2509001199
  • Open Access
  • Perspective
Rethinking Osteonecrosis of the Jaw: Could Cellular Senescence Be the Missing Link Between ORN and MRONJ?
  • Jiahe Zhao 1, †,   
  • Yige Liu 2, †,   
  • Jiyuan Liu 3,   
  • Xiufa Tang 1,   
  • Chunjie Li 1,   
  • Zhiyong Guo 1, *

Received: 11 Aug 2025 | Revised: 22 Aug 2025 | Accepted: 01 Sep 2025 | Published: 02 Sep 2025

Abstract

Osteonecrosis of the jaw (ONJ) is a series bone diseases characteristic with similar diagnostic criteria and clinical manifestations. Phossy jaws, medication-related osteonecrosis of the jaw (MRONJ), and osteoradionecrosis (ORN) are major subtypes of ONJ. Though subtypes of ONJ are considered different diseases in clinical practice, similar diagnostic criteria, clinical presentation, and features prompt the possibility that there is a common pathogenesis mechanism for ONJ subtypes. Current pathogenic theories fail to fully explain the delayed onset, persistent progression, and stimulus-independent nature of ONJ. Here, we propose that cellular senescence could be a common pathogenesis mechanism of ONJ. Radiation, antiresorptive agents, and trauma induce persistent DNA damage and activate the DNA damage response, leading to irreversible senescence in jawbone cells. This model explains key clinical observations and offers a rationale for the failure of stimulus withdrawal to reverse disease progression. We outline future directions to validate this hypothesis. If confirmed, this hypothesis may unify ONJ subtypes under a single pathogenic framework and open avenues for targeted interventions.

References 

  • 1.
    Marx, R.E. Uncovering the cause of “phossy jaw” Circa 1858 to 1906: Oral and maxillofacial surgery closed case files-case closed. J. Oral Maxillofac. Surg. 2008, 66, 2356–2363. https://doi.org/10.1016/j.joms.2007.11.006.
  • 2.
    Benford, H.L.; McGowan, N.W.; Helfrich, M.H.; et al. Visualization of bisphosphonate-induced caspase-3 activity in apoptotic osteoclasts in vitro. Bone 2001, 28, 465–473. https://doi.org/10.1016/s8756-3282(01)00412-4.
  • 3.
    Nisi, M.; La Ferla, F.; Karapetsa, D.; et al. Risk factors influencing BRONJ staging in patients receiving intravenous bisphosphonates: A multivariate analysis. Int. J. Oral. Maxillofac. Surg. 2015, 44, 586–591. https://doi.org/10.1016/j.ijom.2015.01.014.
  • 4.
    Ruggiero, S.L.; Dodson, T.B.; Aghaloo, T.; et al. American Association of Oral and Maxillofacial Surgeons’ Position Paper on Medication-Related Osteonecrosis of the Jaws-2022 Update. J. Oral. Maxillofac. Surg. 2022, 80, 920–943. https://doi.org/10.1016/j.joms.2022.02.008.
  • 5.
    Guo, Z.; Li, C.; Tang, X. Research progress on the pathogenesis of medication-related osteonecrosis of the jaw. Int. J. Stomatol. 2020, 47, 717–724. https://doi.org/10.7518/gjkq.2020106.
  • 6.
    Guo, Z.; Cui, W.; Que, L.; et al. Pharmacogenetics of medication-related osteonecrosis of the jaw: A systematic review and meta-analysis. Int. J. Oral. Maxillofac. Surg. 2020, 49, 298–309. https://doi.org/10.1016/j.ijom.2019.07.016.
  • 7.
    Keller, R.K.; Fliesler, S.J. Mechanism of aminobisphosphonate action: Characterization of alendronate inhibition of the isoprenoid pathway. Biochem. Biophys. Res. Commun. 1999, 266, 560–563. https://doi.org/10.1006/bbrc.1999.1849.
  • 8.
    Rogers, M.J.; Gordon, S.; Benford, H.L.; et al. Cellular and molecular mechanisms of action of bisphosphonates. Cancer 2000, 88, 2961–2978. https://doi.org/10.1002/1097-0142(20000615)88:12+<2961::aid-cncr12>3.3.co;2-c.
  • 9.
    David, P.; Nguyen, H.; Barbier, A.; et al. The bisphosphonate tiludronate is a potent inhibitor of the osteoclast vacuolar H(+)-ATPase. J. Bone Miner. Res. 1996, 11, 1498–1507. https://doi.org/10.1002/jbmr.5650111017.
  • 10.
    Weinstein, R.S.; Roberson, P.K.; Manolagas, S.C. Giant osteoclast formation and long-term oral bisphosphonate therapy. N. Engl. J. Med. 2009, 360, 53–62. https://doi.org/10.1056/NEJMoa0802633.
