- 1.
Marx, R.E. Uncovering the cause of “phossy jaw” Circa 1858 to 1906: Oral and maxillofacial surgery closed case files-case closed. J. Oral Maxillofac. Surg. 2008, 66, 2356–2363. https://doi.org/10.1016/j.joms.2007.11.006.
- 2.
Benford, H.L.; McGowan, N.W.; Helfrich, M.H.; et al. Visualization of bisphosphonate-induced caspase-3 activity in apoptotic osteoclasts in vitro. Bone 2001, 28, 465–473. https://doi.org/10.1016/s8756-3282(01)00412-4.
- 3.
Nisi, M.; La Ferla, F.; Karapetsa, D.; et al. Risk factors influencing BRONJ staging in patients receiving intravenous bisphosphonates: A multivariate analysis. Int. J. Oral. Maxillofac. Surg. 2015, 44, 586–591. https://doi.org/10.1016/j.ijom.2015.01.014.
- 4.
Ruggiero, S.L.; Dodson, T.B.; Aghaloo, T.; et al. American Association of Oral and Maxillofacial Surgeons’ Position Paper on Medication-Related Osteonecrosis of the Jaws-2022 Update. J. Oral. Maxillofac. Surg. 2022, 80, 920–943. https://doi.org/10.1016/j.joms.2022.02.008.
- 5.
Guo, Z.; Li, C.; Tang, X. Research progress on the pathogenesis of medication-related osteonecrosis of the jaw. Int. J. Stomatol. 2020, 47, 717–724. https://doi.org/10.7518/gjkq.2020106.
- 6.
Guo, Z.; Cui, W.; Que, L.; et al. Pharmacogenetics of medication-related osteonecrosis of the jaw: A systematic review and meta-analysis. Int. J. Oral. Maxillofac. Surg. 2020, 49, 298–309. https://doi.org/10.1016/j.ijom.2019.07.016.
- 7.
Keller, R.K.; Fliesler, S.J. Mechanism of aminobisphosphonate action: Characterization of alendronate inhibition of the isoprenoid pathway. Biochem. Biophys. Res. Commun. 1999, 266, 560–563. https://doi.org/10.1006/bbrc.1999.1849.
- 8.
Rogers, M.J.; Gordon, S.; Benford, H.L.; et al. Cellular and molecular mechanisms of action of bisphosphonates. Cancer 2000, 88, 2961–2978. https://doi.org/10.1002/1097-0142(20000615)88:12+<2961::aid-cncr12>3.3.co;2-c.
- 9.
David, P.; Nguyen, H.; Barbier, A.; et al. The bisphosphonate tiludronate is a potent inhibitor of the osteoclast vacuolar H(+)-ATPase. J. Bone Miner. Res. 1996, 11, 1498–1507. https://doi.org/10.1002/jbmr.5650111017.
- 10.
Weinstein, R.S.; Roberson, P.K.; Manolagas, S.C. Giant osteoclast formation and long-term oral bisphosphonate therapy. N. Engl. J. Med. 2009, 360, 53–62. https://doi.org/10.1056/NEJMoa0802633.
- 11.
Córdova, L.A.; Guilbaud, F.; Amiaud, J.; et al. Severe compromise of preosteoblasts in a surgical mouse model of bisphosphonate-associated osteonecrosis of the jaw. J. Craniomaxillofac. Surg. 2016, 44, 1387–1394. https://doi.org/10.1016/j.jcms.2016.07.015.
- 12.
Cui, W.; Chen, X.; Zhu, J.; et al. Preventive effect of tetrahedral framework nucleic acids on bisphosphonate-related osteonecrosis of the jaw. Nanoscale 2020, 12, 17196–17202. https://doi.org/10.1039/d0nr03731a.
- 13.
Guo, Z.; Yang, J.; Li, C.; et al. Zoledronic Acid Regulates Osteoclasts via miR-483-5p in the BRONJ. Oral. Dis. 2025, 31, 2221–2228. https://doi.org/10.1111/odi.15233.
- 14.
Manzano-Moreno, F.J.; Ramos-Torrecillas, J.; Melguizo-Rodríguez, L.; et al. Bisphosphonate Modulation of the Gene Expression of Different Markers Involved in Osteoblast Physiology: Possible Implications in Bisphosphonate-Related Osteonecrosis of the Jaw. Int. J. Med. Sci. 2018, 15, 359–367. https://doi.org/10.7150/ijms.22627.
- 15.
