2509001545
  • Open Access
  • Article

Photo-Curable GelMA-Chitosan Bioadhesive Hydrogel: An Evaluation of Mechanical and Adhesive Properties

  • Sattwikesh Paul 1,2,3,*,   
  • Karsten Schrobback 4,   
  • Phong Anh Tran 1,3,   
  • Christoph Meinert 1,3,5,   
  • Angus Weekes 1,3,   
  • Jordan William Davern 1,3,6,   
  • Travis Jacob Klein 1,3,6,*

Received: 21 Aug 2025 | Revised: 15 Sep 2025 | Accepted: 26 Sep 2025 | Published: 28 Sep 2025

Abstract

Polymer-based adhesives are used in tissue repair; however, their application is frequently limited by suboptimal mechanical or adhesive properties. This study aims to develop a natural polymer-based photo-cross-linkable and structurally robust bioadhesive hydrogel, utilizing gelatin methacryloyl (GelMA) and chitosan. We compared the mechanical properties and adhesiveness of various GelMA-chitosan hydrogel formulations cross-linked by three different photo-initiator systems—[tris (2,2′-bipyridyl) dichlororuthenium (II) hexahydrate ([RuII (bpy)3]2+ and sodium persulfate (Ru/SPS), lithium acylphosphinate (LAP), and 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propanone (Irgacure 2959)]. The Ru/SPS cross-linked GelMA-chitosan hydrogel showed a higher compressive modulus than GelMA hydrogel at both neutral and alkaline pHs, suggesting potential use during infection or delayed wound healing. Chitosan addition to GelMA significantly enhanced hydrogel adhesiveness, with Ru/SPS cross-linked hydrogel exhibiting the highest adhesive strength to cartilage (tensile: ⁓100 kPa) and skin (tensile: ⁓25 kPa, lap shear: ⁓43 kPa). Rheological analysis confirmed the shear-thinning behaviour of the hydrogel precursor solution, indicating its injectability. Moreover, the hydrogel demonstrated robust adhesion to cartilage and skin during ex vivo joint movement and skin bend tests, suggesting its utility in dynamic tissue environments. This study suggests that Ru/SPS cross-linked GelMA-chitosan hydrogel is a promising natural polymer-based bioadhesive, warranting further exploration in a variety of tissue repair applications. 

References 

  • 1.
    Naahidi, S.; Jafari, M.; Logan, M.; et al. Biocompatibility of Hydrogel-Based Scaffolds for Tissue Engineering Applications. Biotechnol. Adv. 2017, 35, 530–544. https://doi.org/10.1016/J.BIOTECHADV.2017.05.006.
  • 2.
    Hu, W.; Wang, Z.; Xiao, Y.; et al. Advances in Crosslinking Strategies of Biomedical Hydrogels. Biomater. Sci. 2019, 7, 843. https://doi.org/10.1039/c8bm01246f.
  • 3.
    Van Vlierberghe, S.; Dubruel, P.; Schacht, E. Biopolymer-Based Hydrogels as Scaffolds for Tissue Engineering Applications: A Review. Biomacromolecules 2011, 12, 1387–1408. https://doi.org/10.1021/BM200083N.
  • 4.
    Choi, B.; Kim, S.; Lin, B.; et al. Cartilaginous Extracellular Matrix-Modified Chitosan Hydrogels for Cartilage Tissue Engineering. ACS Appl. Mater. Interfaces 2014, 6, 20110–20121. https://doi.org/10.1021/AM505723K.
  • 5.
    Yazdimamaghani, M.; Vashaee, D.; Assefa, S.; et al. Hybrid Macroporous Gelatin/Bioactive-Glass/Nanosilver Scaffolds with Controlled Degradation Behavior and Antimicrobial Activity for Bone Tissue Engineering. J. Biomed. Nanotechnol. 2014, 10, 911–931. https://doi.org/10.1166/JBN.2014.1783.
  • 6.
    Wei, W.; Ma, Y.; Yao, X.; et al. Advanced Hydrogels for the Repair of Cartilage Defects and Regeneration. Bioact. Mater. 2021, 6, 998–1011. https://doi.org/10.1016/J.BIOACTMAT.2020.09.030.
  • 7.
    Lin, H.; Yin, C.; Mo, A.; et al. Applications of Hydrogel with Special Physical Properties in Bone and Cartilage Regeneration. Materials 2021, 14, 235. https://doi.org/10.3390/MA14010235.
  • 8.
    Shaikh, R.; Raj Singh, T.; Garland, M.; et al. Mucoadhesive Drug Delivery Systems. J. Pharm. Bioallied Sci. 2011, 3, 89–100. https://doi.org/10.4103/0975-7406.76478.
  • 9.
    Zhang, L.; Liu, M.; Zhang, Y.; et al. Recent Progress of Highly Adhesive Hydrogels as Wound Dressings. Biomacromolecules 2020, 21, 3966–3983. https://doi.org/10.1021/ACS.BIOMAC.0C01069.