  • 11.
    Córdova, L.A.; Guilbaud, F.; Amiaud, J.; et al. Severe compromise of preosteoblasts in a surgical mouse model of bisphosphonate-associated osteonecrosis of the jaw. J. Craniomaxillofac. Surg. 2016, 44, 1387–1394. https://doi.org/10.1016/j.jcms.2016.07.015.
  • 12.
    Cui, W.; Chen, X.; Zhu, J.; et al. Preventive effect of tetrahedral framework nucleic acids on bisphosphonate-related osteonecrosis of the jaw. Nanoscale 2020, 12, 17196–17202. https://doi.org/10.1039/d0nr03731a.
  • 13.
    Guo, Z.; Yang, J.; Li, C.; et al. Zoledronic Acid Regulates Osteoclasts via miR-483-5p in the BRONJ. Oral. Dis. 2025, 31, 2221–2228. https://doi.org/10.1111/odi.15233.
  • 14.
    Manzano-Moreno, F.J.; Ramos-Torrecillas, J.; Melguizo-Rodríguez, L.; et al. Bisphosphonate Modulation of the Gene Expression of Different Markers Involved in Osteoblast Physiology: Possible Implications in Bisphosphonate-Related Osteonecrosis of the Jaw. Int. J. Med. Sci. 2018, 15, 359–367. https://doi.org/10.7150/ijms.22627.
  • 15.
    Koch, F.P.; Wunsch, A.; Merkel, C.; et al. The influence of bisphosphonates on human osteoblast migration and integrin aVb3/tenascin C gene expression in vitro. Head. Face Med. 2011, 7, 4. https://doi.org/10.1186/1746-160x-7-4.
  • 16.
    Ziebart, T.; Yoon, C.H.; Trepels, T.; et al. Sustained persistence of transplanted proangiogenic cells contributes to neovascularization and cardiac function after ischemia. Circ. Res. 2008, 103, 1327–1334. https://doi.org/10.1161/circresaha.108.180463.
  • 17.
    Ziebart, T.; Pabst, A.; Klein, M.O.; et al. Bisphosphonates: Restrictions for vasculogenesis and angiogenesis: Inhibition of cell function of endothelial progenitor cells and mature endothelial cells in vitro. Clin. Oral. Investig. 2011, 15, 105–111. https://doi.org/10.1007/s00784-009-0365-2.
  • 18.
    Lang, M.; Zhou, Z.; Shi, L.; et al. Influence of zoledronic acid on proliferation, migration, and apoptosis of vascular endothelial cells. Br. J. Oral. Maxillofac. Surg. 2016, 54, 889–893. https://doi.org/10.1016/j.bjoms.2016.05.030.
  • 19.
    Walter, C.; Pabst, A.; Ziebart, T.; et al. Bisphosphonates affect migration ability and cell viability of HUVEC, fibroblasts and osteoblasts in vitro. Oral. Dis. 2011, 17, 194–199. https://doi.org/10.1111/j.1601-0825.2010.01720.x.
  • 20.
    Allegra, A.; Oteri, G.; Nastro, E.; et al. Patients with bisphosphonates-associated osteonecrosis of the jaw have reduced circulating endothelial cells. Hematol. Oncol. 2007, 25, 164–169. https://doi.org/10.1002/hon.819.
  • 21.
    Santini, D.; Vincenzi, B.; Avvisati, G.; et al. Pamidronate induces modifications of circulating angiogenetic factors in cancer patients. Clin. Cancer Res. 2002, 8, 1080–1084.
  • 22.
    Pabst, A.M.; Ziebart, T.; Ackermann, M.; et al. Bisphosphonates’ antiangiogenic potency in the development of bisphosphonate-associated osteonecrosis of the jaws: Influence on microvessel sprouting in an in vivo 3D Matrigel assay. Clin. Oral. Investig. 2014, 18, 1015–1022. https://doi.org/10.1007/s00784-013-1060-x.
  • 23.
    Fournier, P.; Boissier, S.; Filleur, S.; et al. Bisphosphonates inhibit angiogenesis in vitro and testosterone-stimulated vascular regrowth in the ventral prostate in castrated rats. Cancer Res. 2002, 62, 6538–6544.
  • 24.
    Van Poznak, C. Osteonecrosis of the jaw and bevacizumab therapy. Breast Cancer Res. Treat. 2010, 122, 189–191. https://doi.org/10.1007/s10549-010-0933-9.
  • 25.
    Koch, F.P.; Walter, C.; Hansen, T.; et al. Osteonecrosis of the jaw related to sunitinib. Oral. Maxillofac. Surg. 2011, 15, 63–66. https://doi.org/10.1007/s10006-010-0224-y.
  • 26.
