2509001371
  • Open Access
  • Review
Organoids in Dentistry and Oral Medicine: From Disease Models to Regenerative Medicine
  • Shangyan Li 1,†,   
  • Hang Ruan 1,†,   
  • Jiqing Huang 1,†,   
  • Linyuan Yu 1,   
  • Boyang Zhang 1,   
  • Ruijia Chen 1,   
  • Kecheng Chen 1,   
  • Lan Yang 1,*,   
  • Janak Lal Pathak 1,*,   
  • Qing Zhang 1,2,3,*

Received: 23 Jul 2025 | Revised: 25 Aug 2025 | Accepted: 19 Sep 2025 | Published: 24 Sep 2025

Abstract

Organoids have emerged as powerful three-dimensional models that recapitulate the structure and function of dental and oral tissues through the self-organization of stem or progenitor cells. Recent advances in organoid technology have enabled the generation of tooth, salivary gland, and oral mucosal constructs, offering unprecedented opportunities in disease modeling, drug testing, and regenerative therapies. Despite rapid progress, research in this field remains fragmented, necessitating a comprehensive synthesis of current knowledge. This review systematically examines the latest strategies for constructing organoids and their transformative applications in dentistry and oral medicine, including pathogenesis studies, high-throughput drug screening, tissue engineering, and host-microbiome interactions. Furthermore, we critically evaluate the advantages and limitations of existing methodologies while outlining future directions for innovation. By consolidating key insights, this work aims to accelerate the standardization and clinical translation of organoid-based approaches, ultimately advancing precision medicine in dentistry and oral healthcare.

References 

  • 1.
    Peres, M.A.; Macpherson, L.M.D.; Weyant, R.J.; et al. Oral diseases: A global public health challenge. Lancet 2019, 394, 249–260. https://doi.org/10.1016/s0140-6736(19)31146-8.
  • 2.
    Ferrari, A.J.; Santomauro, D.F.; Aali, A.; et al. Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: A systematic analysis for the Global Burden of Disease Study Lancet 2024, 403, 2133–2161. https://doi.org/10.1016/s0140-6736(24)00757-8.
  • 3.
    Ju, ; Gao, X.; Zhang, C.; et al. A Versatile Immune Protective Armor to Enhance the Regenerative Potential of Exogenous Stem Cells. ACS Appl. Mater. Interfaces 2025, 17, 23600–23612. https://doi.org/10.1021/acsami.5c00253.
  • 4.
    Tang, ; Chen, X.; Hong, X.; et al. 3D printing personalized orally disintegrating tablets with complex structures for the treatment of special populations. Int. J. Pharm. 2025, 673, 125371. https://doi.org/10.1016/j.ijpharm.2025.125371.
  • 5.
    Xiong, ; Liu, Y.; Zhou, H.; et al. Human dental pulp stem cells mitigate the neuropathology and cognitive decline via AKT-GSK3β-Nrf2 pathways in Alzheimer’s disease. Int. J. Oral Sci. 2024, 16, 40. https://doi.org/10.1038/s41368-024-00300-4.
  • 6.
    Yu, ; Zhong, Y.; Zhang, B.; et al. A New Theranostic Platform Against Gram-Positive Bacteria Based on Near-Infrared-Emissive Aggregation-Induced Emission Nanoparticles. Small 2024, 20, e2308071. https://doi.org/10.1002/smll.202308071.
  • 7.
    Chen, ; Xie, Z.; Yang, S.; et al. Machine Learning Approach to Investigating Macrophage Polarization on Various Titanium Surface Characteristics. BME Front. 2025, 6, 0100. https://doi.org/10.34133/bmef.0100.
  • 8.
    Miao, ; Wu, X.; You, W.; et al. Tailoring of apoptotic bodies for diagnostic and therapeutic applications:advances, challenges, and prospects. J. Transl. Med. 2024, 22, 810. https://doi.org/10.1186/s12967-024-05451-w.
  • 9.
    Li, ; Zhao, Y.; Chen, S.; et al. Research Hotspots and Trends of Bone Xenograft in Clinical Procedures: A Bibliometric and Visual Analysis of the Past Decade. Bioengineering 2023, 10, 929. https://doi.org/10.3390/bioengineering10080929.
  • 10.
    Hajishengallis, Illuminating the oral microbiome and its host interactions: Animal models of disease. FEMS Microbiol. Rev. 2023, 47, fuad018. https://doi.org/10.1093/femsre/fuad018.
  • 11.
    Fitzgerald, A.; Malhotra, M.; Curtin, C.M.; et al. Life in 3D is never flat: 3D models to optimise drug delivery. J. Control. Release 2015, 215, 39–54. https://doi.org/10.1016/j.jconrel.2015.07.020.
  • 12.
    Rossi, ; Manfrin, A.; Lutolf, M.P. Progress and potential in organoid research. Nat. Rev. Genet. 2018, 19, 671–687. https://doi.org/10.1038/s41576-018-0051-9.
  • 13.
    Drost, ; Clevers, H. Organoids in cancer research. Nat. Rev. Cancer 2018, 18, 407–418. https://doi.org/10.1038/s41568-018-0007-6.
  • 14.
    Mansour, A.; Gonçalves, J.T.; Bloyd, C.W.; et al. An in vivo model of functional and vascularized human brain organoids. Nat. Biotechnol. 2018, 36, 432–441. https://doi.org/10.1038/nbt.4127.
  • 15.
    Schafer, T.; Mansour, A.A.; Schlachetzki, J.C.M.; et al. An in vivo neuroimmune organoid model to study human microglia phenotypes. Cell 2023, 186, 2111–2126.e2120. https://doi.org/10.1016/j.cell.2023.04.022.
  • 16.
