- 1.
Peres, M.A.; Macpherson, L.M.D.; Weyant, R.J.; et al. Oral diseases: A global public health challenge. Lancet 2019, 394, 249–260. https://doi.org/10.1016/s0140-6736(19)31146-8.
- 2.
Ferrari, A.J.; Santomauro, D.F.; Aali, A.; et al. Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: A systematic analysis for the Global Burden of Disease Study Lancet 2024, 403, 2133–2161. https://doi.org/10.1016/s0140-6736(24)00757-8.
- 3.
Ju, ; Gao, X.; Zhang, C.; et al. A Versatile Immune Protective Armor to Enhance the Regenerative Potential of Exogenous Stem Cells. ACS Appl. Mater. Interfaces 2025, 17, 23600–23612. https://doi.org/10.1021/acsami.5c00253.
- 4.
Tang, ; Chen, X.; Hong, X.; et al. 3D printing personalized orally disintegrating tablets with complex structures for the treatment of special populations. Int. J. Pharm. 2025, 673, 125371. https://doi.org/10.1016/j.ijpharm.2025.125371.
- 5.
Xiong, ; Liu, Y.; Zhou, H.; et al. Human dental pulp stem cells mitigate the neuropathology and cognitive decline via AKT-GSK3β-Nrf2 pathways in Alzheimer’s disease. Int. J. Oral Sci. 2024, 16, 40. https://doi.org/10.1038/s41368-024-00300-4.
- 6.
Yu, ; Zhong, Y.; Zhang, B.; et al. A New Theranostic Platform Against Gram-Positive Bacteria Based on Near-Infrared-Emissive Aggregation-Induced Emission Nanoparticles. Small 2024, 20, e2308071. https://doi.org/10.1002/smll.202308071.
- 7.
Chen, ; Xie, Z.; Yang, S.; et al. Machine Learning Approach to Investigating Macrophage Polarization on Various Titanium Surface Characteristics. BME Front. 2025, 6, 0100. https://doi.org/10.34133/bmef.0100.
- 8.
Miao, ; Wu, X.; You, W.; et al. Tailoring of apoptotic bodies for diagnostic and therapeutic applications:advances, challenges, and prospects. J. Transl. Med. 2024, 22, 810. https://doi.org/10.1186/s12967-024-05451-w.
- 9.
Li, ; Zhao, Y.; Chen, S.; et al. Research Hotspots and Trends of Bone Xenograft in Clinical Procedures: A Bibliometric and Visual Analysis of the Past Decade. Bioengineering 2023, 10, 929. https://doi.org/10.3390/bioengineering10080929.
- 10.
Hajishengallis, Illuminating the oral microbiome and its host interactions: Animal models of disease. FEMS Microbiol. Rev. 2023, 47, fuad018. https://doi.org/10.1093/femsre/fuad018.
- 11.
Fitzgerald, A.; Malhotra, M.; Curtin, C.M.; et al. Life in 3D is never flat: 3D models to optimise drug delivery. J. Control. Release 2015, 215, 39–54. https://doi.org/10.1016/j.jconrel.2015.07.020.
- 12.
Rossi, ; Manfrin, A.; Lutolf, M.P. Progress and potential in organoid research. Nat. Rev. Genet. 2018, 19, 671–687. https://doi.org/10.1038/s41576-018-0051-9.
- 13.
Drost, ; Clevers, H. Organoids in cancer research. Nat. Rev. Cancer 2018, 18, 407–418. https://doi.org/10.1038/s41568-018-0007-6.
- 14.
Mansour, A.; Gonçalves, J.T.; Bloyd, C.W.; et al. An in vivo model of functional and vascularized human brain organoids. Nat. Biotechnol. 2018, 36, 432–441. https://doi.org/10.1038/nbt.4127.
- 15.
Schafer, T.; Mansour, A.A.; Schlachetzki, J.C.M.; et al. An in vivo neuroimmune organoid model to study human microglia phenotypes. Cell 2023, 186, 2111–2126.e2120. https://doi.org/10.1016/j.cell.2023.04.022.
- 16.
Abuwatfa, H.; Pitt, W.G.; Husseini, G.A. Scaffold-based 3D cell culture models in cancer research. J. Biomed. Sci. 2024, 31, 7. https://doi.org/10.1186/s12929-024-00994-y.
- 17.
Urzì, ; Gasparro, R.; Costanzo, E.; et al. Three-Dimensional Cell Cultures: The Bridge between In Vitro and In Vivo Models. Int. J. Mol. Sci. 2023, 24, 12046. https://doi.org/10.3390/ijms241512046.
- 18.
Goldrick, ; Guri, I.; Herrera-Oropeza, G.; et al. 3D multicellular systems in disease modelling: From organoids to organ-on-chip. Front. Cell Dev. Biol. 2023, 11, 1083175.
- 19.
Rosowski, ; Bräunig, J.; Amler, A.K.; et al. Emulating the early phases of human tooth development in vitro. Sci. Rep. 2019, 9, 7057. https://doi.org/10.1038/s41598-019-43468-0.
- 20.
Yang, ; Leung, A.Y.P.; Wang, Z.; et al. Proanthocyanidin surface preconditioning of dental pulp stem cell spheroids enhances dimensional stability and biomineralization in vitro. Int. Endod. J. 2024, 57, 1639–1654. https://doi.org/10.1111/iej.14126.
- 21.