    Yuan, A.; Munz, A.; Reinert, S.; et al. Histologic analysis of medication-related osteonecrosis of the jaw compared with antiresorptive-exposed bone and other infectious, inflammatory, and necrotic jaw diseases. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. 2020, 129, 133–140. https://doi.org/10.1016/j.oooo.2019.08.018.
  • 27.
    Li, J.W.; Wang, J.Y.; Yu, R.Q.; et al. Expression of angiogenic markers in jawbones and femur in a rat model treated with zoledronic acid. BMC Res. Notes 2022, 15, 12. https://doi.org/10.1186/s13104-021-05900-5.
  • 28.
    Lombard, T.; Neirinckx, V.; Rogister, B.; et al. Medication-Related Osteonecrosis of the Jaw: New Insights into Molecular Mechanisms and Cellular Therapeutic Approaches. Stem Cells Int. 2016, 2016, 8768162. https://doi.org/10.1155/2016/8768162.
  • 29.
    Aghaloo, T.L.; Kang, B.; Sung, E.C.; et al. Periodontal disease and bisphosphonates induce osteonecrosis of the jaws in the rat. J. Bone Miner. Res. 2011, 26, 1871–1882. https://doi.org/10.1002/jbmr.379.
  • 30.
    Aguirre, J.I.; Akhter, M.P.; Kimmel, D.B.; et al. Oncologic doses of zoledronic acid induce osteonecrosis of the jaw-like lesions in rice rats (Oryzomys palustris) with periodontitis. J. Bone Miner. Res. 2012, 27, 2130–2143. https://doi.org/10.1002/jbmr.1669.
  • 31.
    Kang, B.; Cheong, S.; Chaichanasakul, T.; et al. Periapical disease and bisphosphonates induce osteonecrosis of the jaws in mice. J. Bone Miner. Res. 2013, 28, 1631–1640. https://doi.org/10.1002/jbmr.1894.
  • 32.
    López-Jornet, P.; Camacho-Alonso, F.; Martínez-Canovas, A.; et al. Perioperative antibiotic regimen in rats treated with pamidronate plus dexamethasone and subjected to dental extraction: A study of the changes in the jaws. J. Oral. Maxillofac. Surg. 2011, 69, 2488–2493. https://doi.org/10.1016/j.joms.2011.02.059.
  • 33.
    Sedghizadeh, P.P.; Kumar, S.K.; Gorur, A.; et al. Identification of microbial biofilms in osteonecrosis of the jaws secondary to bisphosphonate therapy. J. Oral. Maxillofac. Surg. 2008, 66, 767–775. https://doi.org/10.1016/j.joms.2007.11.035.
  • 34.
    Sedghizadeh, P.P.; Kumar, S.K.; Gorur, A.; et al. Microbial biofilms in osteomyelitis of the jaw and osteonecrosis of the jaw secondary to bisphosphonate therapy. J. Am. Dent. Assoc. 2009, 140, 1259–1265. https://doi.org/10.14219/jada.archive.2009.0049.
  • 35.
    Filleul, O.; Crompot, E.; Saussez, S. Bisphosphonate-induced osteonecrosis of the jaw: A review of 2,400 patient cases. J. Cancer Res. Clin. Oncol. 2010, 136, 1117–1124. https://doi.org/10.1007/s00432-010-0907-7.
  • 36.
    Zhang, Q.; Yu, W.; Lee, S.; et al. Bisphosphonate Induces Osteonecrosis of the Jaw in Diabetic Mice via NLRP3/Caspase-1-Dependent IL-1β Mechanism. J. Bone Miner. Res. 2015, 30, 2300–2312. https://doi.org/10.1002/jbmr.2577.
  • 37.
    Stockmann, P.; Nkenke, E.; Englbrecht, M.; et al. Major histocompatibility complex class II polymorphisms are associated with the development of anti-resorptive agent-induced osteonecrosis of the jaw. J. Craniomaxillofac. Surg. 2013, 41, 71–75. https://doi.org/10.1016/j.jcms.2012.10.018.
  • 38.
    Arron, J.R.; Choi, Y. Bone versus immune system. Nature 2000, 408, 535–536. https://doi.org/10.1038/35046196.
  • 39.
    Balla, B.; Kósa, J.P.; Kiss, J.; et al. Transcriptional profiling of immune system-related genes in postmenopausal osteoporotic versus non-osteoporotic human bone tissue. Clin. Immunol. 2009, 131, 354–359. https://doi.org/10.1016/j.clim.2009.01.004.
  • 40.
    Jung, J.; Park, J.S.; Righesso, L.; et al. Effects of an oral bisphosphonate and three intravenous bisphosphonates on several cell types in vitro. Clin. Oral. Investig. 2018, 22, 2527–2534. https://doi.org/10.1007/s00784-018-2349-6.
  • 41.
