A.; Hadjizadeh, A. Near-Field Electrospinning: Crucial Parameters, Challenges, and Applications. ACS Appl. Bio Mater. 2022, 5, 394–412. https://doi.org/10.1021/ACSABM.1C00944.
- 158.
Dharmaraj, D.; Chavan, N.; Likhitha, U.; et al. Electrospun Nanofibers for Dermatological Delivery. J. Drug Deliv. Sci. Technol. 2024, 99, 105981. https://doi.org/10.1016/J.JDDST.2024.105981.
- 159.
Zhao, J.; Chen, L.; Ma, A.; et al. Recent Advances in Coaxial Electrospun Nanofibers for Wound Healing. Mater. Today Bio 2024, 29, 101309. https://doi.org/10.1016/J.MTBIO.2024.101309.
- 160.
Othman, H.; Awad, E.A.; Zaher, S.A.; et al. Electrospinning Process Parameters and Application: A Review. J. Text. Color. Polym. Sci. 2025, 22, 59–66. https://doi.org/10.21608/JTCPS.2024.259004.1268.
- 161.
Ahmadi Bonakdar, M.; Rodrigue, D. Electrospinning: Processes, Structures, and Materials. Macromol 2024, 4, 58–103. https://doi.org/10.3390/MACROMOL4010004.
- 162.
Karmakar, S.; Manna, S.; Jana, S. Nanofiber Technology in Biomedical Applications. In Advances in Pharmaceutical Technology for Drug Delivery Systems (PTDDS); Apple Academic Press: Palm Bay, FL, USA, 2025; pp. 245–271. https://doi.org/10.1201/9781003592679-8.
- 163.
Yessuf, A.M.; Bahri, M.; Kassa, T.S.; et al. Electrospun Polymeric Nanofibers: Current Trends in Synthesis, Surface Modification, and Biomedical Applications. ACS Appl. Bio Mater. 2024, 7, 4231–4253. https://doi.org/10.1021/ACSABM.4C00307.
- 164.
Patel, P.R.; Gundloori, R.V.N. A Review on Electrospun Nanofibers for Multiple Biomedical Applications. Polym. Adv. Technol. 2023, 34, 44–63. https://doi.org/10.1002/PAT.5896.
- 165.
Venmathi Maran, B.A.; Jeyachandran, S.; Kimura, M. A Review on the Electrospinning of Polymer Nanofibers and Its Biomedical Applications. J. Compos. Sci. 2024, 8, 32. https://doi.org/10.3390/JCS8010032.
- 166.
Hoskins, J.N.; Grayson, S.M. Synthesis and Degradation Behavior of Cyclic Poly(ε-Caprolactone). Macromolecules 2009, 42, 6406–6413. https://doi.org/10.1021/MA9011076.
- 167.
Polonio-Alcalá, E.; Casanova-Batlle, E.; Puig, T.; et al. The Solvent Chosen for the Manufacturing of Electrospun Polycaprolactone Scaffolds Influences Cell Behavior of Lung Cancer Cells. Sci. Rep. 2022, 12, 19440. https://doi.org/10.1038/S41598-022-23655-2.
- 168.
Oztemur, J.; Yalcin-Enis, I. Development of Biodegradable Webs of PLA/PCL Blends Prepared via Electrospinning: Morphological, Chemical, and Thermal Characterization. J. Biomed. Mater. Res.-Part B Appl. Biomater. 2021, 109, 1844–1856. https://doi.org/10.1002/JBM.B.34846.
- 169.
Oztemur, J.; Yalcin-Enis, I. Morphological Analysis of Fibrous Webs Electrospun from Polycaprolactone, Polylactic Acid and Their Blends in Chloroform Based Solvent Systems. Mater. Today Proc. 2021, 46, 2161–2166. https://doi.org/10.1016/J.MATPR.2021.02.638.
- 170.
Stricher, M.; Sarde, C.O.; Guénin, E.; et al. Cellulosic/Polyvinyl Alcohol Composite Hydrogel: Synthesis, Characterization and Applications in Tissue Engineering. Polymers 2021, 13, 3598. https://doi.org/10.3390/POLYM13203598/S1.