Marsee, ; Roos, F.J.M.; Verstegen, M.M.A.; et al. Building consensus on definition and nomenclature of hepatic, pancreatic, and biliary organoids. Cell Stem Cell 2021, 28, 816–832. https://doi.org/10.1016/j.stem.2021.04.005.
- 22.
Calabrese, C.; Rothermund, K.; Gabe, C.M.; et al. Self-Assembly of Tooth Root Organoid from Postnatal Human Dental Stem Cells. Tissue Eng. Part A 2024, 30, 404–414. https://doi.org/10.1089/ten.TEA.2023.0219.
- 23.
Adine, ; Ng, K.K.; Rungarunlert, S.; et al. Engineering innervated secretory epithelial organoids by magnetic three-dimensional bioprinting for stimulating epithelial growth in salivary glands. Biomaterials 2018, 180, 52–66. https://doi.org/10.1016/j.biomaterials.2018.06.011.
- 24.
Sano, ; Renn, T.Y.; Kanematsu, T.; et al. Organoid in dentistry: Models for oral biology and disease. J. Dent. Sci. 2025, 20, 1816–1823. https://doi.org/10.1016/j.jds.2025.05.002.
- 25.
Maimets, ; Rocchi, C.; Bron, R.; et al. Long-Term In Vitro Expansion of Salivary Gland Stem Cells Driven by Wnt Signals. Stem Cell Rep. 2016, 6, 150–162. https://doi.org/10.1016/j.stemcr.2015.11.009.
- 26.
Lee, S.; Park, Y.H.; Seo, Y.M.; et al. Tubular dentin formation by TGF-β/BMP signaling in dental epithelial cells. Oral Dis. 2023, 29, 1644–1656. https://doi.org/10.1111/odi.14170.
- 27.
Song, M.; Na, K.H.; Lee, H.J.; et al. The Effects of Transforming Growth Factor-β1 on the Differentiation of Cell Organoids Composed of Gingiva-Derived Stem Cells. Biomed. Res. Int. 2022, 2022, 9818299. https://doi.org/10.1155/2022/9818299.
- 28.
Liu, ; Xiao, J.; Chen, L.H.; et al. Self-assembly of differentiated dental pulp stem cells facilitates spheroid human dental organoid formation and prevascularization. World J. Stem. Cells 2024, 16, 287–304. https://doi.org/10.4252/wjsc.v16.i3.287.
- 29.
Bi, ; Yang, K.; Yu, T.; et al. Cell-based mechanisms and strategies of co-culture system both in vivo and vitro for bone tissue engineering. Biomed. Pharmacother. 2023, 169, 115907. https://doi.org/10.1016/j.biopha.2023.115907.
- 30.
Licata, P.; Schwab, K.H.; Har-El, Y.E.; et al. Bioreactor Technologies for Enhanced Organoid Culture. Int. J. Mol. Sci. 2023, 24, 11427. https://doi.org/10.3390/ijms241411427.
- 31.
Seo, Y.; Park, S.B.; Kim, S.Y.; et al. Acoustic and Magnetic Stimuli-Based Three-Dimensional Cell Culture Platform for Tissue Engineering. Tissue Eng. Regen. Med. 2023, 20, 563–580. https://doi.org/10.1007/s13770-023-00539-8.
- 32.
Lu, ; Jin, A.; Gao, C.; et al. Synergistic Approach of High-Precision 3D Printing and Low Cell Adhesion for Enhanced Self-Assembled Spheroid Formation. Biosensors 2024, 15, 7. https://doi.org/10.3390/bios15010007.
- 33.
Zhou, ; Yang, J.; Li, R.; et al. Live Imaging of 3D Hanging Drop Arrays through Manipulation of Light-Responsive Pyroelectric Slippery Surface and Chip Adhesion. Nano Lett. 2023, 23, 10710–10718. https://doi.org/10.1021/acs.nanolett.3c02570.
- 34.
Baillargeon, ; Shumate, J.; Hou, S.; et al. Automating a Magnetic 3D Spheroid Model Technology for High-Throughput Screening. SLAS Technol. 2019, 24, 420–428. https://doi.org/10.1177/2472630319854337.
- 35.
Han, ; Tang, S.; Wang, L.; et al. Multicellular Spheroids Formation on Hydrogel Enhances Osteogenic/Odontogenic Differentiation of Dental Pulp Stem Cells Under Magnetic Nanoparticles Induction. Int. J. Nanomed. 2021, 16, 5101–5115. https://doi.org/10.2147/ijn.S318991.
- 36.
Ferreira, N.; Hasan, R.; Urkasemsin, G.; et al. A magnetic three-dimensional levitated primary cell culture system for the development of secretory salivary gland-like organoids. J. Tissue Eng. Regen. Med. 2019, 13, 495–508. https://doi.org/10.1002/term.2809.
- 37.
Lekkala, K.R.; Kang, S.Y.; Liu, J.; et al. A Pillar/Perfusion Plate Enhances Cell Growth, Reproducibility, Throughput, and User Friendliness in Dynamic 3D Cell Culture. ACS Biomater. Sci. Eng. 2024, 10, 3478–3488. https://doi.org/10.1021/acsbiomaterials.4c00179.
- 38.
Liang, ; Wang, S.; Zhang, X.; et al. Multi-site enhancement of osteogenesis: Peptide-functionalized GelMA hydrogels with three-dimensional cultures of human dental pulp stem cells. Regen. Biomater. 2024, 11, rbae090. https://doi.org/10.1093/rb/rbae090.