    Pabst, A.M.; Ziebart, T.; Koch, F.P.; et al. The influence of bisphosphonates on viability, migration, and apoptosis of human oral keratinocytes--in vitro study. Clin. Oral. Investig. 2012, 16, 87–93. https://doi.org/10.1007/s00784-010-0507-6.
  • 42.
    Correia Vde, F.; Caldeira, C.L.; Marques, M.M. Cytotoxicity evaluation of sodium alendronate on cultured human periodontal ligament fibroblasts. Dent. Traumatol. 2006, 22, 312–317. https://doi.org/10.1111/j.1600-9657.2005.00434.x.
  • 43.
    Moreira, M.S.; Katayama, E.; Bombana, A.C.; et al. Cytotoxicity analysis of alendronate on cultured endothelial cells and subcutaneous tissue. a pilot study. Dent. Traumatol. 2005, 21, 329–335. https://doi.org/10.1111/j.1600-9657.2005.00370.x.
  • 44.
    Curi, M.M.; dos Santos, M.O.; Feher, O.; et al. Management of extensive osteoradionecrosis of the mandible with radical resection and immediate microvascular reconstruction. J. Oral. Maxillofac. Surg. 2007, 65, 434–438. https://doi.org/10.1016/j.joms.2005.12.068.
  • 45.
    Gowgiel, J.M. Experimental radio-osteonecrosis of the jaws. J. Dent. Res. 1960, 39, 176–197. https://doi.org/10.1177/0022034
  • 46.
    Marx, R.E. Osteoradionecrosis: A new concept of its pathophysiology. J. Oral. Maxillofac. Surg. 1983, 41, 283–288. https://doi.org/10.1016/0278-2391(83)90294-x.
  • 47.
    Bras, J.; de Jonge, H.K.; van Merkesteyn, J.P. Osteoradionecrosis of the mandible: Pathogenesis. Am. J. Otolaryngol. 1990, 11, 244–250. https://doi.org/10.1016/0196-0709(90)90084-9.
  • 48.
    Assael, L.A. New foundations in understanding osteonecrosis of the jaws. J. Oral. Maxillofac. Surg. 2004, 62, 125–126. https://doi.org/10.1016/j.joms.2003.11.009.
  • 49.
    Al-Nawas, B.; Duschner, H.; Grötz, K.A. Early cellular alterations in bone after radiation therapy and its relation to osteoradionecrosis. J. Oral. Maxillofac. Surg. 2004, 62, 1045. https://doi.org/10.1016/j.joms.2004.05.204.
  • 50.
    Delanian, S.; Depondt, J.; Lefaix, J.L. Major healing of refractory mandible osteoradionecrosis after treatment combining pentoxifylline and tocopherol: A phase II trial. Head. Neck 2005, 27, 114–123. https://doi.org/10.1002/hed.20121.
  • 51.
    Delanian, S.; Lefaix, J.L. The radiation-induced fibroatrophic process: Therapeutic perspective via the antioxidant pathway. Radiother. Oncol. 2004, 73, 119–131. https://doi.org/10.1016/j.radonc.2004.08.021.
  • 52.
    Chrcanovic, B.R.; Reher, P.; Sousa, A.A.; et al. Osteoradionecrosis of the jaws--a current overview--part 1: Physiopathology and risk and predisposing factors. Oral. Maxillofac. Surg. 2010, 14, 3–16. https://doi.org/10.1007/s10006-009-0198-9.
  • 53.
    Vozenin-Brotons, M.C.; Milliat, F.; Sabourin, J.C.; et al. Fibrogenic signals in patients with radiation enteritis are associated with increased connective tissue growth factor expression. Int. J. Radiat. Oncol. Biol. Phys. 2003, 56, 561–572. https://doi.org/10.1016/s0360-3016(02)04601-1.
  • 54.
    Xu, J.; Zheng, Z.; Fang, D.; et al. Early-stage pathogenic sequence of jaw osteoradionecrosis in vivo. J. Dent. Res. 2012, 91, 702–708. https://doi.org/10.1177/0022034512448661.
  • 55.
    Xu, J.; Yan, X.; Gao, R.; et al. Effect of irradiation on microvascular endothelial cells of parotid glands in the miniature pig. Int. J. Radiat. Oncol. Biol. Phys. 2010, 78, 897–903. https://doi.org/10.1016/j.ijrobp.2010.05.048.
  • 56.
    Robard, L.; Louis, M.Y.; Blanchard, D.; et al. Medical treatment of osteoradionecrosis of the mandible by PENTOCLO: preliminary results. Eur. Ann. Otorhinolaryngol. Head. Neck Dis. 2014, 131, 333–338. https://doi.org/10.1016/j.anorl.2013.11.006.
  • 57.