    Abuwatfa, H.; Pitt, W.G.; Husseini, G.A. Scaffold-based 3D cell culture models in cancer research. J. Biomed. Sci. 2024, 31, 7. https://doi.org/10.1186/s12929-024-00994-y.
  • 17.
    Urzì, ; Gasparro, R.; Costanzo, E.; et al. Three-Dimensional Cell Cultures: The Bridge between In Vitro and In Vivo Models. Int. J. Mol. Sci. 2023, 24, 12046. https://doi.org/10.3390/ijms241512046.
  • 18.
    Goldrick, ; Guri, I.; Herrera-Oropeza, G.; et al. 3D multicellular systems in disease modelling: From organoids to organ-on-chip. Front. Cell Dev. Biol. 2023, 11, 1083175.
  • 19.
    Rosowski, ; Bräunig, J.; Amler, A.K.; et al. Emulating the early phases of human tooth development in vitro. Sci. Rep. 2019, 9, 7057. https://doi.org/10.1038/s41598-019-43468-0.
  • 20.
    Yang, ; Leung, A.Y.P.; Wang, Z.; et al. Proanthocyanidin surface preconditioning of dental pulp stem cell spheroids enhances dimensional stability and biomineralization in vitro. Int. Endod. J. 2024, 57, 1639–1654. https://doi.org/10.1111/iej.14126.
  • 21.
    Marsee, ; Roos, F.J.M.; Verstegen, M.M.A.; et al. Building consensus on definition and nomenclature of hepatic, pancreatic, and biliary organoids. Cell Stem Cell 2021, 28, 816–832. https://doi.org/10.1016/j.stem.2021.04.005.
  • 22.
    Calabrese, C.; Rothermund, K.; Gabe, C.M.; et al. Self-Assembly of Tooth Root Organoid from Postnatal Human Dental Stem Cells. Tissue Eng. Part A 2024, 30, 404–414. https://doi.org/10.1089/ten.TEA.2023.0219.
  • 23.
    Adine, ; Ng, K.K.; Rungarunlert, S.; et al. Engineering innervated secretory epithelial organoids by magnetic three-dimensional bioprinting for stimulating epithelial growth in salivary glands. Biomaterials 2018, 180, 52–66. https://doi.org/10.1016/j.biomaterials.2018.06.011.
  • 24.
    Sano, ; Renn, T.Y.; Kanematsu, T.; et al. Organoid in dentistry: Models for oral biology and disease. J. Dent. Sci. 2025, 20, 1816–1823. https://doi.org/10.1016/j.jds.2025.05.002.
  • 25.
    Maimets, ; Rocchi, C.; Bron, R.; et al. Long-Term In Vitro Expansion of Salivary Gland Stem Cells Driven by Wnt Signals. Stem Cell Rep. 2016, 6, 150–162. https://doi.org/10.1016/j.stemcr.2015.11.009.
  • 26.
    Lee, S.; Park, Y.H.; Seo, Y.M.; et al. Tubular dentin formation by TGF-β/BMP signaling in dental epithelial cells. Oral Dis. 2023, 29, 1644–1656. https://doi.org/10.1111/odi.14170.
  • 27.
    Song, M.; Na, K.H.; Lee, H.J.; et al. The Effects of Transforming Growth Factor-β1 on the Differentiation of Cell Organoids Composed of Gingiva-Derived Stem Cells. Biomed. Res. Int. 2022, 2022, 9818299. https://doi.org/10.1155/2022/9818299.
  • 28.
    Liu, ; Xiao, J.; Chen, L.H.; et al. Self-assembly of differentiated dental pulp stem cells facilitates spheroid human dental organoid formation and prevascularization. World J. Stem. Cells 2024, 16, 287–304. https://doi.org/10.4252/wjsc.v16.i3.287.
  • 29.
    Bi, ; Yang, K.; Yu, T.; et al. Cell-based mechanisms and strategies of co-culture system both in vivo and vitro for bone tissue engineering. Biomed. Pharmacother. 2023, 169, 115907. https://doi.org/10.1016/j.biopha.2023.115907.
  • 30.
    Licata, P.; Schwab, K.H.; Har-El, Y.E.; et al. Bioreactor Technologies for Enhanced Organoid Culture. Int. J. Mol. Sci. 2023, 24, 11427. https://doi.org/10.3390/ijms241411427.
  • 31.
    Seo, Y.; Park, S.B.; Kim, S.Y.; et al. Acoustic and Magnetic Stimuli-Based Three-Dimensional Cell Culture Platform for Tissue Engineering. Tissue Eng. Regen. Med. 2023, 20, 563–580. https://doi.org/10.1007/s13770-023-00539-8.
  • 32.
    Lu, ; Jin, A.; Gao, C.; et al. Synergistic Approach of High-Precision 3D Printing and Low Cell Adhesion for Enhanced Self-Assembled Spheroid Formation. Biosensors 2024, 15, 7. https://doi.org/10.3390/bios15010007.
  • 33.
    Zhou, ; Yang, J.; Li, R.; et al. Live Imaging of 3D Hanging Drop Arrays through Manipulation of Light-Responsive Pyroelectric Slippery Surface and Chip Adhesion. Nano Lett. 2023, 23, 10710–10718. https://doi.org/10.1021/acs.nanolett.3c02570.
  • 34.
    Baillargeon, ; Shumate, J.; Hou, S.; et al. Automating a Magnetic 3D Spheroid Model Technology for High-Throughput Screening. SLAS Technol. 2019, 24, 420–428. https://doi.org/10.1177/2472630319854337.
  • 35.
    Han, ; Tang, S.; Wang, L.; et al. Multicellular Spheroids Formation on Hydrogel Enhances Osteogenic/Odontogenic Differentiation of Dental Pulp Stem Cells Under Magnetic Nanoparticles Induction. Int. J. Nanomed. 2021, 16, 5101–5115. https://doi.org/10.2147/ijn.S318991.