Koch, F.P.; Wunsch, A.; Merkel, C.; et al. The influence of bisphosphonates on human osteoblast migration and integrin aVb3/tenascin C gene expression in vitro. Head. Face Med. 2011, 7, 4. https://doi.org/10.1186/1746-160x-7-4.
- 16.
Ziebart, T.; Yoon, C.H.; Trepels, T.; et al. Sustained persistence of transplanted proangiogenic cells contributes to neovascularization and cardiac function after ischemia. Circ. Res. 2008, 103, 1327–1334. https://doi.org/10.1161/circresaha.108.180463.
- 17.
Ziebart, T.; Pabst, A.; Klein, M.O.; et al. Bisphosphonates: Restrictions for vasculogenesis and angiogenesis: Inhibition of cell function of endothelial progenitor cells and mature endothelial cells in vitro. Clin. Oral. Investig. 2011, 15, 105–111. https://doi.org/10.1007/s00784-009-0365-2.
- 18.
Lang, M.; Zhou, Z.; Shi, L.; et al. Influence of zoledronic acid on proliferation, migration, and apoptosis of vascular endothelial cells. Br. J. Oral. Maxillofac. Surg. 2016, 54, 889–893. https://doi.org/10.1016/j.bjoms.2016.05.030.
- 19.
Walter, C.; Pabst, A.; Ziebart, T.; et al. Bisphosphonates affect migration ability and cell viability of HUVEC, fibroblasts and osteoblasts in vitro. Oral. Dis. 2011, 17, 194–199. https://doi.org/10.1111/j.1601-0825.2010.01720.x.
- 20.
Allegra, A.; Oteri, G.; Nastro, E.; et al. Patients with bisphosphonates-associated osteonecrosis of the jaw have reduced circulating endothelial cells. Hematol. Oncol. 2007, 25, 164–169. https://doi.org/10.1002/hon.819.
- 21.
Santini, D.; Vincenzi, B.; Avvisati, G.; et al. Pamidronate induces modifications of circulating angiogenetic factors in cancer patients. Clin. Cancer Res. 2002, 8, 1080–1084.
- 22.
Pabst, A.M.; Ziebart, T.; Ackermann, M.; et al. Bisphosphonates’ antiangiogenic potency in the development of bisphosphonate-associated osteonecrosis of the jaws: Influence on microvessel sprouting in an in vivo 3D Matrigel assay. Clin. Oral. Investig. 2014, 18, 1015–1022. https://doi.org/10.1007/s00784-013-1060-x.
- 23.
Fournier, P.; Boissier, S.; Filleur, S.; et al. Bisphosphonates inhibit angiogenesis in vitro and testosterone-stimulated vascular regrowth in the ventral prostate in castrated rats. Cancer Res. 2002, 62, 6538–6544.
- 24.
Van Poznak, C. Osteonecrosis of the jaw and bevacizumab therapy. Breast Cancer Res. Treat. 2010, 122, 189–191. https://doi.org/10.1007/s10549-010-0933-9.
- 25.
Koch, F.P.; Walter, C.; Hansen, T.; et al. Osteonecrosis of the jaw related to sunitinib. Oral. Maxillofac. Surg. 2011, 15, 63–66. https://doi.org/10.1007/s10006-010-0224-y.
- 26.
Yuan, A.; Munz, A.; Reinert, S.; et al. Histologic analysis of medication-related osteonecrosis of the jaw compared with antiresorptive-exposed bone and other infectious, inflammatory, and necrotic jaw diseases. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. 2020, 129, 133–140. https://doi.org/10.1016/j.oooo.2019.08.018.
- 27.
Li, J.W.; Wang, J.Y.; Yu, R.Q.; et al. Expression of angiogenic markers in jawbones and femur in a rat model treated with zoledronic acid. BMC Res. Notes 2022, 15, 12. https://doi.org/10.1186/s13104-021-05900-5.
- 28.
Lombard, T.; Neirinckx, V.; Rogister, B.; et al. Medication-Related Osteonecrosis of the Jaw: New Insights into Molecular Mechanisms and Cellular Therapeutic Approaches. Stem Cells Int. 2016, 2016, 8768162. https://doi.org/10.1155/2016/8768162.
- 29.
Aghaloo, T.L.; Kang, B.; Sung, E.C.; et al. Periodontal disease and bisphosphonates induce osteonecrosis of the jaws in the rat. J. Bone Miner. Res. 2011, 26, 1871–1882. https://doi.org/10.1002/jbmr.379.