    Delanian, S.; Chatel, C.; Porcher, R.; et al. Complete restoration of refractory mandibular osteoradionecrosis by prolonged treatment with a pentoxifylline-tocopherol-clodronate combination (PENTOCLO): A phase II trial. Int. J. Radiat. Oncol. Biol. Phys. 2011, 80, 832–839. https://doi.org/10.1016/j.ijrobp.2010.03.029.
  • 58.
    Støre, G.; Eribe, E.R.; Olsen, I. DNA-DNA hybridization demonstrates multiple bacteria in osteoradionecrosis. Int. J. Oral. Maxillofac. Surg. 2005, 34, 193–196. https://doi.org/10.1016/j.ijom.2004.06.010.
  • 59.
    He, P.; Francois, K.; Missaghian, N.; et al. Are Bacteria Just Bystanders in the Pathogenesis of Inflammatory Jaw Conditions? J. Oral. Maxillofac. Surg. 2022, 80, 1094–1102. https://doi.org/10.1016/j.joms.2022.03.012.
  • 60.
    Lyons, A.; Ghazali, N. Osteoradionecrosis of the jaws: Current understanding of its pathophysiology and treatment. Br. J. Oral. Maxillofac. Surg. 2008, 46, 653–660. https://doi.org/10.1016/j.bjoms.2008.04.006.
  • 61.
    Kim, H.Y.; Jung, Y.S.; Park, W.; et al. Can medication-related osteonecrosis of the jaw be attributed to specific microorganisms through oral microbiota analyses? A preliminary study. BMC Oral. Health 2024, 24, 160. https://doi.org/10.1186/s12903-024-03945-z.
  • 62.
    Ewald, F.; Wuesthoff, F.; Koehnke, R.; et al. Retrospective analysis of bacterial colonization of necrotic bone and antibiotic resistance in 98 patients with medication-related osteonecrosis of the jaw (MRONJ). Clin. Oral. Investig. 2021, 25, 2801–2809. https://doi.org/10.1007/s00784-020-03595-9.
  • 63.
    Du, W.; Yang, M.; Kim, T.; et al. Indigenous microbiota protects development of medication-related osteonecrosis induced by periapical disease in mice. Int. J. Oral. Sci. 2022, 14, 16. https://doi.org/10.1038/s41368-022-00166-4.
  • 64.
    Marx, R.E.; Tursun, R. Suppurative osteomyelitis, bisphosphonate induced osteonecrosis, osteoradionecrosis: a blinded histopathologic comparison and its implications for the mechanism of each disease. Int. J. Oral. Maxillofac. Surg. 2012, 41, 283–289. https://doi.org/10.1016/j.ijom.2011.12.016.
  • 65.
    Shuster, A.; Reiser, V.; Trejo, L.; et al. Comparison of the histopathological characteristics of osteomyelitis, medication-related osteonecrosis of the jaw, and osteoradionecrosis. Int. J. Oral. Maxillofac. Surg. 2019, 48, 17–22. https://doi.org/10.1016/j.ijom.2018.07.002.
  • 66.
    He, Y.; Ma, C.; Hou, J.; et al. Chinese expert group consensus on diagnosis and clinical management of osteoradionecrosis of the mandible. Int. J. Oral. Maxillofac. Surg. 2020, 49, 411–419. https://doi.org/10.1016/j.ijom.2019.06.015.
  • 67.
    Yarom, N.; Shapiro, C.L.; Peterson, D.E.; et al. Medication-Related Osteonecrosis of the Jaw: MASCC/ISOO/ASCO Clinical Practice Guideline. J. Clin. Oncol. 2019, 37, 2270–2290. https://doi.org/10.1200/jco.19.01186.
  • 68.
    Allegra, A.; Alonci, A.; Penna, G.; et al. Bisphosphonates induce apoptosis of circulating endothelial cells in multiple myeloma patients and in subjects with bisphosphonate-induced osteonecrosis of the jaws. Acta Haematol. 2010, 124, 79–85. https://doi.org/10.1159/000313787.
  • 69.
    Wehrhan, F.; Stockmann, P.; Nkenke, E.; et al. Differential impairment of vascularization and angiogenesis in bisphosphonate-associated osteonecrosis of the jaw-related mucoperiosteal tissue. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod. 2011, 112, 216–221. https://doi.org/10.1016/j.tripleo.2011.02.028.
  • 70.
    Kang, Z.; Jin, T.; Li, X.; et al. Progression and postoperative complications of osteoradionecrosis of the jaw: A 20-year retrospective study of 124 non-nasopharyngeal cancer cases and meta-analysis. BMC Oral. Health 2022, 22, 213. https://doi.org/10.1186/s12903-022-02244-9.
  • 71.