- 39.
Huang, ; Chen, X.; Yang, X.; et al. GelMA-based hydrogel biomaterial scaffold: A versatile platform for regenerative endodontics. J. Biomed. Mater. Res. B Appl. Biomater. 2024, 112, e35412. https://doi.org/10.1002/jbm.b.35412.
- 40.
Salvador-Clavell, ; Martín de Llano, J.J.; Milián, L.; et al. Chondrogenic Potential of Human Dental Pulp Stem Cells Cultured as Microtissues. Stem. Cells Int. 2021, 2021, 7843798. https://doi.org/10.1155/2021/7843798.
- 41.
Yang, ; Wang, B.; Liu, W.; et al. In situ self-assembled organoid for osteochondral tissue regeneration with dual functional units. Bioact. Mater. 2023, 27, 200–215. https://doi.org/10.1016/j.bioactmat.2023.04.002.
- 42.
Yuan, ; Yang, X.; Wang, X.; et al. Injectable Xenogeneic Dental Pulp Decellularized Extracellular Matrix Hydrogel Promotes Functional Dental Pulp Regeneration. Int. J. Mol. Sci. 2023, 24, 17483. https://doi.org/10.3390/ijms242417483.
- 43.
Sui, ; Zhou, Z.; Zhang, S.; et al. The comprehensive progress of tooth regeneration from the tooth development to tissue engineering and clinical application. Cell Regen. 2025, 14, 33. https://doi.org/10.1186/s13619-025-00249-7.
- 44.
Huang, ; Wu, Y.; Zhao, H.; et al. Advancements in bone organoids: Perspectives on construction methodologies and application strategies. J. Adv. Res. 2025, in press. https://doi.org/10.1016/j.jare.2025.06.011.
- 45.
Musah, ; Arzaghi, H. Unleashing the power of biomaterials to enhance organoid differentiation and function. Nat. Methods 2024, 21, 1575–1577. https://doi.org/10.1038/s41592-024-02393-5.
- 46.
da Silva, S.P.; Bordini, E.A.F.; Bronze-Uhle, E.S.; et al. Photo-crosslinkable hydrogel incorporated with bone matrix particles for advancements in dentin tissue engineering. J. Biomed. Mater. Res. A 2024, 112, 2273–2288. https://doi.org/10.1002/jbm.a.37777.
- 47.
Pele, G.; Amaveda, H.; Mora, M.; et al. Hydrocolloids of Egg White and Gelatin as a Platform for Hydrogel-Based Tissue Engineering. Gels 2023, 9, 505. https://doi.org/10.3390/gels9060505.
- 48.
Pouraghaei, ; Moztarzadeh, F.; Chen, C.; et al. Microenvironment Can Induce Development of Auditory Progenitor Cells from Human Gingival Mesenchymal Stem Cells. ACS Biomater. Sci. Eng. 2020, 6, 2263–2273. https://doi.org/10.1021/acsbiomaterials.9b01795.
- 49.
Zhang, ; Contessi Negrini, N.; Correia, R.; et al. Generating Tooth Organoids Using Defined Bioorthogonally Cross-Linked Hydrogels. ACS Macro Lett. 2024, 13, 1620–1626. https://doi.org/10.1021/acsmacrolett.4c00520.
- 50.
Ding, ; Huang, J.; Ren, Y.; et al. 3D bioprinted advanced cartilage organoids with engineered magnetic nanoparticles polarized-BMSCs/alginate/gelatin for cartilage tissue regeneration. Nano Res. 2025, 18, https://doi.org/10.26599/NR.2025.94907084
- 51.
Yang, ; Ma, Y.; Wang, X.; et al. A 3D-Bioprinted Functional Module Based on Decellularized Extracellular Matrix Bioink for Periodontal Regeneration. Adv. Sci. 2023, 10, e2205041. https://doi.org/10.1002/advs.202205041.
- 52.
Park, H.; Gillispie, G.J.; Copus, J.S.; et al. The effect of BMP-mimetic peptide tethering bioinks on the differentiation of dental pulp stem cells (DPSCs) in 3D bioprinted dental constructs. Biofabrication 2020, 12, 035029. https://doi.org/10.1088/1758-5090/ab9492.
- 53.
Zhu, ; Liao, X.; Xu, Y.; et al. 3D bioprinting of high-performance hydrogel with in-situ birth of stem cell spheroids. Bioact. Mater. 2025, 43, 392–405. https://doi.org/10.1016/j.bioactmat.2024.09.033.
- 54.
Han, ; Kim, D.S.; Jang, H.; et al. Bioprinting of three-dimensional dentin-pulp complex with local differentiation of human dental pulp stem cells. J. Tissue Eng. 2019, 10. https://doi.org/10.1177/2041731419845849.
- 55.
Vurat, T.; Şeker, Ş.; Lalegül-Ülker, Ö.; et al. Development of a multicellular 3D-bioprinted microtissue model of human periodontal ligament-alveolar bone biointerface: Towards a pre-clinical model of periodontal diseases and personalized periodontal tissue engineering. Genes Dis. 2022, 9, 1008–1023. https://doi.org/10.1016/j.gendis.2020.11.011.
- 56.
Miao, ; Liang, L.; Li, W.; et al. 3D Bioprinting of a Bioactive Composite Scaffold for Cell Delivery in Periodontal Tissue Regeneration. Biomolecules 2023, 13, 1062. https://doi.org/10.3390/biom13071062.
