2509001329
  • Open Access
  • Article

Controlled Codelivery of Hydrogen Sulfide and Nitric Oxide for the Treatment of Full-Thickness Skin Wound

  • Meng Qian 1, 2, †,   
  • Guangbo Ji 2, †,   
  • Pei Liu 2,   
  • Yating Zhang  2,   
  • Weiliang Deng  2,   
  • Zhixin Xu 2,   
  • Huan Wang 1,   
  • Jiansong Cheng 3,   
  • Qiang Zhao 1, 2, *

Received: 28 Jul 2025 | Revised: 15 Aug 2025 | Accepted: 17 Sep 2025 | Published: 19 Sep 2025

Abstract

Chronic wounds present significant clinical challenges stemming from persistent inflammation, impaired angiogenesis, and disrupted tissue homeostasis. Nitric oxide (NO) and hydrogen sulfide (H2S) are important gaseous signalling molecules that play critical regulatory roles in the pathophysiology of numerous diseases. In the present study, we designed a novel prodrug, TSNO, which releases H2S and NO in a controlled manner under the catalysis of GSH and the engineered enzyme A4-β-GalH363A. Furthermore, a functional wound dressing was prepared by incorporating TSNO into an electrospun poly(ε-caprolactone) (PCL) mat, and the therapeutic efficacy was evaluated in a full-thickness skin wound model established in mice. Results showed that the functional wound dressing effectively accelerated the wound healing process by enhancing collagen synthesis, promoting angiogenesis, and regulating inflammation via controlled codelivery of H2S and NO. Taken together, the functional wound dressing developed in this study represents a promising candidate for treating large-scale skin wounds in the clinic.