    Cuozzo, A.; Iorio-Siciliano, V.; Vaia, E.; et al. Incidence and risk factors associated to Medication-Related Osteo Necrosis of the Jaw (MRONJ) in patients with osteoporosis after tooth extractions. A 12-months observational cohort study. J. Stomatol. Oral. Maxillofac. Surg. 2022, 123, 616–621. https://doi.org/10.1016/j.jormas.2022.03.020.
  • 72.
    Soutome, S.; Otsuru, M.; Murata, M.; et al. Risk factors for developing medication-related osteonecrosis of the jaw when preserving the tooth that can be a source of infection in cancer patients receiving high-dose antiresorptive agents: A retrospective study. Support. Care Cancer 2022, 30, 7241–7248. https://doi.org/10.1007/s00520-022-07134-y.
  • 73.
    Hasegawa, T.; Kawakita, A.; Ueda, N.; et al. A multicenter retrospective study of the risk factors associated with medication-related osteonecrosis of the jaw after tooth extraction in patients receiving oral bisphosphonate therapy: Can primary wound closure and a drug holiday really prevent MRONJ? Osteoporos. Int. 2017, 28, 2465–2473. https://doi.org/10.1007/s00198-017-4063-7.
  • 74.
    Morishita, K.; Soutome, S.; Otsuru, M.; et al. Relationship between drug holiday of the antiresorptive agents and surgical outcome of medication-related osteonecrosis of the jaw in osteoporosis patients. Sci. Rep. 2022, 12, 11545. https://doi.org/10.1038/s41598-022-15720-7.
  • 75.
    Sagar Kansara, S.S. Premalignant Lesions of the Oral Mucosa. In StatPearls; StatPearls Publishing: St. Petersburg, FL, USA, 2022.
  • 76.
    Mott, T.F. Lung Cancer: Screening and Evaluation of Patients With Solitary Pulmonary Nodules. FP Essent. 2018, 464, 17–22.
  • 77.
    Ambrosi, T.H.; Marecic, O.; McArdle, A.; et al. Aged skeletal stem cells generate an inflammatory degenerative niche. Nature 2021, 597, 256–262. https://doi.org/10.1038/s41586-021-03795-7.
  • 78.
    Wang, B.; Han, J.; Elisseeff, J.H.; et al. The senescence-associated secretory phenotype and its physiological and pathological implications. Nat. Rev. Mol. Cell Biol. 2024, 25, 958–978. https://doi.org/10.1038/s41580-024-00727-x.
  • 79.
    Chapman, J.; Fielder, E.; Passos, J.F. Mitochondrial dysfunction and cell senescence: Deciphering a complex relationship. FEBS Lett. 2019, 593, 1566–1579. https://doi.org/10.1002/1873-3468.13498.
  • 80.
    Acosta, J.C.; Banito, A.; Wuestefeld, T.; et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 2013, 15, 978–990. https://doi.org/10.1038/ncb2784.
  • 81.
    Takasugi, M.; Okada, R.; Takahashi, A.; et al. Small extracellular vesicles secreted from senescent cells promote cancer cell proliferation through EphA2. Nat. Commun. 2017, 8, 15729. https://doi.org/10.1038/ncomms15728.
  • 82.
    Hou, J.; Chen, K.X.; He, C.; et al. Aged bone marrow macrophages drive systemic aging and age-related dysfunction via extracellular vesicle-mediated induction of paracrine senescence. Nat. Aging 2024, 4, 1562–1581. https://doi.org/10.1038/s43587-024-00694-0.
  • 83.
    Davalos, A.R.; Kawahara, M.; Malhotra, G.K.; et al. p53-dependent release of Alarmin HMGB1 is a central mediator of senescent phenotypes. J. Cell Biol. 2013, 201, 613–629. https://doi.org/10.1083/jcb.201206006.
  • 84.
    Coppé, J.P.; Patil, C.K.; Rodier, F.; et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008, 6, 2853–2868. https://doi.org/10.1371/journal.pbio.0060301.
  • 85.
    Zhong, J.; Chen, J.; Oyekan, A.A.; et al. Ionizing Radiation Induces Disc Annulus Fibrosus Senescence and Matrix Catabolism via MMP-Mediated Pathways. Int. J. Mol. Sci. 2022, 23. https://doi.org/10.3390/ijms23074014.
  • 86.
    Zheng, X.; Liu, Z.; Bin, Y.; et al. Ionizing radiation induces vascular smooth muscle cell senescence through activating NF-κB/CTCF/p16 pathway. Biochim. Biophys. Acta Mol. Basis Dis. 2024, 1870, 166994. https://doi.org/10.1016/j.bbadis.2023.166994.
  • 87.
    Meng, J.; Li, Y.; Wan, C.; et al. Targeting senescence-like fibroblasts radiosensitizes non-small cell lung cancer and reduces radiation-induced pulmonary fibrosis. JCI Insight 2021, 6. https://doi.org/10.1172/jci.insight.146334.
