- 1.
Darouiche, R.O. Treatment of infections associated with surgical implants. N. Engl. J. Med. 2004, 350, 1422–1429.
- 2.
Rosenthal, V.D.; Al-Abdely, H.M.; El-Kholy, A.A.; et al. International Nosocomial Infection Control Consortium report, data summary of 50 countries for 2010-2015: Device-associated module. Am. J. Infect. Control 2016, 44, 1495–1504.
- 3.
Vasilev, K.; Poulter, N.; Martinek, P.; et al. Controlled Release of Levofloxacin Sandwiched between Two Plasma Polymerized Layers on a Solid Carrier. ACS Appl. Mater. Interfaces 2011, 3, 4831–4836.
- 4.
Dudeck, M.A.; Edwards, J.R.; Allen-Bridson, K.; et al. National Healthcare Safety Network report, data summary for 2013, Device-associated Module. Am. J. Infect. Control 2015, 43, 206–221.
- 5.
Li, B.; Thebault, P.; Labat, B.; et al. Implants coating strategies for antibacterial treatment in fracture and defect models: A systematic review of animal studies. J. Orthop. Transl. 2024, 45, 24–35.
- 6.
Zimlichman, E.; Henderson, D.; Tamir, O.; et al. Health Care–Associated Infections: A Meta-analysis of Costs and Financial Impact on the US Health Care System. JAMA Intern. Med. 2013, 173, 2039–2046.
- 7.
Bleyer, A.J. Use of antimicrobial catheter lock solutions to prevent catheter-related bacteremia. Clin. J. Am. Soc. Nephrol. CJASN 2007, 2, 1073–1078.
- 8.
Allegranzi, B.; Bagheri Nejad, S.; Combescure, C.; et al. Burden of endemic health-care-associated infection in developing countries: Systematic review and meta-analysis. Lancet 2011, 377, 228–241.
- 9.
Deen, J.; von Seidlein, L.; Andersen, F.; et al. Community-acquired bacterial bloodstream infections in developing countries in south and southeast Asia: A systematic review. Lancet. Infect. Dis. 2012, 12, 480–487.
- 10.
Bagheri Nejad, S.; Allegranzi, B.; Syed, S.B.; et al. Health-care-associated infection in Africa: A systematic review. Bull. World Health Organ. 2011, 89, 757–765.
- 11.
Grayson, M.L. Kucers' the Use of Antibiotics: A Clinical Review of Antibacterial, Antifungal, Antiparasitic and Antiviral Drugs; CRC Press: Boca Raton, FL, USA, 2017.
- 12.
Diab-El Schahawi, M.; Presterl, E.; Reilly, J.S. Basic Microbiology and Infection Control for Midwives, 1st ed.; Springer International Publishing: Cham, Switzerland, 2019.
- 13.
Bright, R.; Hayles, A.; Wood, J.; et al. Surfaces Containing Sharp Nanostructures Enhance Antibiotic Efficacy. Nano Lett. 2022, 22, 6724–6731.
- 14.
Shree, P.; Singh, C.K.; Sodhi, K.K.; et al. Biofilms: Understanding the structure and contribution towards bacterial resistance in antibiotics. Med. Microecol. 2023, 16, 100084.
- 15.
Lim, L.M.; Ly, N.; Anderson, D.; et al. Resurgence of colistin: A review of resistance, toxicity, pharmacodynamics, and dosing. Pharmacotherapy 2010, 30, 1279–1291.
- 16.
Robles, M.; Toscano, E.; Cotta, J.; et al. Antibiotic-induced liver toxicity: Mechanisms, clinical features and causality assessment. Curr. Drug Saf. 2010, 5, 212–222.
- 17.
Montanari, E.; Bernardo, G.; Le Noci, V.; et al. Biofilm formation by the host microbiota: A protective shield against immunity and its implication in cancer. Mol Cancer 2025, 24, 148.
- 18.
Mihai, M.M.; Holban, A.M.; Giurcaneanu, C.; et al. Microbial biofilms: Impact on the pathogenesis of periodontitis, cystic fibrosis, chronic wounds and medical device-related infections. Curr. Top. Med. Chem. 2015, 15, 1552–1576.
- 19.
Martínez, J.L. Antibiotics and antibiotic resistance genes in natural environments. Science 2008, 321, 365–367.
- 20.
Vasilev, K.; Cook, J.; Griesser, H.J. Antibacterial surfaces for biomedical devices. Expert Rev. Med. Devices 2009, 6, 553–567.