  • 10.
    Zhu, J.; Marchant, R.E. Design Properties of Hydrogel Tissue-Engineering Scaffolds. Expert. Rev. Med. Devices 2011, 8, 607–626. https://doi.org/10.1586/ERD.11.27.
  • 11.
    Lutolf, M.P. Biomaterials: Spotlight on Hydrogels. Nat. Mater. 2009, 8, 451–453. https://doi.org/10.1038/NMAT2458.
  • 12.
    Jin, M.; Shi, J.; Zhu, W.; et al. Polysaccharide-Based Biomaterials in Tissue Engineering: A Review. Tissue Eng. Part. B Rev. 2021, 27, 604–626. https://doi.org/10.1089/TEN.TEB.2020.0208.
  • 13.
    Yang, Q.; Peng, J.; Xiao, H.; et al. Polysaccharide Hydrogels: Functionalization, Construction and Served as Scaffold for Tissue Engineering. Carbohydr. Polym. 2022, 278, 118952. https://doi.org/10.1016/J.CARBPOL.2021.118952.
  • 14.
    Zhu, T.; Mao, J.; Cheng, Y.; et al. Recent Progress of Polysaccharide-Based Hydrogel Interfaces for Wound Healing and Tissue Engineering. Adv. Mater. Interfaces 2019, 6, 1900761. https://doi.org/10.1002/ADMI.201900761.
  • 15.
    Bao, Z.; Xian, C.; Yuan, Q.; et al. Natural Polymer-Based Hydrogels with Enhanced Mechanical Performances: Preparation, Structure, and Property. Adv. Healthc. Mater. 2019, 8, 1900670. https://doi.org/10.1002/ADHM.201900670.
  • 16.
    Lih, E.; Lee, J.S.; Park, K.M.; et al. Rapidly Curable Chitosan-PEG Hydrogels as Tissue Adhesives for Hemostasis and Wound Healing. Acta Biomater. 2012, 8, 3261–3269. https://doi.org/10.1016/J.ACTBIO.2012.05.001.
  • 17.
    Nie, W.; Yuan, X.; Zhao, J.; et al. Rapidly in Situ Forming Chitosan/ε-Polylysine Hydrogels for Adhesive Sealants and Hemostatic Materials. Carbohydr. Polym. 2013, 96, 342–348. https://doi.org/10.1016/J.CARBPOL.2013.04.008.
  • 18.
    Ono, K.; Ishihara, M.; Ozeki, Y.; et al. Experimental Evaluation of Photocrosslinkable Chitosan as a Biologic Adhesive with Surgical Applications. Surgery 2001, 130, 844–850. https://doi.org/10.1067/MSY.2001.117197.
  • 19.
    Ryu, J.H.; Hong, S.; Lee, H. Bio-Inspired Adhesive Catechol-Conjugated Chitosan for Biomedical Applications: A Mini Review. Acta Biomater. 2015, 27, 101–115. https://doi.org/10.1016/J.ACTBIO.2015.08.043.
  • 20.
    Kim, I.Y.; Seo, S.J.; Moon, H.S.; et al. Chitosan and Its Derivatives for Tissue Engineering Applications. Biotechnol. Adv. 2008, 26, 1–21. https://doi.org/10.1016/J.BIOTECHADV.2007.07.009.
  • 21.
    Shi, C.; Zhu, Y.; Ran, X.; et al. Therapeutic Potential of Chitosan and Its Derivatives in Regenerative Medicine. J. Surg. Res. 2006, 133, 185–192. https://doi.org/10.1016/J.JSS.2005.12.013.
  • 22.
    Nawrotek, K.; Tylman, M.; Rudnicka, K.; et al. Chitosan-Based Hydrogel Implants Enriched with Calcium Ions Intended for Peripheral Nervous Tissue Regeneration. Carbohydr. Polym. 2016, 136, 764–771. https://doi.org/10.1016/J.CARBPOL.2015.09.105.
  • 23.
    Elviri, L.; Bianchera, A.; Bergonzi, C.; et al. Controlled Local Drug Delivery Strategies from Chitosan Hydrogels for Wound Healing. Expert. Opin. Drug Deliv. 2017, 14, 897–908. https://doi.org/10.1080/17425247.2017.1247803.
  • 24.
    Moura, M.J.; Faneca, H.; Lima, M.P.; et al. In Situ Forming Chitosan Hydrogels Prepared via Ionic/Covalent Co-Cross-Linking. Biomacromolecules 2011, 12, 3275–3284. https://doi.org/10.1021/bm200731x.
  • 25.
    Jin, R.; Moreira Teixeira, L.S.; Dijkstra, P.J.; et al. Injectable Chitosan-Based Hydrogels for Cartilage Tissue Engineering. Biomaterials 2009, 30, 2544–2551. https://doi.org/10.1016/J.BIOMATERIALS.2009.01.020.
