- 1.
Naahidi, S.; Jafari, M.; Logan, M.; et al. Biocompatibility of Hydrogel-Based Scaffolds for Tissue Engineering Applications. Biotechnol. Adv. 2017, 35, 530–544. https://doi.org/10.1016/J.BIOTECHADV.2017.05.006.
- 2.
Hu, W.; Wang, Z.; Xiao, Y.; et al. Advances in Crosslinking Strategies of Biomedical Hydrogels. Biomater. Sci. 2019, 7, 843. https://doi.org/10.1039/c8bm01246f.
- 3.
Van Vlierberghe, S.; Dubruel, P.; Schacht, E. Biopolymer-Based Hydrogels as Scaffolds for Tissue Engineering Applications: A Review. Biomacromolecules 2011, 12, 1387–1408. https://doi.org/10.1021/BM200083N.
- 4.
Choi, B.; Kim, S.; Lin, B.; et al. Cartilaginous Extracellular Matrix-Modified Chitosan Hydrogels for Cartilage Tissue Engineering. ACS Appl. Mater. Interfaces 2014, 6, 20110–20121. https://doi.org/10.1021/AM505723K.
- 5.
Yazdimamaghani, M.; Vashaee, D.; Assefa, S.; et al. Hybrid Macroporous Gelatin/Bioactive-Glass/Nanosilver Scaffolds with Controlled Degradation Behavior and Antimicrobial Activity for Bone Tissue Engineering. J. Biomed. Nanotechnol. 2014, 10, 911–931. https://doi.org/10.1166/JBN.2014.1783.
- 6.
Wei, W.; Ma, Y.; Yao, X.; et al. Advanced Hydrogels for the Repair of Cartilage Defects and Regeneration. Bioact. Mater. 2021, 6, 998–1011. https://doi.org/10.1016/J.BIOACTMAT.2020.09.030.
- 7.
Lin, H.; Yin, C.; Mo, A.; et al. Applications of Hydrogel with Special Physical Properties in Bone and Cartilage Regeneration. Materials 2021, 14, 235. https://doi.org/10.3390/MA14010235.
- 8.
Shaikh, R.; Raj Singh, T.; Garland, M.; et al. Mucoadhesive Drug Delivery Systems. J. Pharm. Bioallied Sci. 2011, 3, 89–100. https://doi.org/10.4103/0975-7406.76478.
- 9.
Zhang, L.; Liu, M.; Zhang, Y.; et al. Recent Progress of Highly Adhesive Hydrogels as Wound Dressings. Biomacromolecules 2020, 21, 3966–3983. https://doi.org/10.1021/ACS.BIOMAC.0C01069.
- 10.
Zhu, J.; Marchant, R.E. Design Properties of Hydrogel Tissue-Engineering Scaffolds. Expert. Rev. Med. Devices 2011, 8, 607–626. https://doi.org/10.1586/ERD.11.27.
- 11.
Lutolf, M.P. Biomaterials: Spotlight on Hydrogels. Nat. Mater. 2009, 8, 451–453. https://doi.org/10.1038/NMAT2458.
- 12.
Jin, M.; Shi, J.; Zhu, W.; et al. Polysaccharide-Based Biomaterials in Tissue Engineering: A Review. Tissue Eng. Part. B Rev. 2021, 27, 604–626. https://doi.org/10.1089/TEN.TEB.2020.0208.
- 13.
Yang, Q.; Peng, J.; Xiao, H.; et al. Polysaccharide Hydrogels: Functionalization, Construction and Served as Scaffold for Tissue Engineering. Carbohydr. Polym. 2022, 278, 118952. https://doi.org/10.1016/J.CARBPOL.2021.118952.
- 14.
Zhu, T.; Mao, J.; Cheng, Y.; et al. Recent Progress of Polysaccharide-Based Hydrogel Interfaces for Wound Healing and Tissue Engineering. Adv. Mater. Interfaces 2019, 6, 1900761. https://doi.org/10.1002/ADMI.201900761.
- 15.
Bao, Z.; Xian, C.; Yuan, Q.; et al. Natural Polymer-Based Hydrogels with Enhanced Mechanical Performances: Preparation, Structure, and Property. Adv. Healthc. Mater. 2019, 8, 1900670. https://doi.org/10.1002/ADHM.201900670.
- 16.
Lih, E.; Lee, J.S.; Park, K.M.; et al. Rapidly Curable Chitosan-PEG Hydrogels as Tissue Adhesives for Hemostasis and Wound Healing. Acta Biomater. 2012, 8, 3261–3269. https://doi.org/10.1016/J.ACTBIO.2012.05.001.