  • 36.
    Ferreira, N.; Hasan, R.; Urkasemsin, G.; et al. A magnetic three-dimensional levitated primary cell culture system for the development of secretory salivary gland-like organoids. J. Tissue Eng. Regen. Med. 2019, 13, 495–508. https://doi.org/10.1002/term.2809.
  • 37.
    Lekkala, K.R.; Kang, S.Y.; Liu, J.; et al. A Pillar/Perfusion Plate Enhances Cell Growth, Reproducibility, Throughput, and User Friendliness in Dynamic 3D Cell Culture. ACS Biomater. Sci. Eng. 2024, 10, 3478–3488. https://doi.org/10.1021/acsbiomaterials.4c00179.
  • 38.
    Liang, ; Wang, S.; Zhang, X.; et al. Multi-site enhancement of osteogenesis: Peptide-functionalized GelMA hydrogels with three-dimensional cultures of human dental pulp stem cells. Regen. Biomater. 2024, 11, rbae090. https://doi.org/10.1093/rb/rbae090.
  • 39.
    Huang, ; Chen, X.; Yang, X.; et al. GelMA-based hydrogel biomaterial scaffold: A versatile platform for regenerative endodontics. J. Biomed. Mater. Res. B Appl. Biomater. 2024, 112, e35412. https://doi.org/10.1002/jbm.b.35412.
  • 40.
    Salvador-Clavell, ; Martín de Llano, J.J.; Milián, L.; et al. Chondrogenic Potential of Human Dental Pulp Stem Cells Cultured as Microtissues. Stem. Cells Int. 2021, 2021, 7843798. https://doi.org/10.1155/2021/7843798.
  • 41.
    Yang, ; Wang, B.; Liu, W.; et al. In situ self-assembled organoid for osteochondral tissue regeneration with dual functional units. Bioact. Mater. 2023, 27, 200–215. https://doi.org/10.1016/j.bioactmat.2023.04.002.
  • 42.
    Yuan, ; Yang, X.; Wang, X.; et al. Injectable Xenogeneic Dental Pulp Decellularized Extracellular Matrix Hydrogel Promotes Functional Dental Pulp Regeneration. Int. J. Mol. Sci. 2023, 24, 17483. https://doi.org/10.3390/ijms242417483.
  • 43.
    Sui, ; Zhou, Z.; Zhang, S.; et al. The comprehensive progress of tooth regeneration from the tooth development to tissue engineering and clinical application. Cell Regen. 2025, 14, 33. https://doi.org/10.1186/s13619-025-00249-7.
  • 44.
    Huang, ; Wu, Y.; Zhao, H.; et al. Advancements in bone organoids: Perspectives on construction methodologies and application strategies. J. Adv. Res. 2025, in press. https://doi.org/10.1016/j.jare.2025.06.011.
  • 45.
    Musah, ; Arzaghi, H. Unleashing the power of biomaterials to enhance organoid differentiation and function. Nat. Methods 2024, 21, 1575–1577. https://doi.org/10.1038/s41592-024-02393-5.
  • 46.
    da Silva, S.P.; Bordini, E.A.F.; Bronze-Uhle, E.S.; et al. Photo-crosslinkable hydrogel incorporated with bone matrix particles for advancements in dentin tissue engineering. J. Biomed. Mater. Res. A 2024, 112, 2273–2288. https://doi.org/10.1002/jbm.a.37777.
  • 47.
    Pele, G.; Amaveda, H.; Mora, M.; et al. Hydrocolloids of Egg White and Gelatin as a Platform for Hydrogel-Based Tissue Engineering. Gels 2023, 9, 505. https://doi.org/10.3390/gels9060505.
  • 48.
    Pouraghaei, ; Moztarzadeh, F.; Chen, C.; et al. Microenvironment Can Induce Development of Auditory Progenitor Cells from Human Gingival Mesenchymal Stem Cells. ACS Biomater. Sci. Eng. 2020, 6, 2263–2273. https://doi.org/10.1021/acsbiomaterials.9b01795.
  • 49.
    Zhang, ; Contessi Negrini, N.; Correia, R.; et al. Generating Tooth Organoids Using Defined Bioorthogonally Cross-Linked Hydrogels. ACS Macro Lett. 2024, 13, 1620–1626. https://doi.org/10.1021/acsmacrolett.4c00520.
  • 50.
    Ding, ; Huang, J.; Ren, Y.; et al. 3D bioprinted advanced cartilage organoids with engineered magnetic nanoparticles polarized-BMSCs/alginate/gelatin for cartilage tissue regeneration. Nano Res. 2025, 18, https://doi.org/10.26599/NR.2025.94907084
  • 51.
    Yang, ; Ma, Y.; Wang, X.; et al. A 3D-Bioprinted Functional Module Based on Decellularized Extracellular Matrix Bioink for Periodontal Regeneration. Adv. Sci. 2023, 10, e2205041. https://doi.org/10.1002/advs.202205041.
  • 52.
    Park, H.; Gillispie, G.J.; Copus, J.S.; et al. The effect of BMP-mimetic peptide tethering bioinks on the differentiation of dental pulp stem cells (DPSCs) in 3D bioprinted dental constructs. Biofabrication 2020, 12, 035029. https://doi.org/10.1088/1758-5090/ab9492.
  • 53.
    Zhu, ; Liao, X.; Xu, Y.; et al. 3D bioprinting of high-performance hydrogel with in-situ birth of stem cell spheroids. Bioact. Mater. 2025, 43, 392–405. https://doi.org/10.1016/j.bioactmat.2024.09.033.
  • 54.