  • 26.
    Tan, H.; Chu, C.R.; Payne, K.A.; et al. Injectable in Situ Forming Biodegradable Chitosan-Hyaluronic Acid Based Hydrogels for Cartilage Tissue Engineering. Biomaterials 2009, 30, 2499–2506. https://doi.org/10.1016/J.BIOMATERIALS.2008.12.080.
  • 27.
    Amsden, B.G.; Sukarto, A.; Knight, D.K.; et al. Methacrylated Glycol Chitosan as a Photopolymerizable Biomaterial. Biomacromolecules 2007, 8, 3758–3766. https://doi.org/10.1021/BM700691E.
  • 28.
    Lu, T.J.; Chiu, F.Y.; Chiu, H.Y.; et al. Chondrogenic Differentiation of Mesenchymal Stem Cells in Three-Dimensional Chitosan Film Culture. Cell Transplant. 2017, 26, 417. https://doi.org/10.3727/096368916X693464.
  • 29.
    Lastra, M.L.; Molinuevo, M.S.; Cortizo, A.M.; et al. Fumarate Copolymer-Chitosan Cross-Linked Scaffold Directed to Osteochondrogenic Tissue Engineering. Macromol. Biosci. 2017, 17. https://doi.org/10.1002/MABI.201600219.
  • 30.
    Man, Z.; Hu, X.; Liu, Z.; et al.Transplantation of Allogenic Chondrocytes with Chitosan Hydrogel-Demineralized Bone Matrix Hybrid Scaffold to Repair Rabbit Cartilage Injury. Biomaterials 2016, 108, 157–167. https://doi.org/10.1016/J.BIOMATERIALS.2016.09.002.
  • 31.
    Rodrigues, M.N.; Oliveira, M.B.; Costa, R.R.; et al.Chitosan/Chondroitin Sulfate Membranes Produced by Polyelectrolyte Complexation for Cartilage Engineering. Biomacromolecules 2016, 17, 2178–2188. https://doi.org/10.1021/ACS.BIOMAC.6B00399.
  • 32.
    Naderi-Meshkin, H.; Andreas, K.; Matin, M.M.; et al. Chitosan-Based Injectable Hydrogel as a Promising in Situ Forming Scaffold for Cartilage Tissue Engineering. Cell Biol. Int. 2014, 38, 72–84. https://doi.org/10.1002/CBIN.10181.
  • 33.
    Feng, P.; Luo, Y.; Ke, C.; et al. Chitosan-Based Functional Materials for Skin Wound Repair: Mechanisms and Applications. Front. Bioeng. Biotechnol. 2021, 9. https://doi.org/10.3389/FBIOE.2021.650598.
  • 34.
    Ogawa, K.; Yui, T.; Okuyama, K. Three D Structures of Chitosan. Int. J. Biol. Macromol. 2004, 34, 1–8. https://doi.org/10.1016/j.ijbiomac.2003.11.002.
  • 35.
    Hamedi, H.; Moradi, S.; Hudson, S.M.; et al. Chitosan Based Hydrogels and Their Applications for Drug Delivery in Wound Dressings: A Review. Carbohydr. Polym. 2018, 199, 445–460. https://doi.org/10.1016/J.CARBPOL.2018.06.114.
  • 36.
    Saravanan, S.; Leena, R.S.; Selvamurugan, N. Chitosan Based Biocomposite Scaffolds for Bone Tissue Engineering. Int. J. Biol. Macromol. 2016, 93, 1354–1365. https://doi.org/10.1016/J.IJBIOMAC.2016.01.112.
  • 37.
    Wang, L.; Stegemann, J.P. Thermogelling Chitosan and Collagen Composite Hydrogels Initiated with Beta-Glycerophosphate for Bone Tissue Engineering. Biomaterials 2010, 31, 3976–3985. https://doi.org/10.1016/J.BIOMATERIALS.2010.01.131.
  • 38.
    Huang, Y.; Onyeri, S.; Siewe, M.; et al. In Vitro Characterization of Chitosan-Gelatin Scaffolds for Tissue Engineering. Biomaterials 2005, 26, 7616–7627. https://doi.org/10.1016/J.BIOMATERIALS.2005.05.036.
  • 39.
    Sun, M.; Sun, X.; Wang, Z.; et al. Synthesis and Properties of Gelatin Methacryloyl (GelMA) Hydrogels and Their Recent Applications in Load-Bearing Tissue. Polymers 2018, 10, 1290. https://doi.org/10.3390/POLYM10111290.
  • 40.
    Levett, P.A.; Melchels, F.P.W.; Schrobback, K.; et al. A Biomimetic Extracellular Matrix for Cartilage Tissue Engineering Centered on Photocurable Gelatin, Hyaluronic Acid and Chondroitin Sulfate. Acta Biomater. 2014, 10, 214–223. https://doi.org/10.1016/J.ACTBIO.2013.10.005.