- 17.
Nie, W.; Yuan, X.; Zhao, J.; et al. Rapidly in Situ Forming Chitosan/ε-Polylysine Hydrogels for Adhesive Sealants and Hemostatic Materials. Carbohydr. Polym. 2013, 96, 342–348. https://doi.org/10.1016/J.CARBPOL.2013.04.008.
- 18.
Ono, K.; Ishihara, M.; Ozeki, Y.; et al. Experimental Evaluation of Photocrosslinkable Chitosan as a Biologic Adhesive with Surgical Applications. Surgery 2001, 130, 844–850. https://doi.org/10.1067/MSY.2001.117197.
- 19.
Ryu, J.H.; Hong, S.; Lee, H. Bio-Inspired Adhesive Catechol-Conjugated Chitosan for Biomedical Applications: A Mini Review. Acta Biomater. 2015, 27, 101–115. https://doi.org/10.1016/J.ACTBIO.2015.08.043.
- 20.
Kim, I.Y.; Seo, S.J.; Moon, H.S.; et al. Chitosan and Its Derivatives for Tissue Engineering Applications. Biotechnol. Adv. 2008, 26, 1–21. https://doi.org/10.1016/J.BIOTECHADV.2007.07.009.
- 21.
Shi, C.; Zhu, Y.; Ran, X.; et al. Therapeutic Potential of Chitosan and Its Derivatives in Regenerative Medicine. J. Surg. Res. 2006, 133, 185–192. https://doi.org/10.1016/J.JSS.2005.12.013.
- 22.
Nawrotek, K.; Tylman, M.; Rudnicka, K.; et al. Chitosan-Based Hydrogel Implants Enriched with Calcium Ions Intended for Peripheral Nervous Tissue Regeneration. Carbohydr. Polym. 2016, 136, 764–771. https://doi.org/10.1016/J.CARBPOL.2015.09.105.
- 23.
Elviri, L.; Bianchera, A.; Bergonzi, C.; et al. Controlled Local Drug Delivery Strategies from Chitosan Hydrogels for Wound Healing. Expert. Opin. Drug Deliv. 2017, 14, 897–908. https://doi.org/10.1080/17425247.2017.1247803.
- 24.
Moura, M.J.; Faneca, H.; Lima, M.P.; et al. In Situ Forming Chitosan Hydrogels Prepared via Ionic/Covalent Co-Cross-Linking. Biomacromolecules 2011, 12, 3275–3284. https://doi.org/10.1021/bm200731x.
- 25.
Jin, R.; Moreira Teixeira, L.S.; Dijkstra, P.J.; et al. Injectable Chitosan-Based Hydrogels for Cartilage Tissue Engineering. Biomaterials 2009, 30, 2544–2551. https://doi.org/10.1016/J.BIOMATERIALS.2009.01.020.
- 26.
Tan, H.; Chu, C.R.; Payne, K.A.; et al. Injectable in Situ Forming Biodegradable Chitosan-Hyaluronic Acid Based Hydrogels for Cartilage Tissue Engineering. Biomaterials 2009, 30, 2499–2506. https://doi.org/10.1016/J.BIOMATERIALS.2008.12.080.
- 27.
Amsden, B.G.; Sukarto, A.; Knight, D.K.; et al. Methacrylated Glycol Chitosan as a Photopolymerizable Biomaterial. Biomacromolecules 2007, 8, 3758–3766. https://doi.org/10.1021/BM700691E.
- 28.
Lu, T.J.; Chiu, F.Y.; Chiu, H.Y.; et al. Chondrogenic Differentiation of Mesenchymal Stem Cells in Three-Dimensional Chitosan Film Culture. Cell Transplant. 2017, 26, 417. https://doi.org/10.3727/096368916X693464.
- 29.
Lastra, M.L.; Molinuevo, M.S.; Cortizo, A.M.; et al. Fumarate Copolymer-Chitosan Cross-Linked Scaffold Directed to Osteochondrogenic Tissue Engineering. Macromol. Biosci. 2017, 17. https://doi.org/10.1002/MABI.201600219.
- 30.
Man, Z.; Hu, X.; Liu, Z.; et al.Transplantation of Allogenic Chondrocytes with Chitosan Hydrogel-Demineralized Bone Matrix Hybrid Scaffold to Repair Rabbit Cartilage Injury. Biomaterials 2016, 108, 157–167. https://doi.org/10.1016/J.BIOMATERIALS.2016.09.002.