  • 88.
    Wang, Z.; Chen, Z.; Jiang, Z.; et al. Cordycepin prevents radiation ulcer by inhibiting cell senescence via NRF2 and AMPK in rodents. Nat. Commun. 2019, 10, 2538. https://doi.org/10.1038/s41467-019-10386-8.
  • 89.
    Bai, J.; Wang, Y.; Wang, J.; et al. Irradiation-induced senescence of bone marrow mesenchymal stem cells aggravates osteogenic differentiation dysfunction via paracrine signaling. Am. J. Physiol. Cell Physiol. 2020, 318, C1005–C1017. https://doi.org/10.1152/ajpcell.00520.2019.
  • 90.
    Alessio, N.; Del Gaudio, S.; Capasso, S.; et al. Low dose radiation induced senescence of human mesenchymal stromal cells and impaired the autophagy process. Oncotarget 2015, 6, 8155–8166. https://doi.org/10.18632/oncotarget.2692.
  • 91.
    Wang, Y.; Xu, L.; Wang, J.; et al. Radiation induces primary osteocyte senescence phenotype and affects osteoclastogenesis in vitro. Int. J. Mol. Med. 2021, 47. https://doi.org/10.3892/ijmm.2021.4909.
  • 92.
    Guo, Z.; Wang, Z.; Liu, Y.; et al. Carbon Dots from Lycium barbarum Attenuate Radiation-Induced Bone Injury by Inhibiting Senescence via METTL3/Clip3 in an m(6)A-Dependent Manner. ACS Appl. Mater. Interfaces 2023, 15, 20726–20741. https://doi.org/10.1021/acsami.3c01322.
  • 93.
    Ohnuki, H.; Izumi, K.; Terada, M.; et al. Zoledronic acid induces S-phase arrest via a DNA damage response in normal human oral keratinocytes. Arch. Oral. Biol. 2012, 57, 906–917. https://doi.org/10.1016/j.archoralbio.2011.11.015.
  • 94.
    Shaharuddin, N.B.; Jones, D.; Chai, W.L. The senescence effect of zoledronate on three-dimensional oral mucosa model. Sains Malays. 2022, 51, 1131–1142.
  • 95.
    Kim, R.H.; Lee, R.S.; Williams, D.; et al. Bisphosphonates induce senescence in normal human oral keratinocytes. J. Dent. Res. 2011, 90, 810–816. https://doi.org/10.1177/0022034511402995.
  • 96.
    Tseng, H.C.; Kanayama, K.; Kaur, K.; et al. Bisphosphonate-induced differential modulation of immune cell function in gingiva and bone marrow in vivo: Role in osteoclast-mediated NK cell activation. Oncotarget 2015, 6, 20002–20025. https://doi.org/10.18632/oncotarget.4755.
  • 97.
    Szentpeteri, S.; Kosa, J.; Juhasz, H.D.; et al. Examination of certain single-nucleotide polymorphisms of interleukins 1A and 1B in medication-related osteonecrosis of the jaw–An ambirectional cohort study. J. Craniomaxillofac. Surg. 2024, 52, 1133–1139. https://doi.org/10.1016/j.jcms.2024.06.007.
  • 98.
    Samakkarnthai, P.; Saul, D.; Zhang, L.; et al. In vitro and in vivo effects of zoledronic acid on senescence and senescence-associated secretory phenotype markers. Aging 2023, 15, 3331–3355. https://doi.org/10.18632/aging.204701.
  • 99.
    Satoh, A.; Brace, C.S.; Rensing, N.; et al. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab. 2013, 18, 416–430. https://doi.org/10.1016/j.cmet.2013.07.013.
  • 100.
    Huang, S.B.; Rivas, P.; Yang, X.; et al. SIRT1 inhibition-induced senescence as a strategy to prevent prostate cancer progression. Mol. Carcinog. 2022, 61, 702–716. https://doi.org/10.1002/mc.23412.
  • 101.
    Liu, S.; Zheng, Z.; Ji, S.; et al. Resveratrol reduces senescence-associated secretory phenotype by SIRT1/NF-κB pathway in gut of the annual fish Nothobranchius guentheri. Fish. Shellfish. Immunol. 2018, 80, 473–479. https://doi.org/10.1016/j.fsi.2018.06.027.
  • 102.
    Wang, H.; Hu, Z.; Wu, J.; et al. Sirt1 Promotes Osteogenic Differentiation and Increases Alveolar Bone Mass via Bmi1 Activation in Mice. J. Bone Miner. Res. 2019, 34, 1169–1181. https://doi.org/10.1002/jbmr.3677.
  • 103.