  • 41.
    Annabi, N.; Rana, D.; Shirzaei Sani, E.; et al. Engineering a Sprayable and Elastic Hydrogel Adhesive with Antimicrobial Properties for Wound Healing. Biomaterials 2017, 139, 229–243. https://doi.org/10.1016/J.BIOMATERIALS.2017.05.011.
  • 42.
    Assmann, A.; Vegh, A.; Ghasemi-Rad, M.; et al. A Highly Adhesive and Naturally Derived Sealant. Biomaterials 2017, 140, 115–127. https://doi.org/10.1016/J.BIOMATERIALS.2017.06.004.
  • 43.
    Wang, H.; Zhou, L.; Liao, J.; et al. Cell-Laden Photocrosslinked GelMA-DexMA Copolymer Hydrogels with Tunable Mechanical Properties for Tissue Engineering. J. Mater. Sci. Mater. Med. 2014, 25, 2173–2183. https://doi.org/10.1007/S10856-014-5261-X.
  • 44.
    Han, L.; Xu, J.; Lu, X.; et al. Biohybrid Methacrylated Gelatin/Polyacrylamide Hydrogels for Cartilage Repair. J. Mater. Chem. B 2017, 5, 731–741. https://doi.org/10.1039/C6TB02348G.
  • 45.
    Nichol, J.W.; Koshy, S.T.; Bae, H.; et al. Cell-Laden Microengineered Gelatin Methacrylate Hydrogels. Biomaterials 2010, 31, 5536–5544. https://doi.org/10.1016/J.BIOMATERIALS.2010.03.064.
  • 46.
    Schuurman, W.; Levett, P.A.; Pot, M.W.; et al. Gelatin-Methacrylamide Hydrogels as Potential Biomaterials for Fabrication of Tissue-Engineered Cartilage Constructs. Macromol. Biosci. 2013, 13, 551–561. https://doi.org/10.1002/MABI.201200471.
  • 47.
    Chen, Y.C.; Lin, R.Z.; Qi, H.; et al. Functional Human Vascular Network Generated in Photocrosslinkable Gelatin Methacrylate Hydrogels. Adv. Funct. Mater. 2012, 22, 2027–2039. https://doi.org/10.1002/ADFM.201101662.
  • 48.
    O’Connell, C.D.; Zhang, B.; Onofrillo, C.; et al. Tailoring the Mechanical Properties of Gelatin Methacryloyl Hydrogels through Manipulation of the Photocrosslinking Conditions. Soft Matter 2018, 14, 2142–2151. https://doi.org/10.1039/C7SM02187A.
  • 49.
    Kim, C.; Young, J.L.; Holle, A.W.; et al. Stem Cell Mechanosensation on Gelatin Methacryloyl (GelMA) Stiffness Gradient Hydrogels. Ann. Biomed. Eng. 2020, 48, 893–902. https://doi.org/10.1007/S10439-019-02428-5.
  • 50.
    Nguyen, K.T.; West, J.L. Photopolymerizable Hydrogels for Tissue Engineering Applications. Biomaterials 2002, 23, 4307–4314. https://doi.org/10.1016/S0142-9612(02)00175-8.
  • 51.
    Lee, C.; O'Connell, C.D.; Onofrillo, C.; et al. Human Articular Cartilage Repair: Sources and Detection of Cytotoxicity and Genotoxicity in Photo-Crosslinkable Hydrogel Bioscaffolds. Stem Cells Transl. Med. 2020, 9, 302–315.
  • 52.
    Zheng, Z.; Eglin, D.; Alini, M.; et al. Visible Light-Induced 3D Bioprinting Technologies and Corresponding Bioink Materials for Tissue Engineering: A Review. Engineering 2021, 7, 966–978.
  • 53.
    Paul, S.; Schrobback, K.; Tran, P.A.; et al. Photo-Cross-Linkable, Injectable, and Highly Adhesive GelMA-Glycol Chitosan Hydrogels for Cartilage Repair. Adv. Healthc. Mater. 2023, 12, 2302078. https://doi.org/10.1002/ADHM.202302078.
  • 54.
    Paul, S.; Schrobback, K.; Tran, P.A.; et al. GelMA-Glycol Chitosan Hydrogels for Cartilage Regeneration: The Role of Uniaxial Mechanical Stimulation in Enhancing Mechanical, Adhesive, and Biochemical Properties. APL Bioeng. 2023, 7, 036114. https://doi.org/10.1063/5.0160472.
  • 55.
    Lim, K.S.; Klotz, B.J.; Lindberg, G.C.J.; et al. Visible Light Cross-Linking of Gelatin Hydrogels Offers an Enhanced Cell Microenvironment with Improved Light Penetration Depth. Macromol. Biosci. 2019, 19, 1900098. https://doi.org/10.1002/MABI.201900098.
  • 56.