- 57.
Das, ; Jegadeesan, J.T.; Basu, B. Gelatin Methacryloyl (GelMA)-Based Biomaterial Inks: Process Science for 3D/4D Printing and Current Status. Biomacromolecules 2024, 25, 2156–2221. https://doi.org/10.1021/acs.biomac.3c01271.
- 58.
Zhou, ; Zhu, S.; Wei, X.; et al. 3D-bioprinted hydrogels with instructive niches for dental pulp regeneration. Int. J. Bioprinting 2024, 10, 1790.
- 59.
Tavafoghi, ; Darabi, M.A.; Mahmoodi, M.; et al. Multimaterial bioprinting and combination of processing techniques towards the fabrication of biomimetic tissues and organs. Biofabrication 2021, 13, 042002. https://doi.org/10.1088/1758-5090/ac0b9a.
- 60.
Quintard, ; Tubbs, E.; Jonsson, G.; et al. A microfluidic platform integrating functional vascularized organoids-on-chip. Nat. Commun. 2024, 15, 1452. https://doi.org/10.1038/s41467-024-45710-4.
- 61.
Liu, ; Chen, Y.; Chen, Y.; et al. Long-term culture and morphological maturation of taste organoids enhance taste discrimination in a biomimetic biosensor. Microsyst. Nanoeng. 2025, 11, 120. https://doi.org/10.1038/s41378-025-00978-4.
- 62.
Machla, ; Monou, P.K.; Artemiou, P.; et al. Design, additive manufacturing, and characterization of an organ-on-chip microfluidic device for oral mucosa analogue growth. J. Mech. Behav. Biomed. Mater. 2025, 163, 106877. https://doi.org/10.1016/j.jmbbm.2024.106877.
- 63.
Gard, L.; Luu, R.J.; Maloney, R.; et al. A high-throughput, 28-day, microfluidic model of gingival tissue inflammation and recovery. Commun. Biol. 2023, 6, 92. https://doi.org/10.1038/s42003-023-04434-9.
- 64.
Hu, ; Muniraj, G.; Mishra, A.; et al. Characterization of silver diamine fluoride cytotoxicity using microfluidic tooth-on-a-chip and gingival equivalents. Dent.Mater. 2022, 38, 1385–1394. https://doi.org/10.1016/j.dental.2022.06.025.
- 65.
Dhall, ; Tan, J.Y.; Oh, M.J.; et al. A dental implant-on-a-chip for 3D modeling of host-material-pathogen interactions and therapeutic testing platforms. Lab Chip 2022, 22, 4905–4916. https://doi.org/10.1039/d2lc00774f.
- 66.
Shi, ; Zheng, L.; Na, J.; et al. Fluid shear stress promotes periodontal ligament cells proliferation via p38-AMOT-YAP. Cell. Mol. Life Sci. 2022, 79, 551. https://doi.org/10.1007/s00018-022-04591-w.
- 67.
Wang, ; Sasaki, Y.; Sakagami, R.; et al. Perfluoropolyether-Based Gut-Liver-on-a-Chip for the Evaluation of First-Pass Metabolism and Oral Bioavailability of Drugs. ACS Biomater. Sci. Eng. 2024, 10, 4635–4644. https://doi.org/10.1021/acsbiomaterials.4c00605.
- 68.
Kristensen, F.; Lund, M.B.; Schramm, A.; et al. Determinants of Microscale pH in In Situ-Grown Dental Biofilms. J. Dent. Res. 2023, 102, 1348–1355. https://doi.org/10.1177/00220345231190563.
- 69.
Yang, ; Wang, P.; Li, Z.; et al. A continuous flow PCR array microfluidic chip applied for simultaneous amplification of target genes of periodontal pathogens. Lab Chip 2022, 22, 733–737. https://doi.org/10.1039/d1lc00814e.
- 70.
Wang, ; Wang, J.; Chang, X.; et al. Rapid Detection of Streptococcus mutans Using an Integrated Microfluidic System with Loop-Mediated Isothermal Amplification. J. Microbiol. Biotechnol. 2023, 33, 1101–1110. https://doi.org/10.4014/jmb.2304.04026.
- 71.
Oates, A.; Anastasiou, A.D. A novel microfluidic tool for the evaluation of local drug delivery systems in simulated in vivo conditions. Lab Chip 2024, 24, 3840–3849. https://doi.org/10.1039/d4lc00181h.
- 72.
Xu, ; Guo, Y.; Liu, P.; et al. Piezo Mediates the Mechanosensation and Injury-Repair of Pulpo-Dentinal Complex. Int. Dent. J. 2024, 74, 71–80. https://doi.org/10.1016/j.identj.2023.07.002.
- 73.
Wu, ; Li, X.; Liu, H.; et al. Organoids in the oral and maxillofacial region: Present and future. Int. J. Oral Sci. 2024, 16, 61. https://doi.org/10.1038/s41368-024-00324-w.
- 74.
Zhao, ; Jiang, E.; Shang, Z. 3D Co-culture of Cancer-Associated Fibroblast with Oral Cancer Organoids. J. Dent. Res. 2021, 100, 201–208. https://doi.org/10.1177/0022034520956614.
- 75.
Chen, ; Li, R.; Zhao, H.; et al. Phenotype transition of fibroblasts incorporated into patient-derived oral carcinoma organoids. Oral Dis. 2023, 29, 913–922. https://doi.org/10.1111/odi.14071.
