- 1.
Ding, Q.; Cui, J.; Shen, H.; et al. Advances of nanomaterial applications in oral and maxillofacial tissue regeneration and disease treatment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020, 13, e1669. https://doi.org/10.1002/wnan.1669.
- 2.
Dang, G.; Wei, Y.; Wan, Q.; et al. Regulatory mechanisms and regeneration strategies of the soft–hard tissue interface in the human periodontium. BMEMat 2024, 2, e12069. https://doi.org/10.1002/bmm2.12069.
- 3.
Olaru, M.; Sachelarie, L.; Calin, G. Hard Dental Tissues Regeneration-Approaches and Challenges. Materials 2021, 14, 2558. https://doi.org/10.3390/ma14102558.
- 4.
Liu, H.; Li, B.; Gao, M.; et al. Restoration of human tooth enamel. BMEMat 2025, e12139. https://doi.org/10.1002/bmm2.12139.
- 5.
Tang, W.; Fischer, N.G.; Kong, X.; et al. Hybrid coatings on dental and orthopedic titanium implants: Current advances and challenges. BMEMat 2024, 2, e12105. https://doi.org/10.1002/bmm2.12105.
- 6.
Shakya, A.; Li, Y.; Chang, N.; et al. Supra-alveolar bone regeneration: Progress, challenges, and future perspectives. Compos. Part B Eng. 2024, 283, 111673. https://doi.org/10.1016/j.compositesb.2024.111673.
- 7.
Xu, K.; Huang, R.; Li, X.; et al. Nanomaterial-based synergistic strategies for combating dental caries: Progress and perspectives. Nanoscale 2025, 17, 1874–1888. https://doi.org/10.1039/d4nr04515g.
- 8.
Li, Y.; Cao, B.; Modali, S.; et al. Understanding the interactions between bone mineral crystals and their binding peptides derived from filamentous phage. Mater. Today Adv. 2022, 15, 100263. https://doi.org/10.1016/j.mtadv.2022.100263.
- 9.
Kandhola, G.; Park, S.; Lim, J.-W.; et al. Nanomaterial-Based Scaffolds for Tissue Engineering Applications: A Review on Graphene, Carbon Nanotubes and Nanocellulose. Tissue Eng. Regen. Med. 2023, 20, 411–433. https://doi.org/10.1007/s13770-023-00530-3.
- 10.
Hosseini, F.S.; Whitfield, T.; Orlando, J.D.; et al. Osteoinductive low-dose 3D porous calcium phosphate graphene oxide–integrated matrices enhance osteogenesis and mechanical properties. Proc. Natl. Acad. Sci. USA 2025, 122, e2427124122. https://doi.org/10.1073/pnas.2427124122.
- 11.
Wang, Y.; Chang, L.; Gao, H.; et al. Nanomaterials-based advanced systems for photothermal / photodynamic therapy of oral cancer. Eur. J. Med. Chem. 2024, 272, 116508. https://doi.org/10.1016/j.ejmech.2024.116508.
- 12.
Natsaridis, E.; Mouzoura, P.; Gkartziou, F.; et al. Development of growth factor-incorporating liposomes for integration into scaffolds as a method to improve tissue regeneration. Int. J. Dev. Biol. 2022, 66, 137–154. https://doi.org/10.1387/ijdb.210108sa.
- 13.
Lin, S.; Xu, Z.; Liu, Y.; et al. Engineered Macrophage Membrane-Camouflaged Nanodecoys Reshape the Infectious Microenvironment for Efficient Periodontitis Treatment. ACS Nano 2025, 19, 15345–15362. https://doi.org/10.1021/acsnano.4c14305.
- 14.
Pan, S.; Zhong, W.; Lan, Y.; et al. Pathology-Guided Cell Membrane-Coated Polydopamine Nanoparticles for Efficient Multisynergistic Treatment of Periodontitis. Adv. Funct. Mater. 2024, 34, 2312253. https://doi.org/10.1002/adfm.202312253.