- 31.
Rodrigues, M.N.; Oliveira, M.B.; Costa, R.R.; et al.Chitosan/Chondroitin Sulfate Membranes Produced by Polyelectrolyte Complexation for Cartilage Engineering. Biomacromolecules 2016, 17, 2178–2188. https://doi.org/10.1021/ACS.BIOMAC.6B00399.
- 32.
Naderi-Meshkin, H.; Andreas, K.; Matin, M.M.; et al. Chitosan-Based Injectable Hydrogel as a Promising in Situ Forming Scaffold for Cartilage Tissue Engineering. Cell Biol. Int. 2014, 38, 72–84. https://doi.org/10.1002/CBIN.10181.
- 33.
Feng, P.; Luo, Y.; Ke, C.; et al. Chitosan-Based Functional Materials for Skin Wound Repair: Mechanisms and Applications. Front. Bioeng. Biotechnol. 2021, 9. https://doi.org/10.3389/FBIOE.2021.650598.
- 34.
Ogawa, K.; Yui, T.; Okuyama, K. Three D Structures of Chitosan. Int. J. Biol. Macromol. 2004, 34, 1–8. https://doi.org/10.1016/j.ijbiomac.2003.11.002.
- 35.
Hamedi, H.; Moradi, S.; Hudson, S.M.; et al. Chitosan Based Hydrogels and Their Applications for Drug Delivery in Wound Dressings: A Review. Carbohydr. Polym. 2018, 199, 445–460. https://doi.org/10.1016/J.CARBPOL.2018.06.114.
- 36.
Saravanan, S.; Leena, R.S.; Selvamurugan, N. Chitosan Based Biocomposite Scaffolds for Bone Tissue Engineering. Int. J. Biol. Macromol. 2016, 93, 1354–1365. https://doi.org/10.1016/J.IJBIOMAC.2016.01.112.
- 37.
Wang, L.; Stegemann, J.P. Thermogelling Chitosan and Collagen Composite Hydrogels Initiated with Beta-Glycerophosphate for Bone Tissue Engineering. Biomaterials 2010, 31, 3976–3985. https://doi.org/10.1016/J.BIOMATERIALS.2010.01.131.
- 38.
Huang, Y.; Onyeri, S.; Siewe, M.; et al. In Vitro Characterization of Chitosan-Gelatin Scaffolds for Tissue Engineering. Biomaterials 2005, 26, 7616–7627. https://doi.org/10.1016/J.BIOMATERIALS.2005.05.036.
- 39.
Sun, M.; Sun, X.; Wang, Z.; et al. Synthesis and Properties of Gelatin Methacryloyl (GelMA) Hydrogels and Their Recent Applications in Load-Bearing Tissue. Polymers 2018, 10, 1290. https://doi.org/10.3390/POLYM10111290.
- 40.
Levett, P.A.; Melchels, F.P.W.; Schrobback, K.; et al. A Biomimetic Extracellular Matrix for Cartilage Tissue Engineering Centered on Photocurable Gelatin, Hyaluronic Acid and Chondroitin Sulfate. Acta Biomater. 2014, 10, 214–223. https://doi.org/10.1016/J.ACTBIO.2013.10.005.
- 41.
Annabi, N.; Rana, D.; Shirzaei Sani, E.; et al. Engineering a Sprayable and Elastic Hydrogel Adhesive with Antimicrobial Properties for Wound Healing. Biomaterials 2017, 139, 229–243. https://doi.org/10.1016/J.BIOMATERIALS.2017.05.011.
- 42.
Assmann, A.; Vegh, A.; Ghasemi-Rad, M.; et al. A Highly Adhesive and Naturally Derived Sealant. Biomaterials 2017, 140, 115–127. https://doi.org/10.1016/J.BIOMATERIALS.2017.06.004.
- 43.
Wang, H.; Zhou, L.; Liao, J.; et al. Cell-Laden Photocrosslinked GelMA-DexMA Copolymer Hydrogels with Tunable Mechanical Properties for Tissue Engineering. J. Mater. Sci. Mater. Med. 2014, 25, 2173–2183. https://doi.org/10.1007/S10856-014-5261-X.
- 44.
Han, L.; Xu, J.; Lu, X.; et al. Biohybrid Methacrylated Gelatin/Polyacrylamide Hydrogels for Cartilage Repair. J. Mater. Chem. B 2017, 5, 731–741. https://doi.org/10.1039/C6TB02348G.