    Loessner, D.; Meinert, C.; Kaemmerer, E.; et al. Functionalization, Preparation and Use of Cell-Laden Gelatin Methacryloyl–Based Hydrogels as Modular Tissue Culture Platforms. Nat. Protoc. 2016, 11, 727–746. https://doi.org/10.1038/nprot.2016.037.
  • 57.
    ASTM F2458-05; Standard Test Method for Wound Closure Strength of Tissue Adhesives and Sealants. ASTM: West Conshohocken, PA, USA, 2015. Available online: https://www.astm.org/f2458-05r15.html (accessed on 12 August 2024).
  • 58.
    ASTM F2255-24; Standard Test Method for Strength Properties of Tissue Adhesives in Lap-Shear by Tension Loading. ASTM: West Conshohocken, PA, USA, 2024. Available online: https://www.astm.org/f2255-05r15.html (accessed on 12 August 2024).
  • 59.
    Gupta, A.; Bhat, S.; Jagdale, P.R.; et al. Evaluation of Three-Dimensional Chitosan-Agarose-Gelatin Cryogel Scaffold for the Repair of Subchondral Cartilage Defects: An in Vivo Study in a Rabbit Model. Tissue Eng. Part. A 2014, 20, 3101–3111. https://doi.org/10.1089/TEN.TEA.2013.0702.
  • 60.
    Mizrahi, B.; Weldon, C.; Kohane, D.S. Tissue Adhesives as Active Implants. Stud. Mechanobiol. Tissue Eng. Biomater. 2010, 8, 39–56. https://doi.org/10.1007/8415_2010_48.
  • 61.
    Ke, X.; Dong, Z.; Tang, S.; et al. A Natural Polymer Based Bioadhesive with Self-Healing Behavior and Improved Antibacterial Properties. Biomater. Sci. 2020, 8, 4346–4357. https://doi.org/10.1039/D0BM00624F.
  • 62.
    Mehdizadeh, M.; Weng, H.; Gyawali, D.; et al. Injectable Citrate-Based Mussel-Inspired Tissue Bioadhesives with High Wet Strength for Sutureless Wound Closure. Biomaterials 2012, 33, 7972–7983. https://doi.org/10.1016/J.BIOMATERIALS.2012.07.055.
  • 63.
    Qiao, Z.; Lv, X.; He, Set al. A Mussel-Inspired Supramolecular Hydrogel with Robust Tissue Anchor for Rapid Hemostasis of Arterial and Visceral Bleedings. Bioact. Mater. 2021, 6, 2829–2840. https://doi.org/10.1016/J.BIOACTMAT.2021.01.039.
  • 64.
    Yang, B.; Song, J.; Jiang, Y.; et al. Injectable Adhesive Self-Healing Multicross-Linked Double-Network Hydrogel Facilitates Full-Thickness Skin Wound Healing. ACS Appl. Mater. Interfaces 2020, 12, 57782–57797. https://doi.org/10.1021/ACSAMI.0C18948.
  • 65.
    Yang, Y.; Liang, Y.; Chen, J.; et al. Mussel-Inspired Adhesive Antioxidant Antibacterial Hemostatic Composite Hydrogel Wound Dressing via Photo-Polymerization for Infected Skin Wound Healing. Bioact. Mater. 2021, 8, 341–354. https://doi.org/10.1016/J.BIOACTMAT.2021.06.014.
  • 66.
    Kull, S.; Martinelli, I.; Briganti, E.; et al. Glubran2 Surgical Glue: In Vitro Evaluation of Adhesive and Mechanical Properties. J. Surg. Res. 2009, 157, e15–e21. https://doi.org/10.1016/J.JSS.2009.01.034.
  • 67.
    Suo, H.; Zhang, D.; Yin, J.; et al. Interpenetrating Polymer Network Hydrogels Composed of Chitosan and Photocrosslinkable Gelatin with Enhanced Mechanical Properties for Tissue Engineering. Mater. Sci. Eng. C 2018, 92, 612–620. https://doi.org/10.1016/J.MSEC.2018.07.016.
  • 68.
    Galed, G.; Miralles, B.; Paños, I.; et al. N-Deacetylation and Depolymerization Reactions of Chitin/Chitosan: Influence of the Source of Chitin. Carbohydr. Polym. 2005, 62, 316–320. https://doi.org/10.1016/J.CARBPOL.2005.03.019.
  • 69.
    Cao, W.; Jing, D.; Li, J.; et al. Effects of the Degree of Deacetylation on the Physicochemical Properties and Schwann Cell Affinity of Chitosan Films. J. Biomater. Appl. 2005, 20, 157–177. https://doi.org/10.1177/0885328205049897.
  • 70.
    Foster, L.J.R.; Ho, S.; Hook, J.; et al. Chitosan as a Biomaterial: Influence of Degree of Deacetylation on Its Physiochemical, Material and Biological Properties. PLoS ONE 2015, 10, e0135153. https://doi.org/10.1371/JOURNAL.PONE.0135153.