- 171.
Hosseini, F.S.; Laurencin, C.T. Advanced Electrospun Nanofibrous Stem Cell Niche for Bone Regenerative Engineering. Regen. Eng. Transl. Med. 2023, 9, 165–180. https://doi.org/10.1007/S40883-022-00274-X.
- 172.
Shen, W.; Ao, F.; Ge, X.; et al. Effects of Solvents on Electrospun Fibers and the Biological Application of Different Hydrophilic Electrospun Mats. Mater. Today Commun. 2022, 30, 103093. https://doi.org/10.1016/J.MTCOMM.2021.103093.
- 173.
Sharma, D.; Satapathy, B.K. Tuning Structural-Response of PLA/PCL Based Electrospun Nanofibrous Mats: Role of Dielectric-Constant and Electrical-Conductivity of the Solvent System. J. Biomater. Sci. Polym. Ed. 2022, 33, 1759–1793. https://doi.org/10.1080/09205063.2022.2073427.
- 174.
Anaya-Mancipe, J.M.; de Figueiredo, A.C.; Rabello, L.G.; et al. Evaluation of the Polycaprolactone Hydrolytic Degradation in Acid Solvent and Its Influence on the Electrospinning Process. J. Appl. Polym. Sci. 2024, 141, e55662. https://doi.org/10.1002/APP.55662.
- 175.
Sivan, M.; Madheswaran, D.; Hauzerova, S.; et al. AC Electrospinning: Impact of High Voltage and Solvent on the Electrospinnability and Productivity of Polycaprolactone Electrospun Nanofibrous Scaffolds. Mater. Today Chem. 2022, 26, 101025. https://doi.org/10.1016/J.MTCHEM.2022.101025.
- 176.
Zulkifli, M.Z.A.; Nordin, D.; Shaari, N.; et al. Overview of Electrospinning for Tissue Engineering Applications. Polymers 2023, 15, 2418. https://doi.org/10.3390/POLYM15112418.
- 177.
Canizales-Rodríguez, D.F.; Rodriguez-Felix, F.; Tapia-Hernández, J.A.; et al. Food Grade Nanofiber of Polylactic Acid by Electrospinning: Physicochemical Characterization of Solutions and Parameters of the Technique. J. Food Qual. 2024, 2024, 5579613. https://doi.org/10.1155/2024/5579613.
- 178.
Abdul Hameed, M.M.; Mohamed Khan, S.A.P.; Thamer, B.M.; et al. Electrospun Nanofibers for Drug Delivery Applications: Methods and Mechanism. Polym. Adv. Technol. 2023, 34, 6–23. https://doi.org/10.1002/PAT.5884.
- 179.
Guo, Y.; Wang, X.; Shen, Y.; et al. Research Progress, Models and Simulation of Electrospinning Technology: A Review. J. Mater. Sci. 2022, 57, 58–104. https://doi.org/10.1007/S10853-021-06575-W.
- 180.
Chen, X.; Wang, J.; Zhang, J.; et al. Development and Application of Electrospun Fiber-Based Multifunctional Sensors. Chem. Eng. J. 2024, 486, 150204. https://doi.org/10.1016/J.CEJ.2024.150204.
- 181.
Yeoh, S.G.; Liew, Y.K.; Low, M.L.; et al. Electrospun Metal–Organic Framework-Based Nanofibers with Natural Therapeutic Agents for Enhanced Diabetic Wound Healing. Discov. Mater. 2025, 5, 66. https://doi.org/10.1007/S43939-025-00227-5.
- 182.
Eldem, A.; Tekintaş, Y.; Ucuncu, M.; et al. Electrospun Nanofiber Platforms for Photodynamic Therapy: Role and Efficacy in Cancer, Antimicrobial, and Wound Healing Applications. Macromol. Mater. Eng. 2025, 310, 2500014. https://doi.org/10.1002/MAME.202500014.
- 183.