- 45.
Nichol, J.W.; Koshy, S.T.; Bae, H.; et al. Cell-Laden Microengineered Gelatin Methacrylate Hydrogels. Biomaterials 2010, 31, 5536–5544. https://doi.org/10.1016/J.BIOMATERIALS.2010.03.064.
- 46.
Schuurman, W.; Levett, P.A.; Pot, M.W.; et al. Gelatin-Methacrylamide Hydrogels as Potential Biomaterials for Fabrication of Tissue-Engineered Cartilage Constructs. Macromol. Biosci. 2013, 13, 551–561. https://doi.org/10.1002/MABI.201200471.
- 47.
Chen, Y.C.; Lin, R.Z.; Qi, H.; et al. Functional Human Vascular Network Generated in Photocrosslinkable Gelatin Methacrylate Hydrogels. Adv. Funct. Mater. 2012, 22, 2027–2039. https://doi.org/10.1002/ADFM.201101662.
- 48.
O’Connell, C.D.; Zhang, B.; Onofrillo, C.; et al. Tailoring the Mechanical Properties of Gelatin Methacryloyl Hydrogels through Manipulation of the Photocrosslinking Conditions. Soft Matter 2018, 14, 2142–2151. https://doi.org/10.1039/C7SM02187A.
- 49.
Kim, C.; Young, J.L.; Holle, A.W.; et al. Stem Cell Mechanosensation on Gelatin Methacryloyl (GelMA) Stiffness Gradient Hydrogels. Ann. Biomed. Eng. 2020, 48, 893–902. https://doi.org/10.1007/S10439-019-02428-5.
- 50.
Nguyen, K.T.; West, J.L. Photopolymerizable Hydrogels for Tissue Engineering Applications. Biomaterials 2002, 23, 4307–4314. https://doi.org/10.1016/S0142-9612(02)00175-8.
- 51.
Lee, C.; O'Connell, C.D.; Onofrillo, C.; et al. Human Articular Cartilage Repair: Sources and Detection of Cytotoxicity and Genotoxicity in Photo-Crosslinkable Hydrogel Bioscaffolds. Stem Cells Transl. Med. 2020, 9, 302–315.
- 52.
Zheng, Z.; Eglin, D.; Alini, M.; et al. Visible Light-Induced 3D Bioprinting Technologies and Corresponding Bioink Materials for Tissue Engineering: A Review. Engineering 2021, 7, 966–978.
- 53.
Paul, S.; Schrobback, K.; Tran, P.A.; et al. Photo-Cross-Linkable, Injectable, and Highly Adhesive GelMA-Glycol Chitosan Hydrogels for Cartilage Repair. Adv. Healthc. Mater. 2023, 12, 2302078. https://doi.org/10.1002/ADHM.202302078.
- 54.
Paul, S.; Schrobback, K.; Tran, P.A.; et al. GelMA-Glycol Chitosan Hydrogels for Cartilage Regeneration: The Role of Uniaxial Mechanical Stimulation in Enhancing Mechanical, Adhesive, and Biochemical Properties. APL Bioeng. 2023, 7, 036114. https://doi.org/10.1063/5.0160472.
- 55.
Lim, K.S.; Klotz, B.J.; Lindberg, G.C.J.; et al. Visible Light Cross-Linking of Gelatin Hydrogels Offers an Enhanced Cell Microenvironment with Improved Light Penetration Depth. Macromol. Biosci. 2019, 19, 1900098. https://doi.org/10.1002/MABI.201900098.
- 56.
Loessner, D.; Meinert, C.; Kaemmerer, E.; et al. Functionalization, Preparation and Use of Cell-Laden Gelatin Methacryloyl–Based Hydrogels as Modular Tissue Culture Platforms. Nat. Protoc. 2016, 11, 727–746. https://doi.org/10.1038/nprot.2016.037.
- 57.
ASTM F2458-05; Standard Test Method for Wound Closure Strength of Tissue Adhesives and Sealants. ASTM: West Conshohocken, PA, USA, 2015. Available online: https://www.astm.org/f2458-05r15.html (accessed on 12 August 2024).
- 58.
ASTM F2255-24; Standard Test Method for Strength Properties of Tissue Adhesives in Lap-Shear by Tension Loading. ASTM: West Conshohocken, PA, USA, 2024. Available online: https://www.astm.org/f2255-05r15.html (accessed on 12 August 2024).
- 59.