- 76.
Sobue, ; Bertolini, M.; Thompson, A.; et al. Chemotherapy-induced oral mucositis and associated infections in a novel organotypic model. Mol. Oral Microbiol. 2018, 33, 212–223. https://doi.org/10.1111/omi.12214.
- 77.
Guo, ; Chen, S.; Rao, X.; et al. Inhibition of SIRT1 promotes taste bud stem cell survival and mitigates radiation-induced oral mucositis in mice. Am. J. Transl. Res. 2019, 11, 4789–4799.
- 78.
Meudec, ; Goudarzi, N.; Silva-Saffar, S.E.; et al. Development of salivary gland organoids derived from patient biopsies: A functional model of Sjögren’s disease. Ann. Rheum. Dis. 2025, 84, 1195–1206. https://doi.org/10.1016/j.ard.2025.04.020.
- 79.
Jeon, G.; Lee, J.; Lee, S.J.; et al. Salivary gland organoid transplantation as a therapeutic option for radiation-induced xerostomia. Stem. Cell Res. Ther. 2024, 15, 265. https://doi.org/10.1186/s13287-024-03833-x.
- 80.
Hemeryck, ; Hermans, F.; Chappell, J.; et al. Organoids from human tooth showing epithelial stemness phenotype and differentiation potential. Cell. Mol. Life Sci. 2022, 79, 153. https://doi.org/10.1007/s00018-022-04183-8.
- 81.
Jerbaka, ; Gribova, V.; Rey, T.; et al. Organotypic 3D Cellular Models Mimicking the Epithelio-Ectomesenchymal Bilayer During Odontogenesis. Tissue Eng. Part A 2025, 31, 471–488. https://doi.org/10.1089/ten.TEA.2024.0118.
- 82.
Chu, ; Pieles, O.; Pfeifer, C.G.; et al. Dental follicle cell differentiation towards periodontal ligament-like tissue in a self-assembly three-dimensional organoid model. Eur. Cells Mater. 2021, 42, 20–33. https://doi.org/10.22203/eCM.v042a02.
- 83.
Zhao, ; Li, R.; Chen, Y.; et al. Stromal nicotinamide N-methyltransferase orchestrates the crosstalk between fibroblasts and tumour cells in oral squamous cell carcinoma: Evidence from patient-derived assembled organoids. Oncogene 2023, 42, 1166–1180. https://doi.org/10.1038/s41388-023-02642-5.
- 84.
Holkom, ; Yang, X.; Li, R.; et al. Fibroblast regulates angiogenesis in assembled oral cancer organoid: A possible role of NNMT. Oral Dis. 2024, 30, 4982–4992. https://doi.org/10.1111/odi.14945.
- 85.
Khalesi, ; Abbasi, A.; Razavi, S.M. Evaluating the Clinicopathologic Parameters of Tongue Squamous Cell Carcinoma based on its Local Distribution. Adv. Biomed. Res. 2023, 12, 71. https://doi.org/10.4103/abr.abr_197_21.
- 86.
Zhao, ; Huang, L.; Yu, S.; et al. Decellularized tongue tissue as an in vitro model for studying tongue cancer and tongue regeneration. Acta Biomater. 2017, 58, 122–135. https://doi.org/10.1016/j.actbio.2017.05.062.
- 87.
Elad, ; Yarom, N.; Zadik, Y.; et al. The broadening scope of oral mucositis and oral ulcerative mucosal toxicities of anticancer therapies. CA Cancer J. Clin. 2022, 72, 57–77. https://doi.org/10.3322/caac.21704.
- 88.
Kepple, D.; Thornburg, T.E.; Beckman, M.F.; et al. Elucidating Regulatory Mechanisms of Genes Involved in Pathobiology of Sjögren’s Disease: Immunostimulation Using a Cell Culture Model. Int. J. Mol. Sci. 2025, 26, 5881. https://doi.org/10.3390/ijms26125881.
- 89.
Lombaert, ; Movahednia, M.M.; Adine, C.; et al. Concise Review: Salivary Gland Regeneration: Therapeutic Approaches from Stem Cells to Tissue Organoids. Stem Cells 2017, 35, 97–105. https://doi.org/10.1002/stem.2455.
- 90.
Urkasemsin, ; Ferreira, J.N. Unveiling Stem Cell Heterogeneity Toward the Development of Salivary Gland Regenerative Strategies. Adv. Exp. Med. Biol. 2019, 1123, 151–164. https://doi.org/10.1007/978-3-030-11096-3_9.
- 91.
Tanaka, ; Mishima, K. Application of regenerative medicine to salivary gland hypofunction. JPN Dent. Sci. Rev. 2021, 57, 54–59. https://doi.org/10.1016/j.jdsr.2021.03.002.
- 92.
Yu, ; Klein, O.D. Molecular and cellular mechanisms of tooth development, homeostasis and repair. Development 2020, 147, dev184754. https://doi.org/10.1242/dev.184754.
- 93.
Hashim, T.; Babiker, R.; Padmanabhan, V.; et al. The Global Burden of Periodontal Disease: A Narrative Review on Unveiling Socioeconomic and Health Challenges. Int. J. Environ. Res. Public Health 2025, 22. https://doi.org/10.3390/ijerph22040624.
- 94.