Eynde, V.; Sezer, F.; Deniz, S.; et al. Pharmacological Applications of Electrospun Nanofibers Loaded with Bioactive Natural Compounds and Extracts: A Systematic Review. Drugs Drug Candidates 2025, 4, 8. https://doi.org/10.3390/DDC4010008.
- 184.
Chen, L.; Wu, P.; Zhu, Y.; et al. Electrospinning Strategies Targeting Fibroblast for Wound Healing of Diabetic Foot Ulcers. APL Bioeng. 2025, 9, 11501. https://doi.org/10.1063/5.0235412/3337246.
- 185.
Tamilarasi, G.P.; Sabarees, G.; Krishnan, M.; et al. Electrospun Scaffold-Based Antibiotic Therapeutics for Chronic Wound Recovery. Mini-Reviews Med. Chem. 2023, 23, 1653–1677. https://doi.org/10.2174/1389557523666230221155544.
- 186.
Toledano-Osorio, M.; Vallecillo, C.; Vallecillo-Rivas, M.; et al. Antibiotic-Loaded Polymeric Barrier Membranes for Guided Bone/Tissue Regeneration: A Mini-Review. Polymers 2022, 14, 840. https://doi.org/10.3390/POLYM14040840.
- 187.
Alven, S.; Buyana, B.; Feketshane, Z.; et al. Electrospun Nanofibers/Nanofibrous Scaffolds Loaded with Silver Nanoparticles as Effective Antibacterial Wound Dressing Materials. Pharmaceutics 2021, 13, 964. https://doi.org/10.3390/PHARMACEUTICS13070964.
- 188.
Mercante, L.A.; Teodoro, K.B.R.; dos Santos, D.M.; et al. Recent Progress in Stimuli-Responsive Antimicrobial Electrospun Nanofibers. Polymers 2023, 15, 4299. https://doi.org/10.3390/POLYM15214299.
- 189.
Chen, S.; Xie, Y.; Ma, K.; et al. Electrospun Nanofibrous Membranes Meet Antibacterial Nanomaterials: From Preparation Strategies to Biomedical Applications. Bioact. Mater. 2024, 42, 478–518. https://doi.org/10.1016/J.BIOACTMAT.2024.09.003.
- 190.
Mousavi, S.-M.; Nejad, Z.M.; Hashemi, S.A.; et al. Bioactive Agent-Loaded Electrospun Nanofiber Membranes for Accelerating Healing Process: A Review. Membranes 2021, 11, 702. https://doi.org/10.3390/MEMBRANES11090702.
- 191.
Epicoco, L.; Pellegrino, R.; Madaghiele, M.; et al. Recent Advances in Functionalized Electrospun Membranes for Periodontal Regeneration. Pharmaceutics 2023, 15, 2725. https://doi.org/10.3390/PHARMACEUTICS15122725.
- 192.
Felgueiras, H.P. Emerging Antimicrobial and Immunomodulatory Fiber-Based Scaffolding Systems for Treating Diabetic Foot Ulcers. Pharmaceutics 2023, 15, 258. https://doi.org/10.3390/PHARMACEUTICS15010258.
- 193.
Venugopal, D.; Vishwakarma, S.; Kaur, I.; et al. Electrospun Fiber-Based Strategies for Controlling Early Innate Immune Cell Responses: Towards Immunomodulatory Mesh Designs That Facilitate Robust Tissue Repair. Acta Biomater. 2023, 163, 228–247. https://doi.org/10.1016/J.ACTBIO.2022.06.004.
- 194.
Cao, Y.; Sun, J.; Qin, S.; et al. Advances and Challenges in Immune-Modulatory Biomaterials for Wound Healing Applications. Pharmaceutics 2024, 16, 990. https://doi.org/10.3390/PHARMACEUTICS16080990.
- 195.
Xu, Y.; Saiding, Q.; Zhou, X.; et al. Electrospun Fiber-Based Immune Engineering in Regenerative Medicine. Smart Med. 2024, 3, e20230034. https://doi.org/10.1002/SMMD.20230034.
- 196.