- 15.
Sedek, E.M.; Holiel, A.A. Next-Generation Strategies for Enamel Repair and Regeneration: Advances in Biomaterials and Translational Challenges. Tissue Eng. Regen. Med. 2025, 22, 771–789. https://doi.org/10.1007/s13770-025-00725-w.
- 16.
Hou, X.; Zhang, L.; Zhou, Z.; et al. Calcium Phosphate-Based Biomaterials for Bone Repair. J. Funct. Biomater. 2022, 13, 187. https://doi.org/10.3390/jfb13040187.
- 17.
Fathy, S.M.; Abdelhafez, A.; Darwesh, F.A.; et al. Evaluation of incipient enamel-carious-like lesion treated with hydroxyapatite-chitosan nanocomposite hydrogel. J. World Fed. Orthod. 2024, 13, 211–220. https://doi.org/10.1016/j.ejwf.2024.04.001.
- 18.
Talaat, S.; Hashem, A.A.; Abu-Seida, A.; et al. Regenerative potential of mesoporous silica nanoparticles scaffold on dental pulp and root maturation in immature dog’s teeth: A histologic and radiographic study. BMC Oral Health 2024, 24, 817. https://doi.org/10.1186/s12903-024-04368-6.
- 19.
An, N.; Yan, X.; Qiu, Q.; et al. Human periodontal ligament stem cell sheets activated by graphene oxide quantum dots repair periodontal bone defects by promoting mitochondrial dynamics dependent osteogenic differentiation. J. Nanobiotechnol. 2024, 22, 133. https://doi.org/10.1186/s12951-024-02422-7.
- 20.
Tan, Y.-J.; Li, X.; Zhang, W.-J.; et al. Mitochondria-targeted delivery of zinc-coordinated resveratrol nanoparticles rescues the osteogenic potential of periodontal ligament stem cells compromised by inflammation for periodontal wound healing. Chem. Eng. J. 2025, 503, 158296. https://doi.org/10.1016/j.cej.2024.158296.
- 21.
Yan, M.; Xiao, B.; Yosick, A.; et al. Dose-dependent osteoimmunomodulatory effects of amorphous calcium phosphate nanoparticles promote 3D-printed scaffold-mediated bone regeneration. Bioact. Mater. 2025, 51, 197–210. https://doi.org/10.1016/j.bioactmat.2025.05.010.
- 22.
Bordini, E.A.F.; Cassiano, F.B.; Bronze-Uhle, E.S.; et al. Chitosan in association with osteogenic factors as a cell-homing platform for dentin regeneration: Analysis in a pulp-in-a-chip model. Dent. Mater. 2022, 38, 655–669. https://doi.org/10.1016/j.dental.2022.02.004.
- 23.
Tang, S.; Wang, W. Preparation and characterization of a novel composite membrane of natural silk fiber/nano-hydroxyapatite/chitosan for guided bone tissue regeneration. e-Polymers 2021, 21, 671–680. https://doi.org/10.1515/epoly-2021-0068.
- 24.
Meng, L.; Shao, C.; Cui, C.; et al. Autonomous Self-Healing Silk Fibroin Injectable Hydrogels Formed via Surfactant-Free Hydrophobic Association. ACS Appl. Mater. Interfaces 2020, 12, 1628–1639. https://doi.org/10.1021/acsami.9b19415.
- 25.
Pang, Y.; Kong, L.; Li, Y.; et al. PLGA/HA sustained-release system loaded with liraglutide for the treatment of diabetic periodontitis through inhibition of necroptosis. Mater. Today Bio 2025, 31, 101582. https://doi.org/10.1016/j.mtbio.2025.101582.
- 26.