Arani, M.; Yousefi, N.; Hamidieh, A.A.; et al. Tumor Organoid as a Drug Screening Platform for Cancer Research. Curr. Stem Cell Res. Ther. 2024, 19, 1210–1250. https://doi.org/10.2174/011574888x268366230922080423.
- 95.
Yan, H.N.; Siu, H.C.; Law, S.; et al. A Comprehensive Human Gastric Cancer Organoid Biobank Captures Tumor Subtype Heterogeneity and Enables Therapeutic Screening. Cell Stem Cell 2018, 23, 882–897.e811. https://doi.org/10.1016/j.stem.2018.09.016.
- 96.
Driehuis, ; Kolders, S.; Spelier, S.; et al. Oral Mucosal Organoids as a Potential Platform for Personalized Cancer Therapy. Cancer Discov. 2019, 9, 852–871. https://doi.org/10.1158/2159-8290.Cd-18-1522.
- 97.
Zhang, Y.; Sui, Y.; Shan, X.F.; et al. Construction of oral squamous cell carcinoma organoids in vitro 3D-culture for drug screening. Oral Dis. 2025, 31, 99–109. https://doi.org/10.1111/odi.15044.
- 98.
Xu, ; Li, Z.; Ai, X.; et al. Human three-dimensional dental pulp organoid model for toxicity screening of dental materials on dental pulp cells and tissue. Int. Endod. J. 2022, 55, 79–88. https://doi.org/10.1111/iej.13641.
- 99.
Lin, C.; Ting, L.L.; Chang, C.L.; et al. Ex Vivo Expanded Circulating Tumor Cells for Clinical Anti-Cancer Drug Prediction in Patients with Head and Neck Cancer. Cancers 2021, 13, 6076. https://doi.org/10.3390/cancers13236076.
- 100.
Farshbaf, ; Mottaghi, M.; Mohammadi, M.; et al. Regenerative application of oral and maxillofacial 3D organoids based on dental pulp stem cell. Tissue Cell 2024, 89, 102451. https://doi.org/10.1016/j.tice.2024.102451.
- 101.
Hsieh, S.; Chen, M.Y.; Chang, Y.S.; et al. Targeting the Neuropilin-1 receptor with Ovatodiolide and progress in using periodontal ligament organoids for COVID-19 research and therapy. Life Sci. 2024, 351, 122764. https://doi.org/10.1016/j.lfs.2024.122764.
- 102.
Jeong, Y.; Lee, S.; Choi, W.H.; et al. Fabrication of Dentin-Pulp-Like Organoids Using Dental-Pulp Stem Cells. Cells 2020, 9, 642. https://doi.org/10.3390/cells9030642.
- 103.
Cen, ; Pan, X.; Zhang, B.; et al. miR-20a-5p contributes to osteogenic differentiation of human dental pulp stem cells by regulating BAMBI and activating the phosphorylation of Smad5 and p38. Stem Cell Res. Ther. 2021, 12, 421. https://doi.org/10.1186/s13287-021-02501-8.
- 104.
Sano, ; Usui, M.; Moritani, Y.; et al. Co-cultured spheroids of human periodontal ligament mesenchymal stem cells and vascular endothelial cells enhance periodontal tissue regeneration. Regen. Ther. 2020, 14, 59–71. https://doi.org/10.1016/j.reth.2019.12.008.
- 105.
Lee, H.; Um, S.; Jang, J.H.; et al. Effects of VEGF and FGF-2 on proliferation and differentiation of human periodontal ligament stem cells. Cell Tissue Res. 2012, 348, 475–484. https://doi.org/10.1007/s00441-012-1392-x.
- 106.
Tatullo, ; Cocco, T.; Ferretta, A.; et al. Unveiling the Neurodegenerative Alterations through Oral Stem Cells. J. Dent. Res. 2024, 103, 1100–1108. https://doi.org/10.1177/00220345241265661.
- 107.
Morrison, G.; Sarkar, S.; Umar, S.; et al. The Contribution of the Human Oral Microbiome to Oral Disease: A Review. Microorganisms 2023, 11, 318. https://doi.org/10.3390/microorganisms11020318.
- 108.
Pang, ; Cady, N.M.; Cen, L.; et al. Physiologically relevant coculture model for oral microbial-host interactions. Int. J. Oral Sci. 2025, 17, 42. https://doi.org/10.1038/s41368-025-00365-9.
- 109.
Adelfio, ; Callen, G.E.; Diaz, A.R.; et al. Underscoring long-term host-microbiome interactions in a physiologically relevant gingival tissue model. NPJ Biofilms Microbiomes 2025, 11, 9. https://doi.org/10.1038/s41522-024-00641-2.
- 110.
Adelfio, ; Bonzanni, M.; Callen, G.E.; et al. A physiologically relevant culture platform for long-term studies of in vitro gingival tissue. Acta Biomater. 2023, 167, 321–334. https://doi.org/10.1016/j.actbio.2023.06.008.
- 111.
Rajasekaran, J.; Krishnamurthy, H.K.; Bosco, J.; et al. Oral Microbiome: A Review of Its Impact on Oral and Systemic Health. Microorganisms 2024, 12, 1797. https://doi.org/10.3390/microorganisms12091797.
- 112.
Chen, ; Lei, L.; Xia, M.; et al. The association between oral microbiome and gastric precancerous lesions. Msystems 2025, 10, e0132224. https://doi.org/10.1128/msystems.01322-24.
- 113.