    Cui, Y.; Zhang, W.; Yang, P.; et al. Menaquinone-4 prevents medication-related osteonecrosis of the jaw through the SIRT1 signaling-mediated inhibition of cellular metabolic stresses-induced osteoblast apoptosis. Free Radic. Biol. Med. 2023, 206, 33–49. https://doi.org/10.1016/j.freeradbiomed.2023.06.022.
  • 104.
    Zhu, S.; Cui, Y.; Zhang, W.; et al. Inflammation Can Be a High-Risk Factor for Mucosal Nonunion of MRONJ by Regulating SIRT1 Signaling When Treated with an Oncologic Dose of Zoledronate. Drug Des. Dev. Ther. 2024, 18, 2793–2812. https://doi.org/10.2147/dddt.S456811.
  • 105.
    Yang, G.; Hamadeh, I.S.; Katz, J.; et al. SIRT1/HERC4 Locus Associated With Bisphosphonate-Induced Osteonecrosis of the Jaw: An Exome-Wide Association Analysis. J. Bone Miner. Res. 2018, 33, 91–98. https://doi.org/10.1002/jbmr.3285.
  • 106.
    Yang, G.; Collins, J.M.; Rafiee, R.; et al. SIRT1 Gene SNP rs932658 Is Associated With Medication-Related Osteonecrosis of the Jaw. J. Bone Miner. Res. 2021, 36, 347–356. https://doi.org/10.1002/jbmr.4185.
  • 107.
    Bojtor, B.; Vaszilko, M.; Armos, R.; et al. Analysis of SIRT1 Gene SNPs and Clinical Characteristics in Medication-Related Osteonecrosis of the Jaw. Int. J. Mol. Sci. 2024, 25. https://doi.org/10.3390/ijms25073646.
  • 108.
    Rabadi, M.M.; Xavier, S.; Vasko, R.; et al. High-mobility group box 1 is a novel deacetylation target of Sirtuin1. Kidney Int. 2015, 87, 95–108. https://doi.org/10.1038/ki.2014.217.
  • 109.
    Hwang, J.S.; Choi, H.S.; Ham, S.A.; et al. Deacetylation-mediated interaction of SIRT1-HMGB1 improves survival in a mouse model of endotoxemia. Sci. Rep. 2015, 5, 15971. https://doi.org/10.1038/srep15971.
  • 110.
    Gkouveris, I.; Hadaya, D.; Elzakra, N.; et al. Inhibition of HMGB1/RAGE Signaling Reduces the Incidence of Medication-Related Osteonecrosis of the Jaw (MRONJ) in Mice. J. Bone Miner. Res. 2022, 37, 1775–1786. https://doi.org/10.1002/jbmr.4637.
  • 111.
    Sofiadis, K.; Josipovic, N.; Nikolic, M.; et al. HMGB1 coordinates SASP-related chromatin folding and RNA homeostasis on the path to senescence. Mol. Syst. Biol. 2021, 17, e9760. https://doi.org/10.15252/msb.20209760.
  • 112.
    Babaei, M.; Najafi, G.; Shalizar Jalali, A.; et al. Effects of Unilateral Iatrogenic Vas Deferens Trauma on Fertility: An Experimental In Vitro Fertilization Mice Model Study. Bull. Emerg. Trauma. 2015, 3, 122–127.
  • 113.
    Tominaga, T.; Shimada, R.; Okada, Y.; et al. Senescence-associated-β-galactosidase staining following traumatic brain injury in the mouse cerebrum. PLoS ONE 2019, 14, e0213673. https://doi.org/10.1371/journal.pone.0213673.
  • 114.
    Saul, D.; Monroe, D.G.; Rowsey, J.L.; et al. Modulation of fracture healing by the transient accumulation of senescent cells. Elife 2021, 10. https://doi.org/10.7554/eLife.69958.
  • 115.
    Lelarge, V.; Capelle, R.; Oger, F.; et al. Senolytics: From pharmacological inhibitors to immunotherapies, a promising future for patients’ treatment. NPJ Aging 2024, 10, 12. https://doi.org/10.1038/s41514-024-00138-4.
  • 116.
    Farr, J.N.; Atkinson, E.J.; Achenbach, S.J.; et al. Effects of intermittent senolytic therapy on bone metabolism in postmenopausal women: A phase 2 randomized controlled trial. Nat. Med. 2024, 30, 2605–2612. https://doi.org/10.1038/s41591-024-03096-2.
Share this article:
How to Cite
Zhao, J.; Liu, Y.; Liu, J.; Tang, X.; Li, C.; Guo, Z. Rethinking Osteonecrosis of the Jaw: Could Cellular Senescence Be the Missing Link Between ORN and MRONJ?. Regenerative Medicine and Dentistry 2025, 2 (3), 10. https://doi.org/10.53941/rmd.2025.100010.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.