Fawzy, A.S.; Priyadarshini, B.M.; Selvan, S.T.; et al. Proanthocyanidins-Loaded Nanoparticles Enhance Dentin Degradation Resistance. J. Dent. Res. 2017, 96, 780–789. https://doi.org/10.1177/0022034517691757.
- 27.
Capuano, N.; Amato, A.; Dell’Annunziata, F.; et al. Nanoparticles and Their Antibacterial Application in Endodontics. Antibiotics 2023, 12, 1690. https://doi.org/10.3390/antibiotics12121690.
- 28.
An, S.; Gao, Y.; Chen, Y.; et al. CaSR as a Therapeutic Target and Tool in Human Dental Pulp: A Concise Review and Novel Hypothesis. Oral Health Prev. Dent. 2020, 18, 295–300. https://doi.org/10.3290/j.ohpd.a42688.
- 29.
Azaryan, E.; Hanafi-Bojd, M.Y.; Alemzadeh, E.; et al. Effect of PCL/nHAEA nanocomposite to osteo/odontogenic differentiation of dental pulp stem cells. BMC Oral Health 2022, 22, 505. https://doi.org/10.1186/s12903-022-02527-1.
- 30.
Gopinath, V.K.; Soumya, S.; Chakrapani, V.Y.; et al. Odontogenic differentiation of inflamed dental pulp stem cells (IDPSCs) on polycaprolactone (PCL) nanofiber blended with hydroxyapatite. Dent. Mater. J. 2021, 40, 312–321. https://doi.org/10.4012/dmj.2020-005.
- 31.
Mehraliyeva, S.; Gasimov, E.; Rzayev, F.; et al. Development And Assessment of Quality Criteria of Routine Phytosomes in The Treatment of Periodontitis. Am. J. Biomed. Sci. Res. 2024, 22, 530–537. https://doi.org/10.34297/AJBSR.2024.22.002978.
- 32.
Takeda, Y.S.; Xu, Q. Synthetic and nature-derived lipid nanoparticles for neural regeneration. Neural Regen. Res. 2015, 10, 689–690. https://doi.org/10.4103/1673-5374.156946.
- 33.
Dantas, P.C.L.; Martins-Júnior, P.A.; Coutinho, D.C.O.; et al. Nanohybrid composed of graphene oxide functionalized with sodium hyaluronate accelerates bone healing in the tibia of rats. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 123, 111961. https://doi.org/10.1016/j.msec.2021.111961.
- 34.
Absalan, F.; Seyed Sadjadi, M.; Farhadyar, N.; et al. Bone Tissue Engineering of HA/COL/GO Porous Nanocomposites with the Ability to Release Naproxen: Synthesis, Characterization, and In Vitro Study. J. Inorg. Organomet. Polym. Mater. 2022, 32, 3260–3275. https://doi.org/10.1007/s10904-022-02283-3.
- 35.
Xu, J.; Shi, H.; Luo, J.; et al. Advanced materials for enamel remineralization. Front. Bioeng. Biotechnol. 2022, 10, 985881. https://doi.org/10.3389/fbioe.2022.985881.
- 36.
Lee, D.; Wufuer, M.; Kim, I.; et al. Sequential dual-drug delivery of BMP-2 and alendronate from hydroxyapatite-collagen scaffolds for enhanced bone regeneration. Sci. Rep. 2021, 11, 746. https://doi.org/10.1038/s41598-020-80608-3.
- 37.
Whitehouse, L.L.; Thomson, N.H.; Do, T.; et al. Bioactive molecules for regenerative pulp capping. Eur. Cell Mater. 2021, 42, 415–437. https://doi.org/10.22203/eCM.v042a26.
- 38.
Liu, H.; Chen, B.; Liu, Y.; et al. Application of polysaccharide materials in the prevention and treatment of oral diseases. J. Drug Deliv. Sci. Technol. 2024, 93, 105331. https://doi.org/10.1016/j.jddst.2023.105331.
- 39.