  • 71.
    Ren, D.; Yi, H.; Wang, W.; et al. The Enzymatic Degradation and Swelling Properties of Chitosan Matrices with Different Degrees of N-Acetylation. Carbohydr. Res. 2005, 340, 2403–2410. https://doi.org/10.1016/J.CARRES.2005.07.022.
  • 72.
    Fairbanks, B.D.; Schwartz, M.P.; Bowman, C.N.; et al. Photoinitiated Polymerization of PEG-Diacrylate with Lithium Phenyl-2,4,6-Trimethylbenzoylphosphinate: Polymerization Rate and Cytocompatibility. Biomaterials 2009, 30, 6702–6707. https://doi.org/10.1016/J.BIOMATERIALS.2009.08.055.
  • 73.
    Lim, K.S.; Schon, B.S.; Mekhileri, N.V.; et al. New Visible-Light Photoinitiating System for Improved Print Fidelity in Gelatin-Based Bioinks. ACS Biomater. Sci. Eng. 2016, 2, 1752–1762. https://doi.org/10.1021/ACSBIOMATERIALS.6B00149.
  • 74.
    Mow, V.C.; Guo, X.E. Mechano-Electrochemical Properties of Articular Cartilage: Their Inhomogeneities and Anisotropies. Annu. Rev. Biomed. Eng. 2002, 4, 175–209. https://doi.org/10.1146/ANNUREV.BIOENG.4.110701.120309.
  • 75.
    Li, C.; Guan, G.; Reif, R.; et al. Determining Elastic Properties of Skin by Measuring Surface Waves from an Impulse Mechanical Stimulus Using Phase-Sensitive Optical Coherence Tomography. J. R. Soc. Interface 2012, 9, 831–841. https://doi.org/10.1098/RSIF.2011.0583.
  • 76.
    Yang, C.; Xu, L.; Zhou, Y.; et al. A Green Fabrication Approach of Gelatin/CM-Chitosan Hybrid Hydrogel for Wound Healing. Carbohydr. Polym. 2010, 4, 1297–1305. https://doi.org/10.1016/J.CARBPOL.2010.07.013.
  • 77.
    Fancy, D.A.; Denison, C.; Kim, K.; et al. Scope, Limitations and Mechanistic Aspects of the Photo-Induced Cross-Linking of Proteins by Water-Soluble Metal Complexes. Chem. Biol. 2000, 7, 697–708. https://doi.org/10.1016/S1074-5521(00)00020-X.
  • 78.
    Elvin, C.M.; Vuocolo, T.; Brownlee, A.G.; et al. A Highly Elastic Tissue Sealant Based on Photopolymerised Gelatin. Biomaterials 2010, 31, 8323–8331. https://doi.org/10.1016/J.BIOMATERIALS.2010.07.032.
  • 79.
    Cui, L.; Jia, J.; Guo, Y.; et al. Preparation and Characterization of IPN Hydrogels Composed of Chitosan and Gelatin Cross-Linked by Genipin. Carbohydr. Polym. 2014, 99, 31–38. https://doi.org/10.1016/J.CARBPOL.2013.08.048.
  • 80.
    Eysturskard, J.; Haug, I.J.; Ulset, A.S.; et al. Mechanical Properties of Mammalian and Fish Gelatins Based on Their Weight Average Molecular Weight and Molecular Weight Distribution. Food Hydrocoll. 2009, 23, 2315–2321. https://doi.org/10.1016/J.FOODHYD.2009.06.007.
  • 81.
    Lee, B.H.; Lum, N.; Seow, L.Y.; et al. Synthesis and Characterization of Types A and B Gelatin Methacryloyl for Bioink Applications. Materials 2016, 9, 797. https://doi.org/10.3390/MA9100797.
  • 82.
    Shirahama, H.; Lee, B.H.; Tan, L.P.; et al. Precise Tuning of Facile One-Pot Gelatin Methacryloyl (GelMA) Synthesis. Sci. Rep. 2016, 6, 31036. https://doi.org/10.1038/srep31036.
  • 83.
    Liang, J.; Grijpma, D.W.; Poot, A.A. Tough and Biocompatible Hybrid Networks Prepared from Methacrylated Poly(Trimethylene Carbonate) (PTMC) and Methacrylated Gelatin. Eur. Polym. J. 2020, 123, 109420. https://doi.org/10.1016/J.EURPOLYMJ.2019.109420.
  • 84.
    Vigata, M.; Meinert, C.; Bock, N.; et al. Deciphering the Molecular Mechanism of Water Interaction with Gelatin Methacryloyl Hydrogels: Role of Ionic Strength, Ph, Drug Loading and Hydrogel Network Characteristics. Biomedicines 2021, 9, 574. https://doi.org/10.3390/BIOMEDICINES9050574/S1.
  • 85.