Gupta, A.; Bhat, S.; Jagdale, P.R.; et al. Evaluation of Three-Dimensional Chitosan-Agarose-Gelatin Cryogel Scaffold for the Repair of Subchondral Cartilage Defects: An in Vivo Study in a Rabbit Model. Tissue Eng. Part. A 2014, 20, 3101–3111. https://doi.org/10.1089/TEN.TEA.2013.0702.
- 60.
Mizrahi, B.; Weldon, C.; Kohane, D.S. Tissue Adhesives as Active Implants. Stud. Mechanobiol. Tissue Eng. Biomater. 2010, 8, 39–56. https://doi.org/10.1007/8415_2010_48.
- 61.
Ke, X.; Dong, Z.; Tang, S.; et al. A Natural Polymer Based Bioadhesive with Self-Healing Behavior and Improved Antibacterial Properties. Biomater. Sci. 2020, 8, 4346–4357. https://doi.org/10.1039/D0BM00624F.
- 62.
Mehdizadeh, M.; Weng, H.; Gyawali, D.; et al. Injectable Citrate-Based Mussel-Inspired Tissue Bioadhesives with High Wet Strength for Sutureless Wound Closure. Biomaterials 2012, 33, 7972–7983. https://doi.org/10.1016/J.BIOMATERIALS.2012.07.055.
- 63.
Qiao, Z.; Lv, X.; He, Set al. A Mussel-Inspired Supramolecular Hydrogel with Robust Tissue Anchor for Rapid Hemostasis of Arterial and Visceral Bleedings. Bioact. Mater. 2021, 6, 2829–2840. https://doi.org/10.1016/J.BIOACTMAT.2021.01.039.
- 64.
Yang, B.; Song, J.; Jiang, Y.; et al. Injectable Adhesive Self-Healing Multicross-Linked Double-Network Hydrogel Facilitates Full-Thickness Skin Wound Healing. ACS Appl. Mater. Interfaces 2020, 12, 57782–57797. https://doi.org/10.1021/ACSAMI.0C18948.
- 65.
Yang, Y.; Liang, Y.; Chen, J.; et al. Mussel-Inspired Adhesive Antioxidant Antibacterial Hemostatic Composite Hydrogel Wound Dressing via Photo-Polymerization for Infected Skin Wound Healing. Bioact. Mater. 2021, 8, 341–354. https://doi.org/10.1016/J.BIOACTMAT.2021.06.014.
- 66.
Kull, S.; Martinelli, I.; Briganti, E.; et al. Glubran2 Surgical Glue: In Vitro Evaluation of Adhesive and Mechanical Properties. J. Surg. Res. 2009, 157, e15–e21. https://doi.org/10.1016/J.JSS.2009.01.034.
- 67.
Suo, H.; Zhang, D.; Yin, J.; et al. Interpenetrating Polymer Network Hydrogels Composed of Chitosan and Photocrosslinkable Gelatin with Enhanced Mechanical Properties for Tissue Engineering. Mater. Sci. Eng. C 2018, 92, 612–620. https://doi.org/10.1016/J.MSEC.2018.07.016.
- 68.
Galed, G.; Miralles, B.; Paños, I.; et al. N-Deacetylation and Depolymerization Reactions of Chitin/Chitosan: Influence of the Source of Chitin. Carbohydr. Polym. 2005, 62, 316–320. https://doi.org/10.1016/J.CARBPOL.2005.03.019.
- 69.
Cao, W.; Jing, D.; Li, J.; et al. Effects of the Degree of Deacetylation on the Physicochemical Properties and Schwann Cell Affinity of Chitosan Films. J. Biomater. Appl. 2005, 20, 157–177. https://doi.org/10.1177/0885328205049897.
- 70.
Foster, L.J.R.; Ho, S.; Hook, J.; et al. Chitosan as a Biomaterial: Influence of Degree of Deacetylation on Its Physiochemical, Material and Biological Properties. PLoS ONE 2015, 10, e0135153. https://doi.org/10.1371/JOURNAL.PONE.0135153.
- 71.
Ren, D.; Yi, H.; Wang, W.; et al. The Enzymatic Degradation and Swelling Properties of Chitosan Matrices with Different Degrees of N-Acetylation. Carbohydr. Res. 2005, 340, 2403–2410. https://doi.org/10.1016/J.CARRES.2005.07.022.
- 72.