    Han, ; Kim, D.S.; Jang, H.; et al. Bioprinting of three-dimensional dentin-pulp complex with local differentiation of human dental pulp stem cells. J. Tissue Eng. 2019, 10. https://doi.org/10.1177/2041731419845849.
  • 55.
    Vurat, T.; Şeker, Ş.; Lalegül-Ülker, Ö.; et al. Development of a multicellular 3D-bioprinted microtissue model of human periodontal ligament-alveolar bone biointerface: Towards a pre-clinical model of periodontal diseases and personalized periodontal tissue engineering. Genes Dis. 2022, 9, 1008–1023. https://doi.org/10.1016/j.gendis.2020.11.011.
  • 56.
    Miao, ; Liang, L.; Li, W.; et al. 3D Bioprinting of a Bioactive Composite Scaffold for Cell Delivery in Periodontal Tissue Regeneration. Biomolecules 2023, 13, 1062. https://doi.org/10.3390/biom13071062.
  • 57.
    Das, ; Jegadeesan, J.T.; Basu, B. Gelatin Methacryloyl (GelMA)-Based Biomaterial Inks: Process Science for 3D/4D Printing and Current Status. Biomacromolecules 2024, 25, 2156–2221. https://doi.org/10.1021/acs.biomac.3c01271.
  • 58.
    Zhou, ; Zhu, S.; Wei, X.; et al. 3D-bioprinted hydrogels with instructive niches for dental pulp regeneration. Int. J. Bioprinting 2024, 10, 1790.
  • 59.
    Tavafoghi, ; Darabi, M.A.; Mahmoodi, M.; et al. Multimaterial bioprinting and combination of processing techniques towards the fabrication of biomimetic tissues and organs. Biofabrication 2021, 13, 042002. https://doi.org/10.1088/1758-5090/ac0b9a.
  • 60.
    Quintard, ; Tubbs, E.; Jonsson, G.; et al. A microfluidic platform integrating functional vascularized organoids-on-chip. Nat. Commun. 2024, 15, 1452. https://doi.org/10.1038/s41467-024-45710-4.
  • 61.
    Liu, ; Chen, Y.; Chen, Y.; et al. Long-term culture and morphological maturation of taste organoids enhance taste discrimination in a biomimetic biosensor. Microsyst. Nanoeng. 2025, 11, 120. https://doi.org/10.1038/s41378-025-00978-4.
  • 62.
    Machla, ; Monou, P.K.; Artemiou, P.; et al. Design, additive manufacturing, and characterization of an organ-on-chip microfluidic device for oral mucosa analogue growth. J. Mech. Behav. Biomed. Mater. 2025, 163, 106877. https://doi.org/10.1016/j.jmbbm.2024.106877.
  • 63.
    Gard, L.; Luu, R.J.; Maloney, R.; et al. A high-throughput, 28-day, microfluidic model of gingival tissue inflammation and recovery. Commun. Biol. 2023, 6, 92. https://doi.org/10.1038/s42003-023-04434-9.
  • 64.
    Hu, ; Muniraj, G.; Mishra, A.; et al. Characterization of silver diamine fluoride cytotoxicity using microfluidic tooth-on-a-chip and gingival equivalents. Dent.Mater. 2022, 38, 1385–1394. https://doi.org/10.1016/j.dental.2022.06.025.
  • 65.
    Dhall, ; Tan, J.Y.; Oh, M.J.; et al. A dental implant-on-a-chip for 3D modeling of host-material-pathogen interactions and therapeutic testing platforms. Lab Chip 2022, 22, 4905–4916. https://doi.org/10.1039/d2lc00774f.
  • 66.
    Shi, ; Zheng, L.; Na, J.; et al. Fluid shear stress promotes periodontal ligament cells proliferation via p38-AMOT-YAP. Cell. Mol. Life Sci. 2022, 79, 551. https://doi.org/10.1007/s00018-022-04591-w.
  • 67.
    Wang, ; Sasaki, Y.; Sakagami, R.; et al. Perfluoropolyether-Based Gut-Liver-on-a-Chip for the Evaluation of First-Pass Metabolism and Oral Bioavailability of Drugs. ACS Biomater. Sci. Eng. 2024, 10, 4635–4644. https://doi.org/10.1021/acsbiomaterials.4c00605.
  • 68.
    Kristensen, F.; Lund, M.B.; Schramm, A.; et al. Determinants of Microscale pH in In Situ-Grown Dental Biofilms. J. Dent. Res. 2023, 102, 1348–1355. https://doi.org/10.1177/00220345231190563.
  • 69.
    Yang, ; Wang, P.; Li, Z.; et al. A continuous flow PCR array microfluidic chip applied for simultaneous amplification of target genes of periodontal pathogens. Lab Chip 2022, 22, 733–737. https://doi.org/10.1039/d1lc00814e.
  • 70.
    Wang, ; Wang, J.; Chang, X.; et al. Rapid Detection of Streptococcus mutans Using an Integrated Microfluidic System with Loop-Mediated Isothermal Amplification. J. Microbiol. Biotechnol. 2023, 33, 1101–1110. https://doi.org/10.4014/jmb.2304.04026.
  • 71.
    Oates, A.; Anastasiou, A.D. A novel microfluidic tool for the evaluation of local drug delivery systems in simulated in vivo conditions. Lab Chip 2024, 24, 3840–3849. https://doi.org/10.1039/d4lc00181h.
  • 72.
    Xu, ; Guo, Y.; Liu, P.; et al. Piezo Mediates the Mechanosensation and Injury-Repair of Pulpo-Dentinal Complex. Int. Dent. J. 2024, 74, 71–80. https://doi.org/10.1016/j.identj.2023.07.002.
  • 73.