    Yue, K.; Li, X.; Schrobback, K.; et al. Structural Analysis of Photocrosslinkable Methacryloyl-Modified Protein Derivatives. Biomaterials 2017, 139, 163–171. https://doi.org/10.1016/J.BIOMATERIALS.2017.04.050.
  • 86.
    Hollingshead, S.; Liu, J.C. PH-Sensitive Mechanical Properties of Elastin-Based Hydrogels. Macromol. Biosci. 2020, 20, 1900369. https://doi.org/10.1002/MABI.201900369.
  • 87.
    Percot, A.; Lafleur, M.; Zhu, X.X. New Hydrogels Based on N-Isopropylacrylamide Copolymers Crosslinked with Polylysine: Membrane Immobilization Systems. Polymer 2000, 41, 7231–7239. https://doi.org/10.1016/S0032-3861(00)00074-4.
  • 88.
    Tang, Y.F.; Du, Y.M.; Hu, X.W.; et al. Rheological Characterisation of a Novel Thermosensitive Chitosan/Poly(Vinyl Alcohol) Blend Hydrogel. Carbohydr. Polym. 2007, 67, 491–499. https://doi.org/10.1016/J.CARBPOL.2006.06.015.
  • 89.
    Zhu, F.; Yu, H.; Lei, W.; et al. Tough Polyion Complex Hydrogel Films of Natural Polysaccharides. Chin. J. Polym. Sci. 2017, 35, 1276–1285. https://doi.org/10.1007/S10118-017-1977-7/METRICS.
  • 90.
    Rungrod, A.; Kapanya, A.; Punyodom, W.; et al. Synthesis and Characterization of Semi-IPN Hydrogels Composed of Sodium 2-Acrylamido-2-Methylpropanesulfonate and Poly(ε-Caprolactone) Diol for Controlled Drug Delivery. Eur. Polym. J. 2022, 164, 110978. https://doi.org/10.1016/J.EURPOLYMJ.2021.110978.
  • 91.
    Wong, E. Clinical Laboratory Diagnostics: Use and Assessment of Clinical Laboratory Results. Lothar Thomas. Frankfurt/Main, Germany: TH-Books Verlagsgeselschaft, 1998, 1727 Pp., $149.00. ISBN 3-9805215-4-0. Clin. Chem. 1999, 45, 586–587. https://doi.org/10.1093/CLINCHEM/45.4.586A.
  • 92.
    Jebens, E.H.; Monk-Jones, M.E. On the Viscosity and PH of Synovial Fluid and the PH of Blood. J. Bone Jt. Surg. Br. 1959, 41, 388–400. https://doi.org/10.1302/0301-620X.41B2.388.
  • 93.
    Pfister, S.A.; Hauke, G.; Peter, H.H. Synoviaanalyse: Vorgehen in Der Praxis. Aktuelle Rheumatol. 1989, 14, 51–57. https://doi.org/10.1055/S-2008-1047470/BIB.
  • 94.
    Treuhaft, P.S.; McCarty, D.J. Synovial Fluid PH, Lactate, Oxygen and Carbon Dioxide Partial Pressure in Various Joint Diseases. Arthritis Rheum. 1971, 14, 475–484. https://doi.org/10.1002/ART.1780140407.
  • 95.
    Lund-Olesen, K. Oxygen Tension in Synovial Fluids. Arthritis Rheum. 1970, 13, 769–776. https://doi.org/10.1002/ART.
  • 96.
    Zlotogorski, A. Distribution of Skin Surface PH on the Forehead and Cheek of Adults. Arch. Dermatol. Res. 1987, 279, 398–401. https://doi.org/10.1007/BF00412626.
  • 97.
    Raphael, K.L.; Murphy, R.A.; Shlipak, M.G.; et al. Bicarbonate Concentration, Acid-Base Status, and Mortality in the Health, Aging, and Body Composition Study. Clin. J. Am. Soc. Nephrol. 2016, 11, 308–316. https://doi.org/10.2215/CJN.06200615.
  • 98.
    McLister, A.; McHugh, J.; Cundell, J.; et al. New Developments in Smart Bandage Technologies for Wound Diagnostics. Adv. Mater. 2016, 28, 5732–5737. https://doi.org/10.1002/ADMA.201504829.
  • 99.
    Qin, M.; Guo, H.; Dai, Z.; et al. Advances in Flexible and Wearable PH Sensors for Wound Healing Monitoring. J. Semicond. 2019, 40, 111607. https://doi.org/10.1088/1674-4926/40/11/111607.
  • 100.
    No, H.K.; Young Park, N.; Ho Lee, S.; et al. Antibacterial Activity of Chitosans and Chitosan Oligomers with Different Molecular Weights. Int. J. Food Microbiol. 2002, 74, 65–72. https://doi.org/10.1016/S0168-1605(01)00717-6.
  • 101.