Fairbanks, B.D.; Schwartz, M.P.; Bowman, C.N.; et al. Photoinitiated Polymerization of PEG-Diacrylate with Lithium Phenyl-2,4,6-Trimethylbenzoylphosphinate: Polymerization Rate and Cytocompatibility. Biomaterials 2009, 30, 6702–6707. https://doi.org/10.1016/J.BIOMATERIALS.2009.08.055.
- 73.
Lim, K.S.; Schon, B.S.; Mekhileri, N.V.; et al. New Visible-Light Photoinitiating System for Improved Print Fidelity in Gelatin-Based Bioinks. ACS Biomater. Sci. Eng. 2016, 2, 1752–1762. https://doi.org/10.1021/ACSBIOMATERIALS.6B00149.
- 74.
Mow, V.C.; Guo, X.E. Mechano-Electrochemical Properties of Articular Cartilage: Their Inhomogeneities and Anisotropies. Annu. Rev. Biomed. Eng. 2002, 4, 175–209. https://doi.org/10.1146/ANNUREV.BIOENG.4.110701.120309.
- 75.
Li, C.; Guan, G.; Reif, R.; et al. Determining Elastic Properties of Skin by Measuring Surface Waves from an Impulse Mechanical Stimulus Using Phase-Sensitive Optical Coherence Tomography. J. R. Soc. Interface 2012, 9, 831–841. https://doi.org/10.1098/RSIF.2011.0583.
- 76.
Yang, C.; Xu, L.; Zhou, Y.; et al. A Green Fabrication Approach of Gelatin/CM-Chitosan Hybrid Hydrogel for Wound Healing. Carbohydr. Polym. 2010, 4, 1297–1305. https://doi.org/10.1016/J.CARBPOL.2010.07.013.
- 77.
Fancy, D.A.; Denison, C.; Kim, K.; et al. Scope, Limitations and Mechanistic Aspects of the Photo-Induced Cross-Linking of Proteins by Water-Soluble Metal Complexes. Chem. Biol. 2000, 7, 697–708. https://doi.org/10.1016/S1074-5521(00)00020-X.
- 78.
Elvin, C.M.; Vuocolo, T.; Brownlee, A.G.; et al. A Highly Elastic Tissue Sealant Based on Photopolymerised Gelatin. Biomaterials 2010, 31, 8323–8331. https://doi.org/10.1016/J.BIOMATERIALS.2010.07.032.
- 79.
Cui, L.; Jia, J.; Guo, Y.; et al. Preparation and Characterization of IPN Hydrogels Composed of Chitosan and Gelatin Cross-Linked by Genipin. Carbohydr. Polym. 2014, 99, 31–38. https://doi.org/10.1016/J.CARBPOL.2013.08.048.
- 80.
Eysturskard, J.; Haug, I.J.; Ulset, A.S.; et al. Mechanical Properties of Mammalian and Fish Gelatins Based on Their Weight Average Molecular Weight and Molecular Weight Distribution. Food Hydrocoll. 2009, 23, 2315–2321. https://doi.org/10.1016/J.FOODHYD.2009.06.007.
- 81.
Lee, B.H.; Lum, N.; Seow, L.Y.; et al. Synthesis and Characterization of Types A and B Gelatin Methacryloyl for Bioink Applications. Materials 2016, 9, 797. https://doi.org/10.3390/MA9100797.
- 82.
Shirahama, H.; Lee, B.H.; Tan, L.P.; et al. Precise Tuning of Facile One-Pot Gelatin Methacryloyl (GelMA) Synthesis. Sci. Rep. 2016, 6, 31036. https://doi.org/10.1038/srep31036.
- 83.
Liang, J.; Grijpma, D.W.; Poot, A.A. Tough and Biocompatible Hybrid Networks Prepared from Methacrylated Poly(Trimethylene Carbonate) (PTMC) and Methacrylated Gelatin. Eur. Polym. J. 2020, 123, 109420. https://doi.org/10.1016/J.EURPOLYMJ.2019.109420.
- 84.
Vigata, M.; Meinert, C.; Bock, N.; et al. Deciphering the Molecular Mechanism of Water Interaction with Gelatin Methacryloyl Hydrogels: Role of Ionic Strength, Ph, Drug Loading and Hydrogel Network Characteristics. Biomedicines 2021, 9, 574. https://doi.org/10.3390/BIOMEDICINES9050574/S1.
- 85.
Yue, K.; Li, X.; Schrobback, K.; et al. Structural Analysis of Photocrosslinkable Methacryloyl-Modified Protein Derivatives. Biomaterials 2017, 139, 163–171. https://doi.org/10.1016/J.BIOMATERIALS.2017.04.050.