    Wu, ; Li, X.; Liu, H.; et al. Organoids in the oral and maxillofacial region: Present and future. Int. J. Oral Sci. 2024, 16, 61. https://doi.org/10.1038/s41368-024-00324-w.
  • 74.
    Zhao, ; Jiang, E.; Shang, Z. 3D Co-culture of Cancer-Associated Fibroblast with Oral Cancer Organoids. J. Dent. Res. 2021, 100, 201–208. https://doi.org/10.1177/0022034520956614.
  • 75.
    Chen, ; Li, R.; Zhao, H.; et al. Phenotype transition of fibroblasts incorporated into patient-derived oral carcinoma organoids. Oral Dis. 2023, 29, 913–922. https://doi.org/10.1111/odi.14071.
  • 76.
    Sobue, ; Bertolini, M.; Thompson, A.; et al. Chemotherapy-induced oral mucositis and associated infections in a novel organotypic model. Mol. Oral Microbiol. 2018, 33, 212–223. https://doi.org/10.1111/omi.12214.
  • 77.
    Guo, ; Chen, S.; Rao, X.; et al. Inhibition of SIRT1 promotes taste bud stem cell survival and mitigates radiation-induced oral mucositis in mice. Am. J. Transl. Res. 2019, 11, 4789–4799.
  • 78.
    Meudec, ; Goudarzi, N.; Silva-Saffar, S.E.; et al. Development of salivary gland organoids derived from patient biopsies: A functional model of Sjögren’s disease. Ann. Rheum. Dis. 2025, 84, 1195–1206. https://doi.org/10.1016/j.ard.2025.04.020.
  • 79.
    Jeon, G.; Lee, J.; Lee, S.J.; et al. Salivary gland organoid transplantation as a therapeutic option for radiation-induced xerostomia. Stem. Cell Res. Ther. 2024, 15, 265. https://doi.org/10.1186/s13287-024-03833-x.
  • 80.
    Hemeryck, ; Hermans, F.; Chappell, J.; et al. Organoids from human tooth showing epithelial stemness phenotype and differentiation potential. Cell. Mol. Life Sci. 2022, 79, 153. https://doi.org/10.1007/s00018-022-04183-8.
  • 81.
    Jerbaka, ; Gribova, V.; Rey, T.; et al. Organotypic 3D Cellular Models Mimicking the Epithelio-Ectomesenchymal Bilayer During Odontogenesis. Tissue Eng. Part A 2025, 31, 471–488. https://doi.org/10.1089/ten.TEA.2024.0118.
  • 82.
    Chu, ; Pieles, O.; Pfeifer, C.G.; et al. Dental follicle cell differentiation towards periodontal ligament-like tissue in a self-assembly three-dimensional organoid model. Eur. Cells Mater. 2021, 42, 20–33. https://doi.org/10.22203/eCM.v042a02.
  • 83.
    Zhao, ; Li, R.; Chen, Y.; et al. Stromal nicotinamide N-methyltransferase orchestrates the crosstalk between fibroblasts and tumour cells in oral squamous cell carcinoma: Evidence from patient-derived assembled organoids. Oncogene 2023, 42, 1166–1180. https://doi.org/10.1038/s41388-023-02642-5.
  • 84.
    Holkom, ; Yang, X.; Li, R.; et al. Fibroblast regulates angiogenesis in assembled oral cancer organoid: A possible role of NNMT. Oral Dis. 2024, 30, 4982–4992. https://doi.org/10.1111/odi.14945.
  • 85.
    Khalesi, ; Abbasi, A.; Razavi, S.M. Evaluating the Clinicopathologic Parameters of Tongue Squamous Cell Carcinoma based on its Local Distribution. Adv. Biomed. Res. 2023, 12, 71. https://doi.org/10.4103/abr.abr_197_21.
  • 86.
    Zhao, ; Huang, L.; Yu, S.; et al. Decellularized tongue tissue as an in vitro model for studying tongue cancer and tongue regeneration. Acta Biomater. 2017, 58, 122–135. https://doi.org/10.1016/j.actbio.2017.05.062.
  • 87.
    Elad, ; Yarom, N.; Zadik, Y.; et al. The broadening scope of oral mucositis and oral ulcerative mucosal toxicities of anticancer therapies. CA Cancer J. Clin. 2022, 72, 57–77. https://doi.org/10.3322/caac.21704.
  • 88.
    Kepple, D.; Thornburg, T.E.; Beckman, M.F.; et al. Elucidating Regulatory Mechanisms of Genes Involved in Pathobiology of Sjögren’s Disease: Immunostimulation Using a Cell Culture Model. Int. J. Mol. Sci. 2025, 26, 5881. https://doi.org/10.3390/ijms26125881.
  • 89.
    Lombaert, ; Movahednia, M.M.; Adine, C.; et al. Concise Review: Salivary Gland Regeneration: Therapeutic Approaches from Stem Cells to Tissue Organoids. Stem Cells 2017, 35, 97–105. https://doi.org/10.1002/stem.2455.
  • 90.
    Urkasemsin, ; Ferreira, J.N. Unveiling Stem Cell Heterogeneity Toward the Development of Salivary Gland Regenerative Strategies. Adv. Exp. Med. Biol. 2019, 1123, 151–164. https://doi.org/10.1007/978-3-030-11096-3_9.
  • 91.
    Tanaka, ; Mishima, K. Application of regenerative medicine to salivary gland hypofunction. JPN Dent. Sci. Rev. 2021, 57, 54–59. https://doi.org/10.1016/j.jdsr.2021.03.002.
  • 92.
    Yu, ; Klein, O.D. Molecular and cellular mechanisms of tooth development, homeostasis and repair. Development 2020, 147, dev184754. https://doi.org/10.1242/dev.184754.
  • 93.