- 30.
Aguirre, J.I.; Akhter, M.P.; Kimmel, D.B.; et al. Oncologic doses of zoledronic acid induce osteonecrosis of the jaw-like lesions in rice rats (Oryzomys palustris) with periodontitis. J. Bone Miner. Res. 2012, 27, 2130–2143. https://doi.org/10.1002/jbmr.1669.
- 31.
Kang, B.; Cheong, S.; Chaichanasakul, T.; et al. Periapical disease and bisphosphonates induce osteonecrosis of the jaws in mice. J. Bone Miner. Res. 2013, 28, 1631–1640. https://doi.org/10.1002/jbmr.1894.
- 32.
López-Jornet, P.; Camacho-Alonso, F.; Martínez-Canovas, A.; et al. Perioperative antibiotic regimen in rats treated with pamidronate plus dexamethasone and subjected to dental extraction: A study of the changes in the jaws. J. Oral. Maxillofac. Surg. 2011, 69, 2488–2493. https://doi.org/10.1016/j.joms.2011.02.059.
- 33.
Sedghizadeh, P.P.; Kumar, S.K.; Gorur, A.; et al. Identification of microbial biofilms in osteonecrosis of the jaws secondary to bisphosphonate therapy. J. Oral. Maxillofac. Surg. 2008, 66, 767–775. https://doi.org/10.1016/j.joms.2007.11.035.
- 34.
Sedghizadeh, P.P.; Kumar, S.K.; Gorur, A.; et al. Microbial biofilms in osteomyelitis of the jaw and osteonecrosis of the jaw secondary to bisphosphonate therapy. J. Am. Dent. Assoc. 2009, 140, 1259–1265. https://doi.org/10.14219/jada.archive.2009.0049.
- 35.
Filleul, O.; Crompot, E.; Saussez, S. Bisphosphonate-induced osteonecrosis of the jaw: A review of 2,400 patient cases. J. Cancer Res. Clin. Oncol. 2010, 136, 1117–1124. https://doi.org/10.1007/s00432-010-0907-7.
- 36.
Zhang, Q.; Yu, W.; Lee, S.; et al. Bisphosphonate Induces Osteonecrosis of the Jaw in Diabetic Mice via NLRP3/Caspase-1-Dependent IL-1β Mechanism. J. Bone Miner. Res. 2015, 30, 2300–2312. https://doi.org/10.1002/jbmr.2577.
- 37.
Stockmann, P.; Nkenke, E.; Englbrecht, M.; et al. Major histocompatibility complex class II polymorphisms are associated with the development of anti-resorptive agent-induced osteonecrosis of the jaw. J. Craniomaxillofac. Surg. 2013, 41, 71–75. https://doi.org/10.1016/j.jcms.2012.10.018.
- 38.
Arron, J.R.; Choi, Y. Bone versus immune system. Nature 2000, 408, 535–536. https://doi.org/10.1038/35046196.
- 39.
Balla, B.; Kósa, J.P.; Kiss, J.; et al. Transcriptional profiling of immune system-related genes in postmenopausal osteoporotic versus non-osteoporotic human bone tissue. Clin. Immunol. 2009, 131, 354–359. https://doi.org/10.1016/j.clim.2009.01.004.
- 40.
Jung, J.; Park, J.S.; Righesso, L.; et al. Effects of an oral bisphosphonate and three intravenous bisphosphonates on several cell types in vitro. Clin. Oral. Investig. 2018, 22, 2527–2534. https://doi.org/10.1007/s00784-018-2349-6.
- 41.
Pabst, A.M.; Ziebart, T.; Koch, F.P.; et al. The influence of bisphosphonates on viability, migration, and apoptosis of human oral keratinocytes--in vitro study. Clin. Oral. Investig. 2012, 16, 87–93. https://doi.org/10.1007/s00784-010-0507-6.
- 42.
Correia Vde, F.; Caldeira, C.L.; Marques, M.M. Cytotoxicity evaluation of sodium alendronate on cultured human periodontal ligament fibroblasts. Dent. Traumatol. 2006, 22, 312–317. https://doi.org/10.1111/j.1600-9657.2005.00434.x.
- 43.
Moreira, M.S.; Katayama, E.; Bombana, A.C.; et al. Cytotoxicity analysis of alendronate on cultured endothelial cells and subcutaneous tissue. a pilot study. Dent. Traumatol. 2005, 21, 329–335. https://doi.org/10.1111/j.1600-9657.2005.00370.x.