- 86.
Hollingshead, S.; Liu, J.C. PH-Sensitive Mechanical Properties of Elastin-Based Hydrogels. Macromol. Biosci. 2020, 20, 1900369. https://doi.org/10.1002/MABI.201900369.
- 87.
Percot, A.; Lafleur, M.; Zhu, X.X. New Hydrogels Based on N-Isopropylacrylamide Copolymers Crosslinked with Polylysine: Membrane Immobilization Systems. Polymer 2000, 41, 7231–7239. https://doi.org/10.1016/S0032-3861(00)00074-4.
- 88.
Tang, Y.F.; Du, Y.M.; Hu, X.W.; et al. Rheological Characterisation of a Novel Thermosensitive Chitosan/Poly(Vinyl Alcohol) Blend Hydrogel. Carbohydr. Polym. 2007, 67, 491–499. https://doi.org/10.1016/J.CARBPOL.2006.06.015.
- 89.
Zhu, F.; Yu, H.; Lei, W.; et al. Tough Polyion Complex Hydrogel Films of Natural Polysaccharides. Chin. J. Polym. Sci. 2017, 35, 1276–1285. https://doi.org/10.1007/S10118-017-1977-7/METRICS.
- 90.
Rungrod, A.; Kapanya, A.; Punyodom, W.; et al. Synthesis and Characterization of Semi-IPN Hydrogels Composed of Sodium 2-Acrylamido-2-Methylpropanesulfonate and Poly(ε-Caprolactone) Diol for Controlled Drug Delivery. Eur. Polym. J. 2022, 164, 110978. https://doi.org/10.1016/J.EURPOLYMJ.2021.110978.
- 91.
Wong, E. Clinical Laboratory Diagnostics: Use and Assessment of Clinical Laboratory Results. Lothar Thomas. Frankfurt/Main, Germany: TH-Books Verlagsgeselschaft, 1998, 1727 Pp., $149.00. ISBN 3-9805215-4-0. Clin. Chem. 1999, 45, 586–587. https://doi.org/10.1093/CLINCHEM/45.4.586A.
- 92.
Jebens, E.H.; Monk-Jones, M.E. On the Viscosity and PH of Synovial Fluid and the PH of Blood. J. Bone Jt. Surg. Br. 1959, 41, 388–400. https://doi.org/10.1302/0301-620X.41B2.388.
- 93.
Pfister, S.A.; Hauke, G.; Peter, H.H. Synoviaanalyse: Vorgehen in Der Praxis. Aktuelle Rheumatol. 1989, 14, 51–57. https://doi.org/10.1055/S-2008-1047470/BIB.
- 94.
Treuhaft, P.S.; McCarty, D.J. Synovial Fluid PH, Lactate, Oxygen and Carbon Dioxide Partial Pressure in Various Joint Diseases. Arthritis Rheum. 1971, 14, 475–484. https://doi.org/10.1002/ART.1780140407.
- 95.
Lund-Olesen, K. Oxygen Tension in Synovial Fluids. Arthritis Rheum. 1970, 13, 769–776. https://doi.org/10.1002/ART.
- 96.
Zlotogorski, A. Distribution of Skin Surface PH on the Forehead and Cheek of Adults. Arch. Dermatol. Res. 1987, 279, 398–401. https://doi.org/10.1007/BF00412626.
- 97.
Raphael, K.L.; Murphy, R.A.; Shlipak, M.G.; et al. Bicarbonate Concentration, Acid-Base Status, and Mortality in the Health, Aging, and Body Composition Study. Clin. J. Am. Soc. Nephrol. 2016, 11, 308–316. https://doi.org/10.2215/CJN.06200615.
- 98.
McLister, A.; McHugh, J.; Cundell, J.; et al. New Developments in Smart Bandage Technologies for Wound Diagnostics. Adv. Mater. 2016, 28, 5732–5737. https://doi.org/10.1002/ADMA.201504829.
- 99.
Qin, M.; Guo, H.; Dai, Z.; et al. Advances in Flexible and Wearable PH Sensors for Wound Healing Monitoring. J. Semicond. 2019, 40, 111607. https://doi.org/10.1088/1674-4926/40/11/111607.
- 100.
No, H.K.; Young Park, N.; Ho Lee, S.; et al. Antibacterial Activity of Chitosans and Chitosan Oligomers with Different Molecular Weights. Int. J. Food Microbiol. 2002, 74, 65–72. https://doi.org/10.1016/S0168-1605(01)00717-6.