- 21.
Vasilev, K.; Griesser, S.S.; Griesser, H.J. Antibacterial Surfaces and Coatings Produced by Plasma Techniques. Plasma Process. Polym. 2011, 8, 1010–1023.
- 22.
Hasan, J.; Bright, R.; Hayles, A.; et al. Preventing Peri-implantitis: The Quest for a Next Generation of Titanium Dental Implants. ACS Biomater. Sci. Eng. 2022, 8, 4697–4737.
- 23.
Bright, R.; Hayles, A.; Wood, J.; et al. Interplay between Immune and Bacterial Cells on a Biomimetic Nanostructured Surface: A “Race for the Surface” Study. ACS Appl. Bio Mater. 2023, 6, 3472–3483.
- 24.
Romo-Rico, J.; Bright, R.; Krishna, S.M.; et al. Antimicrobial graphene-based coatings for biomedical implant applications. Carbon Trends 2023, 12, 100282.
- 25.
Chernousova, S.; Epple, M. Silver as Antibacterial Agent: Ion, Nanoparticle, and Metal. Angew. Chem. Int. Ed. 2013, 52, 1636–1653.
- 26.
Taheri, S.; Baier, G.; Majewski, P.; et al. Synthesis and antibacterial properties of a hybrid of silver–potato starch nanocapsules by miniemulsion/polyaddition polymerization. J. Mater. Chem. B 2014, 2, 1838–1845.
- 27.
Alexander, J.W. History of the medical use of silver. Surg. Infect. 2009, 10, 289–292.
- 28.
Beattie, M.; Taylor, J. Silver alloy vs. uncoated urinary catheters: A systematic review of the literature. J. Clin. Nurs. 2011, 20, 2098–2108.
- 29.
Jiang, Y.; Zhang, Q.; Wang, H.; et al. Effectiveness of silver and iodine dressings on wound healing: A systematic review and meta-analysis. BMJ Open 2024, 14, e077902.
- 30.
Liang, K.; Liu, Y.; Jiang, F. Analysis of therapeutic effect of silver-based dressings on chronic wound healing. Int. Wound J. 2024, 21, e70006.
- 31.
Macgregor-Ramiasa, M.N.; Cavallaro, A.A.; Vasilev, K. Properties and reactivity of polyoxazoline plasma polymer films. J. Mater. Chem. B 2015, 3, 6327–6337.
- 32.
Ramiasa, M.N.; Cavallaro, A.A.; Mierczynska, A.; et al. Plasma polymerised polyoxazoline thin films for biomedical applications. Chem. Commun. 2015, 51, 4279–4282.
- 33.
Cavallaro, A.A.; Macgregor-Ramiasa, M.N.; Vasilev, K. Antibiofouling Properties of Plasma-Deposited Oxazoline-Based Thin Films. ACS Appl. Mater. Interfaces 2016, 8, 6354–6362.
- 34.
Ninan, N.; Joseph, B.; Visalakshan, R.M.; et al. Plasma assisted design of biocompatible 3D printed PCL/silver nanoparticle scaffolds: In vitro and in vivo analyses. Mater. Adv. 2021, 2, 6620–6630.
- 35.
Goreham, R.V.; Short, R.D.; Vasilev, K. Method for the Generation of Surface-Bound Nanoparticle Density Gradients. J. Phys. Chem. C 2011, 115, 3429–3433.
- 36.
Hernandez-Lopez, J.L.; Bauer, R.E.; Chang, W.S.; et al. Functional polymers as nanoscopic building blocks. Mater. Sci. Eng. C 2003, 23, 267–274.
- 37.
Macgregor-Ramiasa, M.; McNicholas, K.; Ostrikov, K.; et al. A platform for selective immuno-capture of cancer cells from urine. Biosens. Bioelectron. 2017, 96, 373–380.
- 38.
Alemie, M.N.; Bright, R.; Nguyen, N.H.; et al. Surface Chemistry Induced IgG Unfolding and Modulation of Immune Responses. ACS Appl. Mater. Interfaces 2024, 16, 50507–50523.
- 39.
Vasilev, K.; Sah, V.; Anselme, K.; et al. Tunable antibacterial coatings that support mammalian cell growth. Nano Lett 2010, 10, 202–207.
- 40.
Nguyen, T.T.; Zhang, P.; Bi, J.; et al. Silver─Gallium Nano-Amalgamated Particles as a Novel, Biocompatible Solution for Antibacterial Coatings. Adv. Funct. Mater. 2024, 34, 2310539.