- 44.
Curi, M.M.; dos Santos, M.O.; Feher, O.; et al. Management of extensive osteoradionecrosis of the mandible with radical resection and immediate microvascular reconstruction. J. Oral. Maxillofac. Surg. 2007, 65, 434–438. https://doi.org/10.1016/j.joms.2005.12.068.
- 45.
Gowgiel, J.M. Experimental radio-osteonecrosis of the jaws. J. Dent. Res. 1960, 39, 176–197. https://doi.org/10.1177/0022034
- 46.
Marx, R.E. Osteoradionecrosis: A new concept of its pathophysiology. J. Oral. Maxillofac. Surg. 1983, 41, 283–288. https://doi.org/10.1016/0278-2391(83)90294-x.
- 47.
Bras, J.; de Jonge, H.K.; van Merkesteyn, J.P. Osteoradionecrosis of the mandible: Pathogenesis. Am. J. Otolaryngol. 1990, 11, 244–250. https://doi.org/10.1016/0196-0709(90)90084-9.
- 48.
Assael, L.A. New foundations in understanding osteonecrosis of the jaws. J. Oral. Maxillofac. Surg. 2004, 62, 125–126. https://doi.org/10.1016/j.joms.2003.11.009.
- 49.
Al-Nawas, B.; Duschner, H.; Grötz, K.A. Early cellular alterations in bone after radiation therapy and its relation to osteoradionecrosis. J. Oral. Maxillofac. Surg. 2004, 62, 1045. https://doi.org/10.1016/j.joms.2004.05.204.
- 50.
Delanian, S.; Depondt, J.; Lefaix, J.L. Major healing of refractory mandible osteoradionecrosis after treatment combining pentoxifylline and tocopherol: A phase II trial. Head. Neck 2005, 27, 114–123. https://doi.org/10.1002/hed.20121.
- 51.
Delanian, S.; Lefaix, J.L. The radiation-induced fibroatrophic process: Therapeutic perspective via the antioxidant pathway. Radiother. Oncol. 2004, 73, 119–131. https://doi.org/10.1016/j.radonc.2004.08.021.
- 52.
Chrcanovic, B.R.; Reher, P.; Sousa, A.A.; et al. Osteoradionecrosis of the jaws--a current overview--part 1: Physiopathology and risk and predisposing factors. Oral. Maxillofac. Surg. 2010, 14, 3–16. https://doi.org/10.1007/s10006-009-0198-9.
- 53.
Vozenin-Brotons, M.C.; Milliat, F.; Sabourin, J.C.; et al. Fibrogenic signals in patients with radiation enteritis are associated with increased connective tissue growth factor expression. Int. J. Radiat. Oncol. Biol. Phys. 2003, 56, 561–572. https://doi.org/10.1016/s0360-3016(02)04601-1.
- 54.
Xu, J.; Zheng, Z.; Fang, D.; et al. Early-stage pathogenic sequence of jaw osteoradionecrosis in vivo. J. Dent. Res. 2012, 91, 702–708. https://doi.org/10.1177/0022034512448661.
- 55.
Xu, J.; Yan, X.; Gao, R.; et al. Effect of irradiation on microvascular endothelial cells of parotid glands in the miniature pig. Int. J. Radiat. Oncol. Biol. Phys. 2010, 78, 897–903. https://doi.org/10.1016/j.ijrobp.2010.05.048.
- 56.
Robard, L.; Louis, M.Y.; Blanchard, D.; et al. Medical treatment of osteoradionecrosis of the mandible by PENTOCLO: preliminary results. Eur. Ann. Otorhinolaryngol. Head. Neck Dis. 2014, 131, 333–338. https://doi.org/10.1016/j.anorl.2013.11.006.
- 57.
Delanian, S.; Chatel, C.; Porcher, R.; et al. Complete restoration of refractory mandibular osteoradionecrosis by prolonged treatment with a pentoxifylline-tocopherol-clodronate combination (PENTOCLO): A phase II trial. Int. J. Radiat. Oncol. Biol. Phys. 2011, 80, 832–839. https://doi.org/10.1016/j.ijrobp.2010.03.029.
- 58.
Støre, G.; Eribe, E.R.; Olsen, I. DNA-DNA hybridization demonstrates multiple bacteria in osteoradionecrosis. Int. J. Oral. Maxillofac. Surg. 2005, 34, 193–196. https://doi.org/10.1016/j.ijom.2004.06.010.