    Hashim, T.; Babiker, R.; Padmanabhan, V.; et al. The Global Burden of Periodontal Disease: A Narrative Review on Unveiling Socioeconomic and Health Challenges. Int. J. Environ. Res. Public Health 2025, 22. https://doi.org/10.3390/ijerph22040624.
  • 94.
    Arani, M.; Yousefi, N.; Hamidieh, A.A.; et al. Tumor Organoid as a Drug Screening Platform for Cancer Research. Curr. Stem Cell Res. Ther. 2024, 19, 1210–1250. https://doi.org/10.2174/011574888x268366230922080423.
  • 95.
    Yan, H.N.; Siu, H.C.; Law, S.; et al. A Comprehensive Human Gastric Cancer Organoid Biobank Captures Tumor Subtype Heterogeneity and Enables Therapeutic Screening. Cell Stem Cell 2018, 23, 882–897.e811. https://doi.org/10.1016/j.stem.2018.09.016.
  • 96.
    Driehuis, ; Kolders, S.; Spelier, S.; et al. Oral Mucosal Organoids as a Potential Platform for Personalized Cancer Therapy. Cancer Discov. 2019, 9, 852–871. https://doi.org/10.1158/2159-8290.Cd-18-1522.
  • 97.
    Zhang, Y.; Sui, Y.; Shan, X.F.; et al. Construction of oral squamous cell carcinoma organoids in vitro 3D-culture for drug screening. Oral Dis. 2025, 31, 99–109. https://doi.org/10.1111/odi.15044.
  • 98.
    Xu, ; Li, Z.; Ai, X.; et al. Human three-dimensional dental pulp organoid model for toxicity screening of dental materials on dental pulp cells and tissue. Int. Endod. J. 2022, 55, 79–88. https://doi.org/10.1111/iej.13641.
  • 99.
    Lin, C.; Ting, L.L.; Chang, C.L.; et al. Ex Vivo Expanded Circulating Tumor Cells for Clinical Anti-Cancer Drug Prediction in Patients with Head and Neck Cancer. Cancers 2021, 13, 6076. https://doi.org/10.3390/cancers13236076.
  • 100.
    Farshbaf, ; Mottaghi, M.; Mohammadi, M.; et al. Regenerative application of oral and maxillofacial 3D organoids based on dental pulp stem cell. Tissue Cell 2024, 89, 102451. https://doi.org/10.1016/j.tice.2024.102451.
  • 101.
    Hsieh, S.; Chen, M.Y.; Chang, Y.S.; et al. Targeting the Neuropilin-1 receptor with Ovatodiolide and progress in using periodontal ligament organoids for COVID-19 research and therapy. Life Sci. 2024, 351, 122764. https://doi.org/10.1016/j.lfs.2024.122764.
  • 102.
    Jeong, Y.; Lee, S.; Choi, W.H.; et al. Fabrication of Dentin-Pulp-Like Organoids Using Dental-Pulp Stem Cells. Cells 2020, 9, 642. https://doi.org/10.3390/cells9030642.
  • 103.
    Cen, ; Pan, X.; Zhang, B.; et al. miR-20a-5p contributes to osteogenic differentiation of human dental pulp stem cells by regulating BAMBI and activating the phosphorylation of Smad5 and p38. Stem Cell Res. Ther. 2021, 12, 421. https://doi.org/10.1186/s13287-021-02501-8.
  • 104.
    Sano, ; Usui, M.; Moritani, Y.; et al. Co-cultured spheroids of human periodontal ligament mesenchymal stem cells and vascular endothelial cells enhance periodontal tissue regeneration. Regen. Ther. 2020, 14, 59–71. https://doi.org/10.1016/j.reth.2019.12.008.
  • 105.
    Lee, H.; Um, S.; Jang, J.H.; et al. Effects of VEGF and FGF-2 on proliferation and differentiation of human periodontal ligament stem cells. Cell Tissue Res. 2012, 348, 475–484. https://doi.org/10.1007/s00441-012-1392-x.
  • 106.
    Tatullo, ; Cocco, T.; Ferretta, A.; et al. Unveiling the Neurodegenerative Alterations through Oral Stem Cells. J. Dent. Res. 2024, 103, 1100–1108. https://doi.org/10.1177/00220345241265661.
  • 107.
    Morrison, G.; Sarkar, S.; Umar, S.; et al. The Contribution of the Human Oral Microbiome to Oral Disease: A Review. Microorganisms 2023, 11, 318. https://doi.org/10.3390/microorganisms11020318.
  • 108.
    Pang, ; Cady, N.M.; Cen, L.; et al. Physiologically relevant coculture model for oral microbial-host interactions. Int. J. Oral Sci. 2025, 17, 42. https://doi.org/10.1038/s41368-025-00365-9.
  • 109.
    Adelfio, ; Callen, G.E.; Diaz, A.R.; et al. Underscoring long-term host-microbiome interactions in a physiologically relevant gingival tissue model. NPJ Biofilms Microbiomes 2025, 11, 9. https://doi.org/10.1038/s41522-024-00641-2.
  • 110.
    Adelfio, ; Bonzanni, M.; Callen, G.E.; et al. A physiologically relevant culture platform for long-term studies of in vitro gingival tissue. Acta Biomater. 2023, 167, 321–334. https://doi.org/10.1016/j.actbio.2023.06.008.
  • 111.
    Rajasekaran, J.; Krishnamurthy, H.K.; Bosco, J.; et al. Oral Microbiome: A Review of Its Impact on Oral and Systemic Health. Microorganisms 2024, 12, 1797. https://doi.org/10.3390/microorganisms12091797.
  • 112.
    Chen, ; Lei, L.; Xia, M.; et al. The association between oral microbiome and gastric precancerous lesions. Msystems 2025, 10, e0132224. https://doi.org/10.1128/msystems.01322-24.