- 41.
Haidari, H.; Kopecki, Z.; Bright, R.; et al. Ultrasmall AgNP-Impregnated Biocompatible Hydrogel with Highly Effective Biofilm Elimination Properties. ACS Appl. Mater. Interfaces 2020, 12, 41011–41025.
- 42.
Vasilev, K.; Michelmore, A.; Martinek, P.; et al. Early Stages of Growth of Plasma Polymer Coatings Deposited from Nitrogen- and Oxygen-Containing Monomers. Plasma Process. Polym. 2010, 7, 824–835.
- 43.
Taheri, S.; Cavallaro, A.; Christo, S.N.; et al. Substrate independent silver nanoparticle based antibacterial coatings. Biomaterials 2014, 35, 4601–4609.
- 44.
Berger, A.; Edelsberg, J.; Oster, G.; et al. Patterns of Initial Antibiotic Therapy for Complicated Skin and Skin Structure Infections (cSSSI) in US Hospitals, 2000–2009. Infect. Dis. Clin. Pract. 2013, 21, 159–167.
- 45.
O’Gara, J.P.; Humphreys, H. Staphylococcus epidermidis biofilms: Importance and implications. J. Med. Microbiol. 2001, 50, 582–587.
- 46.
Otto, M. Staphylococcal Biofilms. Microbiol. Spectr. 2018, 6. https://doi.org/10.1128/microbiolspec.GPP3-0023-2018.
- 47.
Pavlovsky, L.; Sturtevant, R.A.; Younger, J.G.; et al. Effects of temperature on the morphological, polymeric, and mechanical properties of Staphylococcus epidermidis bacterial biofilms. Langmuir ACS J. Surf. Colloids 2015, 31, 2036–2042.
- 48.
Walker, J.T.; Jhutty, A.; Parks, S.; et al. Investigation of healthcare-acquired infections associated with Pseudomonas aeruginosa biofilms in taps in neonatal units in Northern Ireland. J. Hosp. Infect. 2014, 86, 16–23.
- 49.
Le Feuvre, R.A.; Brough, D.; Iwakura, Y.; et al. Priming of Macrophages with Lipopolysaccharide Potentiates P2X7-mediated Cell Death via a Caspase-1-dependent Mechanism, Independently of Cytokine Production. J. Biol. Chem. 2002, 277, 3210–3218.
- 50.
Park, B.S.; Lee, J.-O. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp. Mol. Med. 2013, 45, e66.
- 51.
Mareddy, S.; Crawford, R.; Brooke, G.; et al. Clonal isolation and characterization of bone marrow stromal cells from patients with osteoarthritis. Tissue Eng. 2007, 13, 819–829.
- 52.
Singh, S.; Jones, B.J.; Crawford, R.; et al. Characterization of a mesenchymal-like stem cell population from osteophyte tissue. Stem Cells Dev. 2008, 17, 245–254.
- 53.
Chen, Z.; Klein, T.; Murray, R.Z.; et al. Osteoimmunomodulation for the development of advanced bone biomaterials. Mater. Today 2016, 19, 304–321.
- 54.
He, W.; Elkhooly, T.A.; Liu, X.; et al. Silver nanoparticle based coatings enhance adipogenesis compared to osteogenesis in human mesenchymal stem cells through oxidative stress. J. Mater. Chem. B 2016, 4, 1466–1479.
- 55.
Xiu, Z.; Zhang, Q.; Puppala, H.L.; et al. Negligible Particle-Specific Antibacterial Activity of Silver Nanoparticles. Nano Lett. 2012, 12, 4271–4275.
- 56.
Liu, J.; Hurt, R.H. Ion Release Kinetics and Particle Persistence in Aqueous Nano-Silver Colloids. Environ. Sci. Technol. 2010, 44, 2169–2175.
- 57.
Dreikausen, L.; Blender, B.; Trifunovic-Koenig, M.; et al. Analysis of microbial contamination during use and reprocessing of surgical instruments and sterile packaging systems. PLoS ONE 2023, 18, e0280595.
- 58.
Wang, S.; van Dijl, J.M. Disinfection of medical devices with a steam machine that operates at atmospheric pressure and is suitable for home usage. Sci. Rep. 2025, 15, 25486.
- 59.
Yang, H.; Wang, Y.; Yao, L.; et al. Antifouling Polymer Coatings for Bioactive Surfaces. Langmuir : ACS J. Surf. Colloids 2025, 41, 6471–6496.