- 59.
He, P.; Francois, K.; Missaghian, N.; et al. Are Bacteria Just Bystanders in the Pathogenesis of Inflammatory Jaw Conditions? J. Oral. Maxillofac. Surg. 2022, 80, 1094–1102. https://doi.org/10.1016/j.joms.2022.03.012.
- 60.
Lyons, A.; Ghazali, N. Osteoradionecrosis of the jaws: Current understanding of its pathophysiology and treatment. Br. J. Oral. Maxillofac. Surg. 2008, 46, 653–660. https://doi.org/10.1016/j.bjoms.2008.04.006.
- 61.
Kim, H.Y.; Jung, Y.S.; Park, W.; et al. Can medication-related osteonecrosis of the jaw be attributed to specific microorganisms through oral microbiota analyses? A preliminary study. BMC Oral. Health 2024, 24, 160. https://doi.org/10.1186/s12903-024-03945-z.
- 62.
Ewald, F.; Wuesthoff, F.; Koehnke, R.; et al. Retrospective analysis of bacterial colonization of necrotic bone and antibiotic resistance in 98 patients with medication-related osteonecrosis of the jaw (MRONJ). Clin. Oral. Investig. 2021, 25, 2801–2809. https://doi.org/10.1007/s00784-020-03595-9.
- 63.
Du, W.; Yang, M.; Kim, T.; et al. Indigenous microbiota protects development of medication-related osteonecrosis induced by periapical disease in mice. Int. J. Oral. Sci. 2022, 14, 16. https://doi.org/10.1038/s41368-022-00166-4.
- 64.
Marx, R.E.; Tursun, R. Suppurative osteomyelitis, bisphosphonate induced osteonecrosis, osteoradionecrosis: a blinded histopathologic comparison and its implications for the mechanism of each disease. Int. J. Oral. Maxillofac. Surg. 2012, 41, 283–289. https://doi.org/10.1016/j.ijom.2011.12.016.
- 65.
Shuster, A.; Reiser, V.; Trejo, L.; et al. Comparison of the histopathological characteristics of osteomyelitis, medication-related osteonecrosis of the jaw, and osteoradionecrosis. Int. J. Oral. Maxillofac. Surg. 2019, 48, 17–22. https://doi.org/10.1016/j.ijom.2018.07.002.
- 66.
He, Y.; Ma, C.; Hou, J.; et al. Chinese expert group consensus on diagnosis and clinical management of osteoradionecrosis of the mandible. Int. J. Oral. Maxillofac. Surg. 2020, 49, 411–419. https://doi.org/10.1016/j.ijom.2019.06.015.
- 67.
Yarom, N.; Shapiro, C.L.; Peterson, D.E.; et al. Medication-Related Osteonecrosis of the Jaw: MASCC/ISOO/ASCO Clinical Practice Guideline. J. Clin. Oncol. 2019, 37, 2270–2290. https://doi.org/10.1200/jco.19.01186.
- 68.
Allegra, A.; Alonci, A.; Penna, G.; et al. Bisphosphonates induce apoptosis of circulating endothelial cells in multiple myeloma patients and in subjects with bisphosphonate-induced osteonecrosis of the jaws. Acta Haematol. 2010, 124, 79–85. https://doi.org/10.1159/000313787.
- 69.
Wehrhan, F.; Stockmann, P.; Nkenke, E.; et al. Differential impairment of vascularization and angiogenesis in bisphosphonate-associated osteonecrosis of the jaw-related mucoperiosteal tissue. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod. 2011, 112, 216–221. https://doi.org/10.1016/j.tripleo.2011.02.028.
- 70.
Kang, Z.; Jin, T.; Li, X.; et al. Progression and postoperative complications of osteoradionecrosis of the jaw: A 20-year retrospective study of 124 non-nasopharyngeal cancer cases and meta-analysis. BMC Oral. Health 2022, 22, 213. https://doi.org/10.1186/s12903-022-02244-9.
- 71.
Cuozzo, A.; Iorio-Siciliano, V.; Vaia, E.; et al. Incidence and risk factors associated to Medication-Related Osteo Necrosis of the Jaw (MRONJ) in patients with osteoporosis after tooth extractions. A 12-months observational cohort study. J. Stomatol. Oral. Maxillofac. Surg. 2022, 123, 616–621. https://doi.org/10.1016/j.jormas.2022.03.020.
- 72.