Wei, X.; Xu, H.; Zhou, M.; et al. Chemically modified microRNA delivery via DNA tetrahedral frameworks for dental pulp regeneration. J. Nanobiotechnol. 2024, 22, 150. https://doi.org/10.1186/s12951-024-02393-9.
- 40.
Chopra, A.; Bhuvanagiri, G.; Natu, K.; et al. Role of CRISPR-Cas systems in periodontal disease pathogenesis and potential for periodontal therapy: A review. Mol. Oral Microbiol. 2025, 40, 1–16. https://doi.org/10.1111/omi.12483.
- 41.
Man, K.; Eisenstein, N.M.; Hoey, D.A.; et al. Bioengineering extracellular vesicles: Smart nanomaterials for bone regeneration. J. Nanobiotechnol. 2023, 21, 137. https://doi.org/10.1186/s12951-023-01895-2.
- 42.
Elkhouly, M.A.; Emara, M.M.; Nady, N.; et al. Bioinspired enamel repair via inorganic ionic polymerization using calcium phosphate ionic clusters and nano-hydroxyapatite. Sci. Rep. 2025, 15, 20207. https://doi.org/10.1038/s41598-025-06434-7.
- 43.
Dai, D.; Wang, J.; Xie, H.; et al. An epigallocatechin gallate-amorphous calcium phosphate nanocomposite for caries prevention and demineralized enamel restoration. Mater. Today Bio 2023, 21, 100715. https://doi.org/10.1016/j.mtbio.2023.100715.
- 44.
Balkaya, H.; Demirbuğa, S.; Dayan, S.; et al. Investigation of the physicochemical, cytotoxic, and antimicrobial properties of a resin-based pulp capping material incorporated with calcium fructoborate-loaded mesoporous silica nanoparticles. Dent. Mater. 2025, 41, 1080–1090. https://doi.org/10.1016/j.dental.2025.06.019.
- 45.
Li, Q.; Wang, Z. Involvement of FAK/P38 Signaling Pathways in Mediating the Enhanced Osteogenesis Induced by Nano-Graphene Oxide Modification on Titanium Implant Surface. Int. J. Nanomed. 2020, 15, 4659–4676. https://doi.org/10.2147/ijn.S245608.
- 46.
Ducret, M.; Costantini, A.; Gobert, S.; et al. Fibrin-based scaffolds for dental pulp regeneration: From biology to nanotherapeutics. Eur. Cell Mater. 2021, 41, 1–14. https://doi.org/10.22203/eCM.v041a01.
- 47.
Lin, Y.; Li, Q.; Wang, L.; et al. Advances in regenerative medicine applications of tetrahedral framework nucleic acid-based nanomaterials: An expert consensus recommendation. Int. J. Oral Sci. 2022, 14, 51. https://doi.org/10.1038/s41368-022-00199-9.
- 48.
Zheng, C.Y.; Chu, X.Y.; Gao, C.Y.; et al. TAT&RGD Peptide-Modified Naringin-Loaded Lipid Nanoparticles Promote the Osteogenic Differentiation of Human Dental Pulp Stem Cells. Int. J. Nanomed. 2022, 17, 3269–3286. https://doi.org/10.2147/ijn.S371715.
- 49.
Cao, J.; Song, Z.; Du, T.; et al. Antimicrobial materials based on photothermal action and their application in wound treatment. Burn. Trauma 2024, 12, tkae046. https://doi.org/10.1093/burnst/tkae046.
- 50.
Lin, H.P.; Tu, H.P.; Hsieh, Y.P.; et al. Controlled release of lovastatin from poly(lactic-co-glycolic acid) nanoparticles for direct pulp capping in rat teeth. Int. J. Nanomed. 2017, 12, 5473–5485. https://doi.org/10.2147/ijn.S138410.
- 51.