Plachokova, S.; Andreu-Sánchez, S.; Noz, M.P.; et al. Oral Microbiome in Relation to Periodontitis Severity and Systemic Inflammation. Int. J. Mol. Sci. 2021, 22, 5876. https://doi.org/10.3390/ijms22115876.
- 114.
Lai, ; Liu, S.; Song, C.; et al. An update on the role and mechanisms of periodontitis in cardiovascular diseases. Cell. Signal. 2025, 132, 111770. https://doi.org/10.1016/j.cellsig.2025.111770.
- 115.
Peng, ; Cheng, L.; You, Y.; et al. Oral microbiota in human systematic diseases. Int. J. Oral Sci. 2022, 14, 14. https://doi.org/10.1038/s41368-022-00163-7.
- 116.
Yamaguchi-Kuroda, ; Kikuchi, Y.; Kokubu, E.; et al. Porphyromonas gingivalis diffusible signaling molecules enhance Fusobacterium nucleatum biofilm formation via gene expression modulation. J. Oral Microbiol. 2023, 15, 2165001. https://doi.org/10.1080/20002297.2023.2165001.
- 117.
Sato, ; Vries, R.G.; Snippert, H.J.; et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 2009, 459, 262–265. https://doi.org/10.1038/nature07935.
- 118.
Ou, ; Li, Q.; Ling, X.; et al. Cocktail Formula and Application Prospects for Oral and Maxillofacial Organoids. Tissue Eng. Regen. Med. 2022, 19, 913–925. https://doi.org/10.1007/s13770-022-00455-3.
- 119.
Yang, ; Hu, H.; Kung, H.; et al. Organoids: The current status and biomedical applications. MedComm 2023, 4, e274. https://doi.org/10.1002/mco2.274.
- 120.
Wang, ; Sun, Y. Engineered organoids in oral and maxillofacial regeneration. Iscience 2023, 26, 105757. https://doi.org/10.1016/j.isci.2022.105757.
- 121.
Corsini, S.; Knoblich, J.A. Human organoids: New strategies and methods for analyzing human development and disease. Cell 2022, 185, 2756–2769. https://doi.org/10.1016/j.cell.2022.06.051.
- 122.
Clevers, Modeling Development and Disease with Organoids. Cell 2016, 165, 1586–1597. https://doi.org/10.1016/j.cell.2016.05.082.
- 123.
Mirabelli, ; Coppola, L.; Salvatore, M. Cancer Cell Lines Are Useful Model Systems for Medical Research. Cancers 2019, 11, 1098. https://doi.org/10.3390/cancers11081098.
- 124.
Ishikawa, ; Ogawa, T.; Shiihara, M.; et al. Salivary gland cancer organoids are valid for preclinical genotype-oriented medical precision trials. Iscience 2023, 26, 106695. https://doi.org/10.1016/j.isci.2023.106695.
- 125.
Zuo, ; Fang, Y.; Wang, R.; et al. High-throughput solutions in tumor organoids: From culture to drug screening. Stem Cells 2025, 43, sxae070. https://doi.org/10.1093/stmcls/sxae070.
- 126.
Hofer, ; Lutolf, M.P. Engineering organoids. Nat. Rev. Mater. 2021, 6, 402–420. https://doi.org/10.1038/s41578-021-00279-y.
- 127.
Schäffers, J.M.; Gribnau, J.; van Rijn, B.B.; et al. Ethical considerations for advancing research using organoid models derived from the placenta. Hum. Reprod. Update 2025, 31, 392–401. https://doi.org/10.1093/humupd/dmaf007.
- 128.
Kim, ; Koo, B.K.; Knoblich, J.A. Human organoids: Model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. 2020, 21, 571–584. https://doi.org/10.1038/s41580-020-0259-3.
- 129.
Papamichail, ; Koch, L.S.; Veerman, D.; et al. Organoids-on-a-chip: Microfluidic technology enables culture of organoids with enhanced tissue function and potential for disease modeling. Front. Bioeng. Biotechnol. 2025, 13, 1515340. https://doi.org/10.3389/fbioe.2025.1515340.
- 130.
Ren, ; Chen, W.; Yang, Q.; et al. Patient-derived cancer organoids for drug screening: Basic technology and clinical application. J. Gastroenterol. Hepatol. 2022, 37, 1446–1454. https://doi.org/10.1111/jgh.15930.
- 131.
Andrews, G.; Kriegstein, A.R. Challenges of Organoid Research. Annu. Rev. Neurosci. 2022, 45, 23–39. https://doi.org/10.1146/annurev-neuro-111020-090812.
- 132.
Lee, ; Yang, S.; Lee, K.J.; et al. Standardization and quality assessment for human intestinal organoids. Front. Cell Dev. Biol. 2024, 12, 1383893. https://doi.org/10.3389/fcell.2024.1383893.
- 133.
Kim, ; Gwon, Y.; Park, S.; et al. Therapeutic strategies of three-dimensional stem cell spheroids and organoids for tissue repair and regeneration. Bioact. Mater. 2023, 19, 50–74. https://doi.org/10.1016/j.bioactmat.2022.03.039.
- 134.
Gao, H.; Li, X.L.; Fan, B.; et al. Engineering organoids for dental pulp tissue regeneration and functional reconstruction. Regen. Med .2025, 20, 203–220. https://doi.org/10.1080/17460751.2025.2514899.
- 135.