Soutome, S.; Otsuru, M.; Murata, M.; et al. Risk factors for developing medication-related osteonecrosis of the jaw when preserving the tooth that can be a source of infection in cancer patients receiving high-dose antiresorptive agents: A retrospective study. Support. Care Cancer 2022, 30, 7241–7248. https://doi.org/10.1007/s00520-022-07134-y.
- 73.
Hasegawa, T.; Kawakita, A.; Ueda, N.; et al. A multicenter retrospective study of the risk factors associated with medication-related osteonecrosis of the jaw after tooth extraction in patients receiving oral bisphosphonate therapy: Can primary wound closure and a drug holiday really prevent MRONJ? Osteoporos. Int. 2017, 28, 2465–2473. https://doi.org/10.1007/s00198-017-4063-7.
- 74.
Morishita, K.; Soutome, S.; Otsuru, M.; et al. Relationship between drug holiday of the antiresorptive agents and surgical outcome of medication-related osteonecrosis of the jaw in osteoporosis patients. Sci. Rep. 2022, 12, 11545. https://doi.org/10.1038/s41598-022-15720-7.
- 75.
Sagar Kansara, S.S. Premalignant Lesions of the Oral Mucosa. In StatPearls; StatPearls Publishing: St. Petersburg, FL, USA, 2022.
- 76.
Mott, T.F. Lung Cancer: Screening and Evaluation of Patients With Solitary Pulmonary Nodules. FP Essent. 2018, 464, 17–22.
- 77.
Ambrosi, T.H.; Marecic, O.; McArdle, A.; et al. Aged skeletal stem cells generate an inflammatory degenerative niche. Nature 2021, 597, 256–262. https://doi.org/10.1038/s41586-021-03795-7.
- 78.
Wang, B.; Han, J.; Elisseeff, J.H.; et al. The senescence-associated secretory phenotype and its physiological and pathological implications. Nat. Rev. Mol. Cell Biol. 2024, 25, 958–978. https://doi.org/10.1038/s41580-024-00727-x.
- 79.
Chapman, J.; Fielder, E.; Passos, J.F. Mitochondrial dysfunction and cell senescence: Deciphering a complex relationship. FEBS Lett. 2019, 593, 1566–1579. https://doi.org/10.1002/1873-3468.13498.
- 80.
Acosta, J.C.; Banito, A.; Wuestefeld, T.; et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 2013, 15, 978–990. https://doi.org/10.1038/ncb2784.
- 81.
Takasugi, M.; Okada, R.; Takahashi, A.; et al. Small extracellular vesicles secreted from senescent cells promote cancer cell proliferation through EphA2. Nat. Commun. 2017, 8, 15729. https://doi.org/10.1038/ncomms15728.
- 82.
Hou, J.; Chen, K.X.; He, C.; et al. Aged bone marrow macrophages drive systemic aging and age-related dysfunction via extracellular vesicle-mediated induction of paracrine senescence. Nat. Aging 2024, 4, 1562–1581. https://doi.org/10.1038/s43587-024-00694-0.
- 83.
Davalos, A.R.; Kawahara, M.; Malhotra, G.K.; et al. p53-dependent release of Alarmin HMGB1 is a central mediator of senescent phenotypes. J. Cell Biol. 2013, 201, 613–629. https://doi.org/10.1083/jcb.201206006.
- 84.
Coppé, J.P.; Patil, C.K.; Rodier, F.; et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008, 6, 2853–2868. https://doi.org/10.1371/journal.pbio.0060301.
- 85.
Zhong, J.; Chen, J.; Oyekan, A.A.; et al. Ionizing Radiation Induces Disc Annulus Fibrosus Senescence and Matrix Catabolism via MMP-Mediated Pathways. Int. J. Mol. Sci. 2022, 23. https://doi.org/10.3390/ijms23074014.
- 86.
Zheng, X.; Liu, Z.; Bin, Y.; et al. Ionizing radiation induces vascular smooth muscle cell senescence through activating NF-κB/CTCF/p16 pathway. Biochim. Biophys. Acta Mol. Basis Dis. 2024, 1870, 166994. https://doi.org/10.1016/j.bbadis.2023.166994.
- 87.
Meng, J.; Li, Y.; Wan, C.; et al. Targeting senescence-like fibroblasts radiosensitizes non-small cell lung cancer and reduces radiation-induced pulmonary fibrosis. JCI Insight 2021, 6. https://doi.org/10.1172/jci.insight.146334.
- 88.