References 

  • 1.
    Peña, O.A.; Martin, P. Cellular and molecular mechanisms of skin wound healing. Nat. Rev. Mol. Cell Biol. 2024, 25, 599–616.
  • 2.
    Veith, A.P.; Henderson, K.; Spencer, A.; et al. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv. Drug Deliv. Rev. 2019, 146, 97–125.
  • 3.
    Zhang, Q.; Gu, R.; Dai, Y.; et al. Molecular mechanisms of ubiquitination in wound healing. Biochem. Pharmacol. 2025, 231, 116670.
  • 4.
    Lundberg, J.O.; Weitzberg, E. Nitric oxide signaling in health and disease. Cell 2022, 185, 2853–2878.
  • 5.
    Kolluru, G.K.; Shackelford, R.E.; Shen, X.; et al. Sulfide regulation of cardiovascular function in health and disease. Nat. Rev. Cardiol. 2023, 20, 109–125.
  • 6.
    Zhu, D.; Hou, J.; Qian, M.; et al. Nitrate-functionalized patch confers cardioprotection and improves heart repair after myocardial infarction via local nitric oxide delivery. Nat. Commun. 2021, 12, 4501.
  • 7.
    Pinto, R.V.; Carvalho, S.; Antunes, F.; et al. Emerging nitric oxide and hydrogen sulfide releasing carriers for skin wound healing therapy. ChemMedChem 2022, 17, e202100429.
  • 8.
    Malone-Povolny, M.J.; Maloney, S.E.; Schoenfisch, M.H. Nitric oxide therapy for diabetic wound healing. Adv. Healthc. Mater. 2019, 8, e1801210.
  • 9.
    Zhou, X.; Wang, H.; Zhang, J.; et al. Functional poly(ε-caprolactone)/chitosan dressings with nitric oxide-releasing property improve wound healing. Acta Biomater. 2017, 54, 128–137.
  • 10.
    Zhang, Y.X.; Jing, M.R.; Cai, C.B.; et al. Role of hydrogen sulphide in physiological and pathological angiogenesis. Cell Prolif. 2023, 56, e13374.
  • 11.
    Rong, F.; Bao, W.; Li, G.; et al. Aminopeptidase N-activated self-immolative hydrogen sulfide donor for inflammatory response-specific wound healing. Angew. Chem. Int. Ed. Engl. 2025, 64, e202423527.
  • 12.
    Zhao, S.; Zhao, W.; Wang, N.; et al. A sustained H2S-releasing nanocellulose-based hydrogel with anti-inflammatory and antibacterial properties for promoting infected wound healing. Carbohydr. Polym. 2025, 355, 123424.
  • 13.
    Cirino, G.; Szabo, C.; Papapetropoulos, A. Physiological roles of hydrogen sulfide in mammalian cells, tissues, and organs. Physiol. Rev. 2023, 103, 31–276.
  • 14.
    Ye, S.; Jin, N.; Liu, N.; et al. Gases and gas-releasing materials for the treatment of chronic diabetic wounds. Biomater. Sci. 2024, 12, 3273–3292.
  • 15.
    Yuan, S.; Patel, R.P.; Kevil, C.G. Working with nitric oxide and hydrogen sulfide in biological systems. Am. J. Physiol. Lung Cell. Mol. Physiol. 2015, 308, L403–L415.
  • 16.
    Ivanovic-Burmazovic, I.; Filipovic, M.R. Saying NO to H2S: A story of HNO, HSNO, and SSNO. Inorg. Chem. 2019, 58, 4039–4051.
  • 17.
    Liu, Q.; Ji, G.; Chu, Y.; et al. Enzyme-responsive hybrid prodrug of nitric oxide and hydrogen sulfide for heart failure therapy. Chem. Commun. 2022, 58, 7396–7399.
  • 18.
    Wu, D.; Hu, Q.; Xiong, Y.; et al. Novel H2S-NO hybrid molecule (ZYZ-803) promoted synergistic effects against heart failure. Redox Biol. 2018, 15, 243–252.
  • 19.
    Deng, W.; Xu, Z.; Hua, T.; et al. Targeted codelivery of nitric oxide and hydrogen sulfide for enhanced antithrombosis efficacy. Bioact. Mater. 2025, 48, 29–42.
  • 20.
    Lee, M.; McGeer, E.; Kodela, R.; et al. NOSH-aspirin (NBS-1120), a novel nitric oxide and hydrogen sulfide releasing hybrid, attenuates neuroinflammation induced by microglial and astrocytic activation: A new candidate for treatment of neurodegenerative disorders. Glia 2013, 61, 1724–1734.
  • 21.
    Li, N.; Huang, C.; Zhang, J.; et al. Chemotactic NO/H2S nanomotors realizing cardiac targeting of G-CSF against myocardial ischemia-reperfusion injury. ACS Nano 2023, 17, 12573–12593.
  • 22.
    Fu, J.; Mao, Y.; Han, J.; et al. A nitric oxide and hydrogen sulfide dual-donating nanosystem for highly synergistic gas-radiotherapy against hepatocellular carcinoma. Biomater. Adv. 2023, 144, 213209.
  • 23.
    Xu, S.; Shieh, M.; Paul, B.D.; et al. Hydrogen sulfide: Recent development of its dual donors and hybrid drugs. Br. J. Pharmacol. 2023, 8, 1–13.
  • 24.
    Hao, T.; Ji, G.; Qian, M.; et al. Intracellular delivery of nitric oxide enhances the therapeutic efficacy of mesenchymal stem cells for myocardial infarction. Sci. Adv. 2023, 9, eadi9967.
  • 25.
    Hou, J.; Pan, Y.; Zhu, D.; et al. Targeted delivery of nitric oxide via a ‘bump-and-hole’-based enzyme-prodrug pair. Nat. Chem. Biol. 2019, 15, 151–160.
  • 26.
    Yang, S.; Jiang, H.; Qian, M.; et al. MSC-derived sEV-loaded hyaluronan hydrogel promotes scarless skin healing by immunomodulation in a large skin wound model. Biomed. Mater. 2022, 17, 034104.
  • 27.
    Zhao, Y.; Biggs, T.D.; Xian, M. Hydrogen sulfide (H2S) releasing agents: Chemistry and biological applications. Chem. Commun. 2014, 50, 11788–11805.
  • 28.
    Huang, H.; Qian, M.; Liu, Y.; et al. Genetically engineered mesenchymal stem cells as a nitric oxide reservoir for acute kidney injury therapy. eLife 2023, 12, e84820.
  • 29.
    Moraes, L.A.; Pimpim, R.S.; Eberlin, M.N. Novel Ketalization reaction of acylium ions with diols and analogues in the gas phase. J. Org. Chem. 1996, 61, 8726–8727.
  • 30.
    Rodrigues, M.; Kosaric, N.; Bonham, C.A.; et al. Wound healing: A cellular perspective. Physiol. Rev. 2019, 99, 665–706.
  • 31.
    Xiong, M.; Yang, X.; Shi, Z.; et al. Programmable artificial skins accomplish antiscar healing with multiple appendage regeneration. Adv. Mater. 2024, 36, e2407322.
  • 32.
    Shi, Z.; Yao, C.; Shui, Y.; et al. Research progress on the mechanism of angiogenesis in wound repair and regeneration. Front. Physiol. 2023, 14, 1284981.
  • 33.
    Hao, T.; Qian, M.; Zhang, Y.; et al. An injectable dual-function hydrogel protects against myocardial ischemia/reperfusion injury by modulating ROS/NO disequilibrium. Adv. Sci. 2022, 9, e2105408.
  • 34.
    Kolluru, G.K.; Shen, X.; Kevil, C.G. A tale of two gases: NO and H2S, foes or friends for life? Redox Biol. 2013, 1, 313–318.
  • 35.
    Eberhardt, M.; Dux, M.; Namer, B.; et al. H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signalling pathway. Nat. Commun. 2014, 5, 4381.
  • 36.
    Lu, Y.Z.; Nayer, B.; Singh, S.K.; et al. CGRP sensory neurons promote tissue healing via neutrophils and macrophages. Nature 2024, 628, 604–611.
  • 37.
    Hassanshahi, A.; Moradzad, M.; Ghalamkari, S.; et al. Macrophage-Mediated Inflammation in Skin Wound Healing. Cells 2022, 11, 2953.
  • 38.
    Chen, S.; Saeed, A.; Liu, Q.; et al. Macrophages in immunoregulation and therapeutics. Signal Transduct. Target Ther. 2023, 8, 207.
Share this article:
How to Cite
Qian, M.; Ji, G.; Liu, P.; Zhang , Y.; Deng , W.; Xu, Z.; Wang, H.; Cheng, J.; Zhao, Q. Controlled Codelivery of Hydrogen Sulfide and Nitric Oxide for the Treatment of Full-Thickness Skin Wound. Regenerative Medicine and Dentistry 2025, 2 (3), 13. https://doi.org/10.53941/rmd.2025.100013.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.