- 60.
Wang, A.; Pu, K.; Dong, B.; et al. Role of surface charge and oxidative stress in cytotoxicity and genotoxicity of graphene oxide towards human lung fibroblast cells. J. Appl. Toxicol. JAT 2013, 33, 1156–1164.
- 61.
Werner, S.; Krieg, T.; Smola, H. Keratinocyte-fibroblast interactions in wound healing. J. Investig. Dermatol. 2007, 127, 998–1008.
- 62.
Yang, A.; Cardona, D.L.; Barile, F.A. In vitro cytotoxicity testing with fluorescence-based assays in cultured human lung and dermal cells. Cell Biol. Toxicol. 2002, 18, 97–108.
- 63.
Ninan, N.; Muthiah, M.; Park, I.-K.; et al. Faujasites Incorporated Tissue Engineering Scaffolds for Wound Healing: In Vitro and In Vivo Analysis. ACS Appl. Mater. Interfaces 2013, 5, 11194–11206.
- 64.
Wiegand, C.; Hipler, U.C. Evaluation of biocompatibility and cytotoxicity using keratinocyte and fibroblast cultures. Ski. Pharmacol Physiol 2009, 22, 74–82.
- 65.
Mayol, L.; De Stefano, D.; De Falco, F.; et al. Effect of hyaluronic acid on the thermogelation and biocompatibility of its blends with methyl cellulose. Carbohydr. Polym. 2014, 112, 480–485.
- 66.
Burrell, R.E. A scientific perspective on the use of topical silver preparations. Ostomy/Wound Manag. 2003, 49, 19–24.
- 67.
Nadworny, P.L.; Wang, J.; Tredget, E.E.; et al. Anti-inflammatory activity of nanocrystalline silver in a porcine contact dermatitis model. Nanomed. Nanotechnol. Biol. Med. 2008, 4, 241–251.
- 68.
Warriner, R.; Burrell, R. Infection and the chronic wound: A focus on silver. Adv. Ski. Wound Care 2005, 18, 2–12.
- 69.
Xie, H.; Pei, W.; and Wu, J. Effect of exposure of osteoblast-like cells to low-dose silver nanoparticles: Uptake, retention and osteogenic activity. Artif. Cells Nanomed. Biotechnol. 2019, 47, 260–267.
- 70.
Xiao, K.; Liu, C.; Tu, Z.; et al. Activation of the NF-κB and MAPK Signaling Pathways Contributes to the Inflammatory Responses, but Not Cell Injury, in IPEC-1 Cells Challenged with Hydrogen Peroxide. Oxidative Med. Cell. Longevity 2020, 2020, 5803639.
- 71.
Chen, J.; Chen, X.; Xuan, Y.; et al. Surface functionalization-dependent inflammatory potential of polystyrene nanoplastics through the activation of MAPK/NF-κB signaling pathways in macrophage Raw 264.7. Ecotoxicol. Environ. Saf. 2023, 251, 114520.
- 72.
Arya, P.N.; Saranya, I.; Selvamurugan, N. Crosstalk between Wnt and bone morphogenetic protein signaling during osteogenic differentiation. World J Stem Cells 2024, 16, 102–113.
- 73.
Wang, L.; Ruan, M.; Bu, Q.; et al. Signaling Pathways Driving MSC Osteogenesis: Mechanisms, Regulation, and Translational Applications. Int. J. Mol. Sci. 2025, 26, 1311.
- 74.
Bright, R.; Visalakshan, R.M.; Simon, J.; et al. Manipulation of Serum Protein Adsorption by Nanoengineered Biomaterials Influences Subsequent Immune Responses. ACS Biomater. Sci. Eng. 2024, 10, 6230–6240.
- 75.
Sharifianjazi, F.; Sharifianjazi, M.; Irandoost, M.; et al. Advances in Zinc-Containing Bioactive Glasses: A Comprehensive Review. J Funct Biomater 2024, 15, 258.
- 76.
Elbasuney, S.; El-Sayyad, G.S.; Radwan, S.M.; et al. Antimicrobial, and Antibiofilm Activities of Silver Doped Hydroxyapatite: A Novel Bioceramic Material for Dental Filling. J. Inorg. Organomet. Polym. Mater. 2022, 32, 4559–4575.
- 77.
Marsico, M.; Azari, R.; Curcio, M.; et al. Enhancing the Antibacterial Properties of Chitosan Coatings: Ag@Chitosan and Chitosan from Insects. Coatings 2024, 14, 925.