    Zhu, W.; Chuah, Y.J.; Wang, D.A. Bioadhesives for Internal Medical Applications: A Review. Acta Biomater. 2018, 74, 1–16. https://doi.org/10.1016/J.ACTBIO.2018.04.034.
  • 102.
    Shah, N.V.; Meislin, R. Current State and Use of Biological Adhesives in Orthopedic Surgery. Orthopedics 2013, 36, 945–956. https://doi.org/10.3928/01477447-20131120-09.
  • 103.
    Mehdizadeh, M.; Yang, J. Design Strategies and Applications of Tissue Bioadhesives. Macromol. Biosci. 2013, 13, 271–288. https://doi.org/10.1002/MABI.201200332.
  • 104.
    Chivers, R.A.; Wolowacz, R.G. The Strength of Adhesive-Bonded Tissue Joints. Int. J. Adhes. Adhes. 1997, 17, 127–132. https://doi.org/10.1016/S0143-7496(96)00041-3.
  • 105.
    Behrendt, P.; Ladner, Y.; Stoddart, M.J.; et al. Articular Joint-Simulating Mechanical Load Activates Endogenous TGF-β in a Highly Cellularized Bioadhesive Hydrogel for Cartilage Repair. Am. J. Sports Med. 2020, 48, 210–221. https://doi.org/10.1177/0363546519887909.
  • 106.
    Wang, D.A.; Varghese, S.; Sharma, B.; et al. Multifunctional Chondroitin Sulphate for Cartilage Tissue-Biomaterial Integration. Nat. Mater. 2007, 6, 385–392. https://doi.org/10.1038/NMAT1890.
  • 107.
    Trengove, A.; Duchi, S.; Onofrillo, C.; et al. Microbial Transglutaminase Improves Ex Vivo Adhesion of Gelatin Methacryloyl Hydrogels to Human Cartilage. Front. Med. Technol. 2021, 3. https://doi.org/10.3389/FMEDT.2021.773673.
  • 108.
    Dong, Y.; Li, Y.; Fan, B.; et al. Long-Term Antibacterial, Antioxidative, and Bioadhesive Hydrogel Wound Dressing for Infected Wound Healing Applications. Biomater. Sci. 2023, 11, 2080–2090. https://doi.org/10.1039/D2BM01981G.
  • 109.
    Rao, K.M.; Uthappa, U.T.; Kim, H.J.; et al. Tissue Adhesive, Biocompatible, Antioxidant, and Antibacterial Hydrogels Based on Tannic Acid and Fungal-Derived Carboxymethyl Chitosan for Wound-Dressing Applications. Gels 2023, 9, 354. https://doi.org/10.3390/GELS9050354.
  • 110.
    Tummalapalli, M.; Anjum, S.; Kumari, S.; et al. Antimicrobial Surgical Sutures: Recent Developments and Strategies. Polym. Rev. 2016, 56, 607–630. https://doi.org/10.1080/15583724.2015.1119163.
  • 111.
    Lock, A.M.; Gao, R.; Naot, D.; et al. Induction of Immune Gene Expression and Inflammatory Mediator Release by Commonly Used Surgical Suture Materials: An Experimental in Vitro Study. Patient Saf. Surg. 2017, 11, 16. https://doi.org/10.1186/S13037-017-0132-2.
  • 112.
    Topart, P.; Vandenbroucke, F.; Lozac’h, P. Tisseel vs. Tack Staples as Mesh Fixation in Totally Extraperitoneal Laparoscopic Repair of Groin Hernias: A Retrospective Analysis. Surg. Endosc. Other Interv. Tech. 2005, 19, 724–727. https://doi.org/10.1007/S00464-004-8812-2/TABLES/3.
  • 113.
    Hunziker, E.B. Articular Cartilage Repair: Basic Science and Clinical Progress. A Review of the Current Status and Prospects. Osteoarthr. Cartil. 2002, 10, 432–463. https://doi.org/10.1053/joca.2002.0801.
  • 114.
    Hunziker, E.B.; Stähli, A. Surgical Suturing of Articular Cartilage Induces Osteoarthritis-Like Changes. Osteoarthr. Cartil. 2008, 16, 1067. https://doi.org/10.1016/J.JOCA.2008.01.009.
  • 115.
    Yoshida, T.; Hirose, R.; Naito, Y.; et al. Viscosity: An Important Factor in Predicting the Performance of Submucosal Injection Materials. Mater. Des. 2020, 195, 109008. https://doi.org/10.1016/J.MATDES.2020.109008.
Share this article:
How to Cite
Paul, S.; Schrobback, K.; Tran, P. A.; Meinert, C.; Weekes, A.; Davern, J. W.; Klein, T. J. Photo-Curable GelMA-Chitosan Bioadhesive Hydrogel: An Evaluation of Mechanical and Adhesive Properties. Regenerative Medicine and Dentistry 2025, 2 (3), 15. https://doi.org/10.53941/rmd.2025.100015.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.