Abedi, N.; Sadeghian, A.; Kouhi, M.; et al. Immunomodulation in Bone Tissue Engineering: Recent Advancements in Scaffold Design and Biological Modifications for Enhanced Regeneration. ACS Biomater. Sci. Eng. 2025, 11, 1269–1290. https://doi.org/10.1021/ACSBIOMATERIALS.4C01613.
- 197.
Ju, Y.; Luo, Y.; Li, R.; et al. Multifunctional Combined Drug-Loaded Nanofibrous Dressings with Anti-Inflammatory, Antioxidant Stress and Microenvironment Improvement for Diabetic Wounds. RSC Adv. 2024, 14, 29606–29623. https://doi.org/10.1039/D4RA04860A.
- 198.
Mandras, N.; Luganini, A.; Argenziano, M.; et al. Design, Characterization, and Biological Activities of Erythromycin-Loaded Nanodroplets to Counteract Infected Chronic Wounds Due to Streptococcus Pyogenes. Int. J. Mol. Sci. 2023, 24, 1865. https://doi.org/10.3390/IJMS24031865.
- 199.
He, Y.; Chang, Q.; Lu, F. Oxygen-Releasing Biomaterials for Chronic Wounds Breathing: From Theoretical Mechanism to Application Prospect. Mater. Today Bio 2023, 20, 100687. https://doi.org/10.1016/J.MTBIO.2023.100687.
- 200.
Salim, S.A.; Salaheldin, T.A.; Elmazar, M.M.; et al. Smart Biomaterials for Enhancing Cancer Therapy by Overcoming Tumor Hypoxia: A Review. RSC Adv. 2022, 12, 33835–33851. https://doi.org/10.1039/D2RA06036A.
- 201.
Mohsin, F.; Javaid, S.; Tariq, M.; et al. Molecular Immunological Mechanisms of Impaired Wound Healing in Diabetic Foot Ulcers (DFU), Current Therapeutic Strategies and Future Directions. Int. Immunopharmacol. 2024, 139, 112713. https://doi.org/10.1016/J.INTIMP.2024.112713.
- 202.
Bayraktar, S.; Üstün, C.; Kehr, N.S. Oxygen Delivery Biomaterials in Wound Healing Applications. Macromol. Biosci. 2024, 24, 2300363. https://doi.org/10.1002/MABI.202300363.
- 203.
Seifu, D.G.; Isimjan, T.T.; Mequanint, K. Tissue Engineering Scaffolds Containing Embedded Fluorinated-Zeolite Oxygen Vectors. Acta Biomater. 2011, 7, 3670–3678. https://doi.org/10.1016/J.ACTBIO.2011.06.010.
- 204.
Schenck, T.L.; Hopfner, U.; Chávez, M.N.; et al. Photosynthetic Biomaterials: A Pathway towards Autotrophic Tissue Engineering. Acta Biomater. 2015, 15, 39–47. https://doi.org/10.1016/J.ACTBIO.2014.12.012.
- 205.
Wyrwa, R.; Otto, K.; Voigt, S.; et al. Electrospun Mucosal Wound Dressings Containing Styptics for Bleeding Control. Mater. Sci. Eng. C 2018, 93, 419–428. https://doi.org/10.1016/J.MSEC.2018.07.066.
- 206.
Yang, Y.; Du, Y.; Zhang, J.; et al. Structural and Functional Design of Electrospun Nanofibers for Hemostasis and Wound Healing. Adv. Fiber Mater. 2022, 4, 1027–1057. https://doi.org/10.1007/S42765-022-00178-Z.
- 207.
Sasmal, P.K.; Ganguly, S. Polymer in Hemostasis and Follow-up Wound Healing. J. Appl. Polym. Sci. 2023, 140, e53559. https://doi.org/10.1002/APP.53559.
- 208.
Ranjith, R.; Balraj, S.; Ganesh, J.; et al. Therapeutic Agents Loaded Chitosan-Based Nanofibrous Mats as Potential Wound Dressings: A Review. Mater. Today Chem. 2019, 12, 386–395. https://doi.org/10.1016/J.MTCHEM.2019.03.008.
- 209.