Wang, Z.; Chen, Z.; Jiang, Z.; et al. Cordycepin prevents radiation ulcer by inhibiting cell senescence via NRF2 and AMPK in rodents. Nat. Commun. 2019, 10, 2538. https://doi.org/10.1038/s41467-019-10386-8.
- 89.
Bai, J.; Wang, Y.; Wang, J.; et al. Irradiation-induced senescence of bone marrow mesenchymal stem cells aggravates osteogenic differentiation dysfunction via paracrine signaling. Am. J. Physiol. Cell Physiol. 2020, 318, C1005–C1017. https://doi.org/10.1152/ajpcell.00520.2019.
- 90.
Alessio, N.; Del Gaudio, S.; Capasso, S.; et al. Low dose radiation induced senescence of human mesenchymal stromal cells and impaired the autophagy process. Oncotarget 2015, 6, 8155–8166. https://doi.org/10.18632/oncotarget.2692.
- 91.
Wang, Y.; Xu, L.; Wang, J.; et al. Radiation induces primary osteocyte senescence phenotype and affects osteoclastogenesis in vitro. Int. J. Mol. Med. 2021, 47. https://doi.org/10.3892/ijmm.2021.4909.
- 92.
Guo, Z.; Wang, Z.; Liu, Y.; et al. Carbon Dots from Lycium barbarum Attenuate Radiation-Induced Bone Injury by Inhibiting Senescence via METTL3/Clip3 in an m(6)A-Dependent Manner. ACS Appl. Mater. Interfaces 2023, 15, 20726–20741. https://doi.org/10.1021/acsami.3c01322.
- 93.
Ohnuki, H.; Izumi, K.; Terada, M.; et al. Zoledronic acid induces S-phase arrest via a DNA damage response in normal human oral keratinocytes. Arch. Oral. Biol. 2012, 57, 906–917. https://doi.org/10.1016/j.archoralbio.2011.11.015.
- 94.
Shaharuddin, N.B.; Jones, D.; Chai, W.L. The senescence effect of zoledronate on three-dimensional oral mucosa model. Sains Malays. 2022, 51, 1131–1142.
- 95.
Kim, R.H.; Lee, R.S.; Williams, D.; et al. Bisphosphonates induce senescence in normal human oral keratinocytes. J. Dent. Res. 2011, 90, 810–816. https://doi.org/10.1177/0022034511402995.
- 96.
Tseng, H.C.; Kanayama, K.; Kaur, K.; et al. Bisphosphonate-induced differential modulation of immune cell function in gingiva and bone marrow in vivo: Role in osteoclast-mediated NK cell activation. Oncotarget 2015, 6, 20002–20025. https://doi.org/10.18632/oncotarget.4755.
- 97.
Szentpeteri, S.; Kosa, J.; Juhasz, H.D.; et al. Examination of certain single-nucleotide polymorphisms of interleukins 1A and 1B in medication-related osteonecrosis of the jaw–An ambirectional cohort study. J. Craniomaxillofac. Surg. 2024, 52, 1133–1139. https://doi.org/10.1016/j.jcms.2024.06.007.
- 98.
Samakkarnthai, P.; Saul, D.; Zhang, L.; et al. In vitro and in vivo effects of zoledronic acid on senescence and senescence-associated secretory phenotype markers. Aging 2023, 15, 3331–3355. https://doi.org/10.18632/aging.204701.
- 99.
Satoh, A.; Brace, C.S.; Rensing, N.; et al. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab. 2013, 18, 416–430. https://doi.org/10.1016/j.cmet.2013.07.013.
- 100.
Huang, S.B.; Rivas, P.; Yang, X.; et al. SIRT1 inhibition-induced senescence as a strategy to prevent prostate cancer progression. Mol. Carcinog. 2022, 61, 702–716. https://doi.org/10.1002/mc.23412.
- 101.
Liu, S.; Zheng, Z.; Ji, S.; et al. Resveratrol reduces senescence-associated secretory phenotype by SIRT1/NF-κB pathway in gut of the annual fish Nothobranchius guentheri. Fish. Shellfish. Immunol. 2018, 80, 473–479. https://doi.org/10.1016/j.fsi.2018.06.027.
- 102.
Wang, H.; Hu, Z.; Wu, J.; et al. Sirt1 Promotes Osteogenic Differentiation and Increases Alveolar Bone Mass via Bmi1 Activation in Mice. J. Bone Miner. Res. 2019, 34, 1169–1181. https://doi.org/10.1002/jbmr.3677.