- 101.
Zhu, W.; Chuah, Y.J.; Wang, D.A. Bioadhesives for Internal Medical Applications: A Review. Acta Biomater. 2018, 74, 1–16. https://doi.org/10.1016/J.ACTBIO.2018.04.034.
- 102.
Shah, N.V.; Meislin, R. Current State and Use of Biological Adhesives in Orthopedic Surgery. Orthopedics 2013, 36, 945–956. https://doi.org/10.3928/01477447-20131120-09.
- 103.
Mehdizadeh, M.; Yang, J. Design Strategies and Applications of Tissue Bioadhesives. Macromol. Biosci. 2013, 13, 271–288. https://doi.org/10.1002/MABI.201200332.
- 104.
Chivers, R.A.; Wolowacz, R.G. The Strength of Adhesive-Bonded Tissue Joints. Int. J. Adhes. Adhes. 1997, 17, 127–132. https://doi.org/10.1016/S0143-7496(96)00041-3.
- 105.
Behrendt, P.; Ladner, Y.; Stoddart, M.J.; et al. Articular Joint-Simulating Mechanical Load Activates Endogenous TGF-β in a Highly Cellularized Bioadhesive Hydrogel for Cartilage Repair. Am. J. Sports Med. 2020, 48, 210–221. https://doi.org/10.1177/0363546519887909.
- 106.
Wang, D.A.; Varghese, S.; Sharma, B.; et al. Multifunctional Chondroitin Sulphate for Cartilage Tissue-Biomaterial Integration. Nat. Mater. 2007, 6, 385–392. https://doi.org/10.1038/NMAT1890.
- 107.
Trengove, A.; Duchi, S.; Onofrillo, C.; et al. Microbial Transglutaminase Improves Ex Vivo Adhesion of Gelatin Methacryloyl Hydrogels to Human Cartilage. Front. Med. Technol. 2021, 3. https://doi.org/10.3389/FMEDT.2021.773673.
- 108.
Dong, Y.; Li, Y.; Fan, B.; et al. Long-Term Antibacterial, Antioxidative, and Bioadhesive Hydrogel Wound Dressing for Infected Wound Healing Applications. Biomater. Sci. 2023, 11, 2080–2090. https://doi.org/10.1039/D2BM01981G.
- 109.
Rao, K.M.; Uthappa, U.T.; Kim, H.J.; et al. Tissue Adhesive, Biocompatible, Antioxidant, and Antibacterial Hydrogels Based on Tannic Acid and Fungal-Derived Carboxymethyl Chitosan for Wound-Dressing Applications. Gels 2023, 9, 354. https://doi.org/10.3390/GELS9050354.
- 110.
Tummalapalli, M.; Anjum, S.; Kumari, S.; et al. Antimicrobial Surgical Sutures: Recent Developments and Strategies. Polym. Rev. 2016, 56, 607–630. https://doi.org/10.1080/15583724.2015.1119163.
- 111.
Lock, A.M.; Gao, R.; Naot, D.; et al. Induction of Immune Gene Expression and Inflammatory Mediator Release by Commonly Used Surgical Suture Materials: An Experimental in Vitro Study. Patient Saf. Surg. 2017, 11, 16. https://doi.org/10.1186/S13037-017-0132-2.
- 112.
Topart, P.; Vandenbroucke, F.; Lozac’h, P. Tisseel vs. Tack Staples as Mesh Fixation in Totally Extraperitoneal Laparoscopic Repair of Groin Hernias: A Retrospective Analysis. Surg. Endosc. Other Interv. Tech. 2005, 19, 724–727. https://doi.org/10.1007/S00464-004-8812-2/TABLES/3.
- 113.
Hunziker, E.B. Articular Cartilage Repair: Basic Science and Clinical Progress. A Review of the Current Status and Prospects. Osteoarthr. Cartil. 2002, 10, 432–463. https://doi.org/10.1053/joca.2002.0801.
- 114.
Hunziker, E.B.; Stähli, A. Surgical Suturing of Articular Cartilage Induces Osteoarthritis-Like Changes. Osteoarthr. Cartil. 2008, 16, 1067. https://doi.org/10.1016/J.JOCA.2008.01.009.
- 115.
Yoshida, T.; Hirose, R.; Naito, Y.; et al. Viscosity: An Important Factor in Predicting the Performance of Submucosal Injection Materials. Mater. Des. 2020, 195, 109008. https://doi.org/10.1016/J.MATDES.2020.109008.