Karamichos, D.; Futila Bukatuka, C.; Mbituyimana, B.; et al. Recent Trends in the Application of Cellulose-Based Hemostatic and Wound Healing Dressings. J. Funct. Biomater. 2025, 16, 151. https://doi.org/10.3390/JFB16050151.
- 210.
Hassanzadeh-Tabrizi, S.A. Alginate Based Hemostatic Materials for Bleeding Management: A Review. Int. J. Biol. Macromol. 2024, 274, 133218. https://doi.org/10.1016/J.IJBIOMAC.2024.133218.
- 211.
Cui, Y.; Huang, Z.; Lei, L.; et al. Robust Hemostatic Bandages Based on Nanoclay Electrospun Membranes. Nat. Commun. 2021, 12, 5922. https://doi.org/10.1038/s41467-021-26237-4.
- 212.
Mendes, L.G.; Ferreira, F.V.; Sielski, M.S.; et al. Electrospun Nanofibrous Architectures of Thrombin-Loaded Poly(Ethylene Oxide) for Fasterin VivoWound Clotting. ACS Appl. Bio Mater. 2021, 4, 5240–5250. https://doi.org/10.1021/ACSABM.1C00402.
- 213.
Nasser, S.; Ibrahim, M.; Atassi, Y. Hemostatic Wound Dressings Based on Drug Loaded Electrospun PLLA Nanofibrous Mats. Mater. Chem. Phys. 2021, 267, 124686. https://doi.org/10.1016/J.MATCHEMPHYS.2021.124686.
- 214.
Fadilah, N.I.M.; Phang, S.J.; Kamaruzaman, Net al. Antioxidant Biomaterials in Cutaneous Wound Healing and Tissue Regeneration: A Critical Review. Antioxidants 2023, 12, 787. https://doi.org/10.3390/ANTIOX12040787.
- 215.
Abedi, N.; Sajadi-Javan, Z.S.; Kouhi, M.; et al. Antioxidant Materials in Oral and Maxillofacial Tissue Regeneration: A Narrative Review of the Literature. Antioxidants 2023, 12, 594. https://doi.org/10.3390/ANTIOX12030594.
- 216.
Vilchez, A.; Acevedo, F.; Cea, M.; et al. Applications of Electrospun Nanofibers with Antioxidant Properties: A Review. Nanomaterials 2020, 10, 175. https://doi.org/10.3390/NANO10010175.
- 217.
Es-Sai, B.; Wahnou, H.; Benayad, S.; et al. Gamma-Tocopherol: A Comprehensive Review of Its Antioxidant, Anti-Inflammatory, and Anticancer Properties. Molecules 2025, 30, 653. https://doi.org/10.3390/MOLECULES30030653.
- 218.
Ravetti, S.; Clemente, C.; Brignone, S.; et al. Ascorbic Acid in Skin Health. Cosmetic 2019, 6, 58. https://doi.org/10.3390/COSMETICS6040058.
- 219.
Bengmark, S. Curcumin, an Atoxic Antioxidant and Natural NFκB, Cyclooxygenase-2, Lipooxygenase, and Inducible Nitric Oxide Synthase Inhibitor: A Shield against Acute and Chronic Diseases. J. Parenter. Enter. Nutr. 2006, 30, 45–51. https://doi.org/10.1177/014860710603000145.
- 220.
Caruso, F.; Incerpi, S.; Pedersen, J.; et al. Aromatic Polyphenol π-π Interactions with Superoxide Radicals Contribute to Radical Scavenging and Can Make Polyphenols Mimic Superoxide Dismutase Activity. Curr. Issues Mol. Biol. 2022, 44, 5209–5220. https://doi.org/10.3390/CIMB44110354/.
- 221.
Kumar, S.; Saxena, J.; Srivastava, V.K.; et al. The Interplay of Oxidative Stress and ROS Scavenging: Antioxidants as a Therapeutic Potential in Sepsis. Vaccines 2022, 10, 1575. https://doi.org/10.3390/VACCINES10101575.
- 222.