  • 113.
    Plachokova, S.; Andreu-Sánchez, S.; Noz, M.P.; et al. Oral Microbiome in Relation to Periodontitis Severity and Systemic Inflammation. Int. J. Mol. Sci. 2021, 22, 5876. https://doi.org/10.3390/ijms22115876.
  • 114.
    Lai, ; Liu, S.; Song, C.; et al. An update on the role and mechanisms of periodontitis in cardiovascular diseases. Cell. Signal. 2025, 132, 111770. https://doi.org/10.1016/j.cellsig.2025.111770.
  • 115.
    Peng, ; Cheng, L.; You, Y.; et al. Oral microbiota in human systematic diseases. Int. J. Oral Sci. 2022, 14, 14. https://doi.org/10.1038/s41368-022-00163-7.
  • 116.
    Yamaguchi-Kuroda, ; Kikuchi, Y.; Kokubu, E.; et al. Porphyromonas gingivalis diffusible signaling molecules enhance Fusobacterium nucleatum biofilm formation via gene expression modulation. J. Oral Microbiol. 2023, 15, 2165001. https://doi.org/10.1080/20002297.2023.2165001.
  • 117.
    Sato, ; Vries, R.G.; Snippert, H.J.; et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 2009, 459, 262–265. https://doi.org/10.1038/nature07935.
  • 118.
    Ou, ; Li, Q.; Ling, X.; et al. Cocktail Formula and Application Prospects for Oral and Maxillofacial Organoids. Tissue Eng. Regen. Med. 2022, 19, 913–925. https://doi.org/10.1007/s13770-022-00455-3.
  • 119.
    Yang, ; Hu, H.; Kung, H.; et al. Organoids: The current status and biomedical applications. MedComm 2023, 4, e274. https://doi.org/10.1002/mco2.274.
  • 120.
    Wang, ; Sun, Y. Engineered organoids in oral and maxillofacial regeneration. Iscience 2023, 26, 105757. https://doi.org/10.1016/j.isci.2022.105757.
  • 121.
    Corsini, S.; Knoblich, J.A. Human organoids: New strategies and methods for analyzing human development and disease. Cell 2022, 185, 2756–2769. https://doi.org/10.1016/j.cell.2022.06.051.
  • 122.
    Clevers, Modeling Development and Disease with Organoids. Cell 2016, 165, 1586–1597. https://doi.org/10.1016/j.cell.2016.05.082.
  • 123.
    Mirabelli, ; Coppola, L.; Salvatore, M. Cancer Cell Lines Are Useful Model Systems for Medical Research. Cancers 2019, 11, 1098. https://doi.org/10.3390/cancers11081098.
  • 124.
    Ishikawa, ; Ogawa, T.; Shiihara, M.; et al. Salivary gland cancer organoids are valid for preclinical genotype-oriented medical precision trials. Iscience 2023, 26, 106695. https://doi.org/10.1016/j.isci.2023.106695.
  • 125.
    Zuo, ; Fang, Y.; Wang, R.; et al. High-throughput solutions in tumor organoids: From culture to drug screening. Stem Cells 2025, 43, sxae070. https://doi.org/10.1093/stmcls/sxae070.
  • 126.
    Hofer, ; Lutolf, M.P. Engineering organoids. Nat. Rev. Mater. 2021, 6, 402–420. https://doi.org/10.1038/s41578-021-00279-y.
  • 127.
    Schäffers, J.M.; Gribnau, J.; van Rijn, B.B.; et al. Ethical considerations for advancing research using organoid models derived from the placenta. Hum. Reprod. Update 2025, 31, 392–401. https://doi.org/10.1093/humupd/dmaf007.
  • 128.
    Kim, ; Koo, B.K.; Knoblich, J.A. Human organoids: Model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. 2020, 21, 571–584. https://doi.org/10.1038/s41580-020-0259-3.
  • 129.
    Papamichail, ; Koch, L.S.; Veerman, D.; et al. Organoids-on-a-chip: Microfluidic technology enables culture of organoids with enhanced tissue function and potential for disease modeling. Front. Bioeng. Biotechnol. 2025, 13, 1515340. https://doi.org/10.3389/fbioe.2025.1515340.
  • 130.
    Ren, ; Chen, W.; Yang, Q.; et al. Patient-derived cancer organoids for drug screening: Basic technology and clinical application. J. Gastroenterol. Hepatol. 2022, 37, 1446–1454. https://doi.org/10.1111/jgh.15930.
  • 131.
    Andrews, G.; Kriegstein, A.R. Challenges of Organoid Research. Annu. Rev. Neurosci. 2022, 45, 23–39. https://doi.org/10.1146/annurev-neuro-111020-090812.
  • 132.
    Lee, ; Yang, S.; Lee, K.J.; et al. Standardization and quality assessment for human intestinal organoids. Front. Cell Dev. Biol. 2024, 12, 1383893. https://doi.org/10.3389/fcell.2024.1383893.
  • 133.
    Kim, ; Gwon, Y.; Park, S.; et al. Therapeutic strategies of three-dimensional stem cell spheroids and organoids for tissue repair and regeneration. Bioact. Mater. 2023, 19, 50–74. https://doi.org/10.1016/j.bioactmat.2022.03.039.
  • 134.
    Gao, H.; Li, X.L.; Fan, B.; et al. Engineering organoids for dental pulp tissue regeneration and functional reconstruction. Regen. Med .2025, 20, 203–220. https://doi.org/10.1080/17460751.2025.2514899.
  • 135.
    Zhou, ; Wu, Y.; Wang, Z.; et al. Standardization of organoid culture in cancer research. Cancer Med. 2023, 12, 14375–14386. https://doi.org/10.1002/cam4.5943.
  • 136.