- 103.
Cui, Y.; Zhang, W.; Yang, P.; et al. Menaquinone-4 prevents medication-related osteonecrosis of the jaw through the SIRT1 signaling-mediated inhibition of cellular metabolic stresses-induced osteoblast apoptosis. Free Radic. Biol. Med. 2023, 206, 33–49. https://doi.org/10.1016/j.freeradbiomed.2023.06.022.
- 104.
Zhu, S.; Cui, Y.; Zhang, W.; et al. Inflammation Can Be a High-Risk Factor for Mucosal Nonunion of MRONJ by Regulating SIRT1 Signaling When Treated with an Oncologic Dose of Zoledronate. Drug Des. Dev. Ther. 2024, 18, 2793–2812. https://doi.org/10.2147/dddt.S456811.
- 105.
Yang, G.; Hamadeh, I.S.; Katz, J.; et al. SIRT1/HERC4 Locus Associated With Bisphosphonate-Induced Osteonecrosis of the Jaw: An Exome-Wide Association Analysis. J. Bone Miner. Res. 2018, 33, 91–98. https://doi.org/10.1002/jbmr.3285.
- 106.
Yang, G.; Collins, J.M.; Rafiee, R.; et al. SIRT1 Gene SNP rs932658 Is Associated With Medication-Related Osteonecrosis of the Jaw. J. Bone Miner. Res. 2021, 36, 347–356. https://doi.org/10.1002/jbmr.4185.
- 107.
Bojtor, B.; Vaszilko, M.; Armos, R.; et al. Analysis of SIRT1 Gene SNPs and Clinical Characteristics in Medication-Related Osteonecrosis of the Jaw. Int. J. Mol. Sci. 2024, 25. https://doi.org/10.3390/ijms25073646.
- 108.
Rabadi, M.M.; Xavier, S.; Vasko, R.; et al. High-mobility group box 1 is a novel deacetylation target of Sirtuin1. Kidney Int. 2015, 87, 95–108. https://doi.org/10.1038/ki.2014.217.
- 109.
Hwang, J.S.; Choi, H.S.; Ham, S.A.; et al. Deacetylation-mediated interaction of SIRT1-HMGB1 improves survival in a mouse model of endotoxemia. Sci. Rep. 2015, 5, 15971. https://doi.org/10.1038/srep15971.
- 110.
Gkouveris, I.; Hadaya, D.; Elzakra, N.; et al. Inhibition of HMGB1/RAGE Signaling Reduces the Incidence of Medication-Related Osteonecrosis of the Jaw (MRONJ) in Mice. J. Bone Miner. Res. 2022, 37, 1775–1786. https://doi.org/10.1002/jbmr.4637.
- 111.
Sofiadis, K.; Josipovic, N.; Nikolic, M.; et al. HMGB1 coordinates SASP-related chromatin folding and RNA homeostasis on the path to senescence. Mol. Syst. Biol. 2021, 17, e9760. https://doi.org/10.15252/msb.20209760.
- 112.
Babaei, M.; Najafi, G.; Shalizar Jalali, A.; et al. Effects of Unilateral Iatrogenic Vas Deferens Trauma on Fertility: An Experimental In Vitro Fertilization Mice Model Study. Bull. Emerg. Trauma. 2015, 3, 122–127.
- 113.
Tominaga, T.; Shimada, R.; Okada, Y.; et al. Senescence-associated-β-galactosidase staining following traumatic brain injury in the mouse cerebrum. PLoS ONE 2019, 14, e0213673. https://doi.org/10.1371/journal.pone.0213673.
- 114.
Saul, D.; Monroe, D.G.; Rowsey, J.L.; et al. Modulation of fracture healing by the transient accumulation of senescent cells. Elife 2021, 10. https://doi.org/10.7554/eLife.69958.
- 115.
Lelarge, V.; Capelle, R.; Oger, F.; et al. Senolytics: From pharmacological inhibitors to immunotherapies, a promising future for patients’ treatment. NPJ Aging 2024, 10, 12. https://doi.org/10.1038/s41514-024-00138-4.
- 116.
Farr, J.N.; Atkinson, E.J.; Achenbach, S.J.; et al. Effects of intermittent senolytic therapy on bone metabolism in postmenopausal women: A phase 2 randomized controlled trial. Nat. Med. 2024, 30, 2605–2612. https://doi.org/10.1038/s41591-024-03096-2.