Wang, H.; Xu, X.; Chen, R.; et al. Bioinspired Antioxidant Defense System Constructed by Antioxidants-Eluting Electrospun F127-Based Fibers. ACS Appl. Mater. Interfaces 2017, 9, 38313–38322. https://doi.org/10.1021/ACSAMI.7B12395.
- 223.
Mukharya, A.; Pokale, R.; Roy, A.A.; et al. Targeting Diabetic and Chronic Wounds Using Topical Nano-Formulations Impregnated with Modern Microbiome-Driven Peptides and Probiotics. J. Drug Deliv. Sci. Technol. 2025, 105, 106590. https://doi.org/10.1016/J.JDDST.2024.106590.
- 224.
Alizadeh, A.M.; Mohseni, M.; Gerami, K.; et al. Electrospun Fibers Loaded with Probiotics: Fundamentals, Characterization, and Applications. Probiotics Antimicrob. Proteins 2024, 16, 1099–1116. https://doi.org/10.1007/S12602-023-10174-3.
- 225.
Feng, K.; Huangfu, L.; Liu, C.; et al. Electrospinning and Electrospraying: Emerging Techniques for Probiotic Stabilization and Application. Polymers 2023, 15, 2402. https://doi.org/10.3390/POLYM15102402.
- 226.
Sun, Q.; Yin, S.; He, Y.; et al. Biomaterials and Encapsulation Techniques for Probiotics: Current Status and Future Prospects in Biomedical Applications. Nanomaterials 2023, 13, 2185. https://doi.org/10.3390/NANO13152185.
- 227.
Khan, M.A.; Hussain, Z.; Ali, S.; et al. Fabrication of Electrospun Probiotic Functionalized Nanocomposite Scaffolds for Infection Control and Dermal Burn Healing in a Mice Model. ACS Biomater. Sci. Eng. 2019, 5, 6109–6116. https://doi.org/10.1021/ACSBIOMATERIALS.9B01002.
- 228.
Nasseri, S.; Sharifi, M. Therapeutic Potential of Antimicrobial Peptides for Wound Healing. Int. J. Pept. Res. Ther. 2022, 28, 38. https://doi.org/10.1007/S10989-021-10350-5.
- 229.
Saravanan, P.; Pooja, R.; Balachander, N.; et al. Anti-Inflammatory and Wound Healing Properties of Lactic Acid Bacteria and Its Peptides. Folia Microbiol. 2023, 68, 337–353. https://doi.org/10.1007/S12223-022-01030-Y.
- 230.
Lucian, B.I.; Cheregi, C.D.; Sebastian, H.M.; et al. Electrospun Nanofibers in Wound Healing: Real-World Evaluation of SpincareTM Technology. Bioengineering 2025, 12, 500. https://doi.org/10.3390/BIOENGINEERING12050500.
- 231.
Haik, J.; Ullman, Y.; Gur, E.; et al. Advances in the Use of Electrospun Nanofibrous Polymeric Matrix for Dermal Healing at the Donor Site After the Split-Thickness Skin Graft Excision: A Prospective, Randomized, Controlled, Open-Label, Multicenter Study. J. Burn Care Res. 2022, 43, 889–898. https://doi.org/10.1093/JBCR/IRAB216.
- 232.
Bagheri, A.; Norouzi, M.R.; Ghasemi-Mobarakeh, L.; et al. Clinical Assessment of Novel Nanofibrous Dressings for Cutaneous Leishmaniasis: A Trial-Based Study. Polym. Adv. Technol. 2024, 35, e6460. https://doi.org/10.1002/PAT.6460.
- 233.
Kossovich, L.Y.; Salkovskiy, Y.; Kirillova, I.V. Electrospun Chitosan Nanofiber Materials as Burn Dressing. In Proceedings of the 6th World Congress of Biomechanics (WCB 2010), Singapore, 1–6 August 2010; pp. 1212–1214. https://doi.org/10.1007/978-3-642-14515-5_307.
- 234.
Islam, R.; Maparathne, S.; Chinwangso, P.; et al. Review of Shape-Memory Polymer Nanocomposites and Their Applications. Appl. Sci. 2025, 15, 2419. https://doi.org/10.3390/APP15052419.