    Yu, ; Zhou, D.; Wang, F.; et al. Organoids for tissue repair and regeneration. Mater. Today BIO 2025, 33, 102013. https://doi.org/10.1016/j.mtbio.2025.102013.
  • 137.
    Lancia, ; Mauro, A.; Mattei, V.; et al. Protocol for the generation and analysis of organoids from Dental pulp stem cells (DPSCs). Tissue Cell 2025, 96, 103010. https://doi.org/10.1016/j.tice.2025.103010.
  • 138.
    Veninga, ; Voest, E.E. Tumor organoids: Opportunities and challenges to guide precision medicine. Cancer Cell 2021, 39, 1190–1201. https://doi.org/10.1016/j.ccell.2021.07.020.
  • 139.
    Feng, ; He, D.; An, X. Hydrogel innovations for 3D organoid culture. Biomed. Mater. 2025, 20, 042001. https://doi.org/10.1088/1748-605X/add82d.
  • 140.
    Strunk, ; Joshi, A.; Moeinkhah, M.; et al. Structure, Properties and Degradation of Self-Assembled Fibrinogen Nanofiber Scaffolds. ACS Appl. BIO Mater. 2024, 7, 6186–6200. https://doi.org/10.1021/acsabm.4c00761.
  • 141.
    López-León, F.; Planet, R.; Soriano, J. Preparation and Mechano-Functional Characterization of PEGylated Fibrin Hydrogels: Impact of Thrombin Concentration. Gels 2024, 10, 116. https://doi.org/10.3390/gels10020116.
  • 142.
    Gila-Vilchez, ; Mañas-Torres, M.C.; García-García, Ó.D.; et al. Biocompatible Short-Peptides Fibrin Co-assembled Hydrogels. ACS Appl. Polym. Mater. 2023, 5, 2154–2165. https://doi.org/10.1021/acsapm.2c02164.
  • 143.
    Bindi, ; Perioli, A.; Melo, P.; et al. Bioinspired Collagen/Hyaluronic Acid/Fibrin-Based Hydrogels for Soft Tissue Engineering: Design, Synthesis, and In Vitro Characterization. J. Funct. Biomater. 2023, 14, 495. https://doi.org/10.3390/jfb14100495.
  • 144.
    Bhusal, ; Dogan, E.; Nguyen, H.A.; et al. Multi-material digital light processing bioprinting of hydrogel-based microfluidic chips. Biofabrication 2021, 14, 014103. https://doi.org/10.1088/1758-5090/ac2d78.
  • 145.
    Hakim Khalili, ; Zhang, R.; Wilson, S.; et al. Additive Manufacturing and Physicomechanical Characteristics of PEGDA Hydrogels: Recent Advances and Perspective for Tissue Engineering. Polymers 2023, 15, 2341. https://doi.org/10.3390/polym15102341.
  • 146.
    Kwon, ; Ryu, J.H.; Kim, J.; et al. Biomimetic Catechol-Incorporated Polyacrylonitrile Nanofiber Scaffolds for Tissue Engineering of Functional Salivary Glands. Biomater. Res. 2025, 29, 0226. https://doi.org/10.34133/bmr.0226.
  • 147.
    Salvadori, ; Watanabe, M.; Markovic, M.; et al. Controlled microvasculature for organ-on-a-chip applications produced by high-definition laser patterning. Biofabrication 2025, 17, 035011. https://doi.org/10.1088/1758-5090/add37e.
  • 148.
    Xu, ; Lei, Z.; Cheng, Q.; et al. Biomedical applications of organoids derived from the digestive system. Front. Cell Dev. Biol. 2025, 13, 1599384. https://doi.org/10.3389/fcell.2025.1599384.
  • 149.
    Bai, ; Wu, Y.; Li, G.; et al. AI-enabled organoids: Construction, analysis, and application. Bioact. Mater. 2024, 31, 525–548. https://doi.org/10.1016/j.bioactmat.2023.09.005.
  • 150.
    Gao, ; Wang, C.; Li, Q.; et al. Application of medical imaging methods and artificial intelligence in tissue engineering and organ-on-a-chip. Front. Bioeng. Biotechnol. 2022, 10, 985692. https://doi.org/10.3389/fbioe.2022.985692.
  • 151.
    Abdul, ; Xu, J.; Sotra, A.; et al. D-CryptO: Deep learning-based analysis of colon organoid morphology from brightfield images. Lab Chip 2022, 22, 4118–4128. https://doi.org/10.1039/d2lc00596d.
  • 152.
    Carvalho, J.; Kip, A.M.; Tegel, A.; et al. A Modular Microfluidic Organoid Platform Using LEGO-Like Bricks. Adv. Healthc. Mater. 2024, 13, e2303444. https://doi.org/10.1002/adhm.202303444.
  • 153.
    Zhang, -W.; Tamura, C.; Ahmadianyazdi, A.; et al. Advancing modular microfluidics: Stereolithographic 3D printing of reconfigurable connectors for bioanalytical applications. Int. J. Bioprinting 2025, 11, 516–531.
  • 154.
    Wang, ; Zhang, H.; Qu, Y.; et al. An eighteen-organ microphysiological system coupling a vascular network and excretion system for drug discovery. Microsyst. Nanoeng. 2025, 11, 89. https://doi.org/10.1038/s41378-025-00933-3.
Share this article:
How to Cite
Li, S.; Ruan, H.; Huang, J.; Yu, L.; Zhang, B.; Chen, R.; Chen, K.; Yang, L.; Pathak, J. L.; Zhang, Q. Organoids in Dentistry and Oral Medicine: From Disease Models to Regenerative Medicine. Regenerative Medicine and Dentistry 2025, 2 (3), 14. https://doi.org/10.53941/rmd.2025.100014.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.