Lee, Y.H.; Kim, J.S.; Kim, J.E.; et al. Nanoparticle mediated PPARγ gene delivery on dental implants improves osseointegration via mitochondrial biogenesis in diabetes mellitus rat model. Nanomedicine 2017, 13, 1821–1832. https://doi.org/10.1016/j.nano.2017.02.020.
- 52.
Chen, Y.; Ma, Y.; Yang, X.; et al. The Application of Pulp Tissue Derived-Exosomes in Pulp Regeneration: A Novel Cell-Homing Approach. Int. J. Nanomed. 2022, 17, 465–476. https://doi.org/10.2147/ijn.S342685.
- 53.
Wu, X.; Hu, Y.; Sheng, S.; et al. DNA-based hydrogels for bone regeneration: A promising tool for bone organoids. Mater. Today Bio 2025, 31, 101502. https://doi.org/10.1016/j.mtbio.2025.101502.
- 54.
Nishida, E.; Miyaji, H.; Kato, A.; et al. Graphene oxide scaffold accelerates cellular proliferative response and alveolar bone healing of tooth extraction socket. Int. J. Nanomed. 2016, 11, 2265–2277. https://doi.org/10.2147/ijn.S104778.
- 55.
Kim, B.N.; Ko, Y.G.; Yeo, T.; et al. Guided Regeneration of Rabbit Calvarial Defects Using Silk Fibroin Nanofiber-Poly(glycolic acid) Hybrid Scaffolds. ACS Biomater. Sci. Eng. 2019, 5, 5266–5272. https://doi.org/10.1021/acsbiomaterials.9b00678.
- 56.
Chew, J.R.J.; Chuah, S.J.; Teo, K.Y.W.; et al. Mesenchymal stem cell exosomes enhance periodontal ligament cell functions and promote periodontal regeneration. Acta Biomater. 2019, 89, 252–264. https://doi.org/10.1016/j.actbio.2019.03.021.
- 57.
Rosa, V.; Silikas, N.; Yu, B.; et al. Guidance on the assessment of biocompatibility of biomaterials: Fundamentals and testing considerations. Dent. Mater. 2024, 40, 1773–1785. https://doi.org/10.1016/j.dental.2024.07.020.
- 58.
Piotrowski-Daspit, A.S.; Bracaglia, L.G.; Eaton, D.A.; et al. Enhancing in vivo cell and tissue targeting by modulation of polymer nanoparticles and macrophage decoys. Nat. Commun. 2024, 15, 4247. https://doi.org/10.1038/s41467-024-48442-7.
- 59.
Lin, S.; Cui, T.; Jiang, Y.; et al. Microenvironment-responsive NIR-IIb multifunctional nanozyme platform for bacterial imaging and specialized anti-anaerobic bacteria periodontal therapy. J. Nanobiotechnol. 2025, 23, 189. https://doi.org/10.1186/s12951-025-03270-9.
- 60.
Teubl, B.J.; Stojkovic, B.; Docter, D.; et al. The effect of saliva on the fate of nanoparticles. Clin. Oral Investig. 2018, 22, 929–940. https://doi.org/10.1007/s00784-017-2172-5.
- 61.
Lu, B.; Wang, J.; Hendriks, A.J.; et al. Clearance of nanoparticles from blood: Effects of hydrodynamic size and surface coatings. Environ.Sci. Nano 2024, 11, 406–417. https://doi.org/10.1039/D3EN00812F.
- 62.
Pokrowiecki, R.; Wojnarowicz, J.; Zareba, T.; et al. Nanoparticles And Human Saliva: A Step Towards Drug Delivery Systems for Dental and Craniofacial Biomaterials. Int. J. Nanomed. 2019, 14, 9235–9257. https://doi.org/10.2147/ijn.S221608.
- 63.
Liu, L.; Yao, W.; Rao, Y.; et al. pH-Responsive carriers for oral drug delivery: Challenges and opportunities of current platforms. Drug Deliv. 2017, 24, 569–581. https://doi.org/10.1080/10717544.2017.1279238.