Zhou, ; Wu, Y.; Wang, Z.; et al. Standardization of organoid culture in cancer research. Cancer Med. 2023, 12, 14375–14386. https://doi.org/10.1002/cam4.5943.
- 136.
Yu, ; Zhou, D.; Wang, F.; et al. Organoids for tissue repair and regeneration. Mater. Today BIO 2025, 33, 102013. https://doi.org/10.1016/j.mtbio.2025.102013.
- 137.
Lancia, ; Mauro, A.; Mattei, V.; et al. Protocol for the generation and analysis of organoids from Dental pulp stem cells (DPSCs). Tissue Cell 2025, 96, 103010. https://doi.org/10.1016/j.tice.2025.103010.
- 138.
Veninga, ; Voest, E.E. Tumor organoids: Opportunities and challenges to guide precision medicine. Cancer Cell 2021, 39, 1190–1201. https://doi.org/10.1016/j.ccell.2021.07.020.
- 139.
Feng, ; He, D.; An, X. Hydrogel innovations for 3D organoid culture. Biomed. Mater. 2025, 20, 042001. https://doi.org/10.1088/1748-605X/add82d.
- 140.
Strunk, ; Joshi, A.; Moeinkhah, M.; et al. Structure, Properties and Degradation of Self-Assembled Fibrinogen Nanofiber Scaffolds. ACS Appl. BIO Mater. 2024, 7, 6186–6200. https://doi.org/10.1021/acsabm.4c00761.
- 141.
López-León, F.; Planet, R.; Soriano, J. Preparation and Mechano-Functional Characterization of PEGylated Fibrin Hydrogels: Impact of Thrombin Concentration. Gels 2024, 10, 116. https://doi.org/10.3390/gels10020116.
- 142.
Gila-Vilchez, ; Mañas-Torres, M.C.; García-García, Ó.D.; et al. Biocompatible Short-Peptides Fibrin Co-assembled Hydrogels. ACS Appl. Polym. Mater. 2023, 5, 2154–2165. https://doi.org/10.1021/acsapm.2c02164.
- 143.
Bindi, ; Perioli, A.; Melo, P.; et al. Bioinspired Collagen/Hyaluronic Acid/Fibrin-Based Hydrogels for Soft Tissue Engineering: Design, Synthesis, and In Vitro Characterization. J. Funct. Biomater. 2023, 14, 495. https://doi.org/10.3390/jfb14100495.
- 144.
Bhusal, ; Dogan, E.; Nguyen, H.A.; et al. Multi-material digital light processing bioprinting of hydrogel-based microfluidic chips. Biofabrication 2021, 14, 014103. https://doi.org/10.1088/1758-5090/ac2d78.
- 145.
Hakim Khalili, ; Zhang, R.; Wilson, S.; et al. Additive Manufacturing and Physicomechanical Characteristics of PEGDA Hydrogels: Recent Advances and Perspective for Tissue Engineering. Polymers 2023, 15, 2341. https://doi.org/10.3390/polym15102341.
- 146.
Kwon, ; Ryu, J.H.; Kim, J.; et al. Biomimetic Catechol-Incorporated Polyacrylonitrile Nanofiber Scaffolds for Tissue Engineering of Functional Salivary Glands. Biomater. Res. 2025, 29, 0226. https://doi.org/10.34133/bmr.0226.
- 147.
Salvadori, ; Watanabe, M.; Markovic, M.; et al. Controlled microvasculature for organ-on-a-chip applications produced by high-definition laser patterning. Biofabrication 2025, 17, 035011. https://doi.org/10.1088/1758-5090/add37e.
- 148.
Xu, ; Lei, Z.; Cheng, Q.; et al. Biomedical applications of organoids derived from the digestive system. Front. Cell Dev. Biol. 2025, 13, 1599384. https://doi.org/10.3389/fcell.2025.1599384.
- 149.
Bai, ; Wu, Y.; Li, G.; et al. AI-enabled organoids: Construction, analysis, and application. Bioact. Mater. 2024, 31, 525–548. https://doi.org/10.1016/j.bioactmat.2023.09.005.
- 150.
Gao, ; Wang, C.; Li, Q.; et al. Application of medical imaging methods and artificial intelligence in tissue engineering and organ-on-a-chip. Front. Bioeng. Biotechnol. 2022, 10, 985692. https://doi.org/10.3389/fbioe.2022.985692.
- 151.
Abdul, ; Xu, J.; Sotra, A.; et al. D-CryptO: Deep learning-based analysis of colon organoid morphology from brightfield images. Lab Chip 2022, 22, 4118–4128. https://doi.org/10.1039/d2lc00596d.
- 152.
Carvalho, J.; Kip, A.M.; Tegel, A.; et al. A Modular Microfluidic Organoid Platform Using LEGO-Like Bricks. Adv. Healthc. Mater. 2024, 13, e2303444. https://doi.org/10.1002/adhm.202303444.
- 153.
Zhang, -W.; Tamura, C.; Ahmadianyazdi, A.; et al. Advancing modular microfluidics: Stereolithographic 3D printing of reconfigurable connectors for bioanalytical applications. Int. J. Bioprinting 2025, 11, 516–531.
- 154.
Wang, ; Zhang, H.; Qu, Y.; et al. An eighteen-organ microphysiological system coupling a vascular network and excretion system for drug discovery. Microsyst. Nanoeng. 2025, 11, 89. https://doi.org/10.1038/s41378-025-00933-3.