- 64.
Govindarajan, D.K.; Mohanarangam, M.; Kadirvelu, L.; et al. Biofilms and oral health: Nanotechnology for biofilm control. Discov. Nano 2025, 20, 114. https://doi.org/10.1186/s11671-025-04299-3.
- 65.
Zhang, J.; Liu, W.; Shi, L.; et al. The Effects of Drug Addiction and Detoxification on the Human Oral Microbiota. Microbiol. Spectr. 2023, 11, e0396122. https://doi.org/10.1128/spectrum.03961-22.
- 66.
Li, C.; Wang, Q. Advanced NIR-II Fluorescence Imaging Technology for In Vivo Precision Tumor Theranostics. Adv. Ther. 2019, 2, 1900053. https://doi.org/10.1002/adtp.201900053.
- 67.
Yin, X.; Zhao, B.; Chen, L.; et al. Octahedral Fe3O4 nanozymes penetrate and remove biofilms on implants via photomagnetic response. Coatings 2025, 15, 728. https://doi.org/10.3390/coatings15060728.
- 68.
Tomeh, M.A.; Zhao, X. Recent Advances in Microfluidics for the Preparation of Drug and Gene Delivery Systems. Mol. Pharm. 2020, 17, 4421–4434. https://doi.org/10.1021/acs.molpharmaceut.0c00913.
- 69.
van der Koog, L.; Gandek, T.B.; Nagelkerke, A. Liposomes and Extracellular Vesicles as Drug Delivery Systems: A Comparison of Composition, Pharmacokinetics, and Functionalization. Adv. Healthc. Mater. 2022, 11, e2100639. https://doi.org/10.1002/adhm.202100639.
- 70.
Aafreen, S.; Feng, J.; Wang, W.; et al. Theranostic extracellular vesicles: A concise review of current imaging technologies and labeling strategies. Extracell. Vesicles Circ. Nucl. Acids 2023, 4, 107–132. https://doi.org/10.20517/evcna.2023.01.
- 71.
Nawaz, A.; Ariffin, N.S.; Wong, T.W. Functionalized chitosan as nano-delivery platform for CRISPR-Cas9 in cancer treatment. Asian J. Pharm. Sci. 2025, 20, 101041. https://doi.org/10.1016/j.ajps.2025.101041.
- 72.
Bugueno, I.M.; Rey, T.; Jimenez-Armijo, A.; et al. Rare dentin defects: Understanding the pathophysiological mechanisms of COLXVA1 mutations. Genes Dis. 2024, 11, 101303. https://doi.org/10.1016/j.gendis.2024.101303.
- 73.
Park, S.Y.; Kim, K.H.; Kim, S.; et al. BMP-2 Gene Delivery-Based Bone Regeneration in Dentistry. Pharmaceutics 2019, 11, 393. https://doi.org/10.3390/pharmaceutics11080393.
- 74.
Ruslan, D.S. AI-powered nanodevices for real-time monitoring of physiological parameters. Int. J. Sci. Res. 2022, 8, 22–50.
- 75.
Chugh, V.; Basu, A.; Kaushik, A.; et al. Employing nano-enabled artificial intelligence (AI)-based smart technologies for prediction, screening, and detection of cancer. Nanoscale 2024, 16, 5458–5486. https://doi.org/10.1039/d3nr05648a.
- 76.
Akkaş, T.; Reshadsedghi, M.; Şen, M.; et al. The Role of Artificial Intelligence in Advancing Biosensor Technology: Past, Present, and Future Perspectives. Adv. Mater. 2025, 37, e2504796. https://doi.org/10.1002/adma.202504796.
- 77.
Qiu, Q.; Li, S.; Zhang, J.; et al. Lab-in-the-loop machine learning for brain-targeting delivery system design. Cell Biomater. 2025, 1, 100130. https://doi.org/10.1016/j.celbio.2025.100130.