2510001727
  • Open Access
  • Article

Unraveling the Underlying Comorbidity Mechanisms of Atopic Dermatitis and Periodontitis via Bioinformatics

  • Kaiye Lin 1,   
  • Lv Xie 2, 3,   
  • Guangqi Gao 2, 3,   
  • Yingye Zhang 2, 3,   
  • Na Li 2, 3,   
  • Chunxiao Lv 2, 3, *,   
  • Zetao Chen 2, 3, *

Received: 14 Sep 2025 | Revised: 10 Oct 2025 | Accepted: 16 Oct 2025 | Published: 27 Oct 2025

Abstract

Purpose: Atopic dermatitis (AD) and periodontitis (PD) exhibit overlapping immune and adhesion processes (e.g., Th2-skewing in AD and Th1/Th17 responses with Th2 components in PD). We aimed to identify shared transcriptomic signatures and prioritise candidate genes, miRNAs, and transcription factors linking AD and PD using integrative bioinformatics to generate hypotheses for subsequent experimental and clinical validation. Methods: Expression profiles from AD (GSE120721, GSE182740) and PD (GSE16134, GSE23586) datasets were analyzed. Differentially expressed genes (DEGs) shared between both conditions were identified and validated. Analyses included GO and KEGG enrichment, PPI network construction, and identification of hub genes, miRNA interactions, and transcription factors. Results: 124 DEGs were identified, with 13 hub genes enriched in immune response and cell adhesion pathways. Machine learning refined these to 4 key genes (CD69, MMP9, PXDN, VCAM1). ROC analysis validated these genes’ diagnostic efficacy (AUC > 0.7). Networks of key genes with miRNA and transcription factors (NFKB1, RELA, IRF1, EP300, JUN, IKBKB). Key miRNAs included hsa-miR-9-5p, hsa-miR-21-5p, hsa-miR-143-3p, and hsa-miR-155-5p. We also demonstrated the diagnostic potential of these genes (AUC > 0.7) across both conditions. Conclusions: The hub genes, key miRNAs, and transcription factors identified in this study may serve as biomarkers and candidate therapeutic targets for AD and PD comorbidity. These findings are hypothesis-generating and warrant experimental validation and prospective clinical studies to assess disease relevance and potential clinical utility.

References 

  • 1.
    Mayba, J.N.; Gooderham, M.J. Review of Atopic Dermatitis and Topical Therapies. J. Cutan. Med. Surg. 2017, 21, 227–236. https://doi.org/10.1177/1203475416685077.
  • 2.
    Weidinger, S.; Beck, L.A.; Bieber, T.; et al. Atopic dermatitis. Nat. Rev. Dis. Primers 2018, 4, 1. https://doi.org/10.1038/s41572-018-0001-z.
  • 3.
    Thomsen, S.F. Atopic Dermatitis: Natural History, Diagnosis, and Treatment. ISRN Allergy 2014, 2014, 354250. https://doi.org/10.1155/2014/354250.
  • 4.
    Mansouri, Y.; Guttman-Yassky, E. Immune Pathways in Atopic Dermatitis, and Definition of Biomarkers through Broad and Targeted Therapeutics. J. Clin. Med. 2015, 4, 858–873. https://doi.org/10.3390/jcm4050858.
  • 5.
    DaVeiga, S.P. Epidemiology of atopic dermatitis: A review. Allergy Asthma Proc. 2012, 33, 227–234. https://doi.org/10.2500/aap.2012.33.3569.
  • 6.
    Silverberg, J.I.; Gelfand, J.M.; Margolis, D.J.; et al. Patient burden and quality of life in atopic dermatitis in US adults. Ann. Allergy Asthma Immunol. 2018, 121, 340–347. https://doi.org/10.1016/j.anai.2018.07.006.
  • 7.
    Wang, A.; Xu Landén, N. New insights into T cells and their signature cytokines in atopic dermatitis. IUBMB Life 2015, 67, 601–610. https://doi.org/10.1002/iub.1405.
  • 8.
    Nakajima, S.; Tie, D.; Nomura, T.; et al. Novel pathogenesis of atopic dermatitis from the view of cytokines in mice and humans. Cytokine 2021, 148, 155664. https://doi.org/10.1016/j.cyto.2021.155664.
  • 9.
    Alsulami, S.; Aldoboke, A.; Nooh, R.; et al. Prevalence of Asthma, Allergic Rhinitis, and Atopic Dermatitis and Their Association With Oral Health in Saudi Arabia. Cureus 2023, 15, e38061. https://doi.org/10.7759/cureus.38061.
  • 10.
    Smirnova, J.; Montgomery, S.; Lindberg, M.; et al. Associations of self-reported atopic dermatitis with comorbid conditions in adults: A population-based cross-sectional study. BMC Dermatol. 2020, 20, 23. https://doi.org/10.1186/s12895-020-00117-8.
  • 11.
    Qasim, S.S.B.; Al-Otaibi, D.; Al-Jasser, R.; et al. An Evidence-Based Update on the Molecular Mechanisms Underlying Periodontal Diseases. Int. J. Mol. Sci. 2020, 21, 3829. https://doi.org/10.3390/ijms21113829.
  • 12.
    Uesaka, K.; Oka, H.; Kato, R.; et al. Bioinformatics in bioscience and bioengineering: Recent advances, applications, and perspectives. J. Biosci. Bioeng. 2022, 134, 363–373. https://doi.org/10.1016/j.jbiosc.2022.08.004.
  • 13.
    Werfel, T.; Allam, J.-P.; Biedermann, T.; et al. Cellular and molecular immunologic mechanisms in patients with atopic dermatitis. J. Allergy Clin. Immunol. 2016, 138, 336–349. https://doi.org/10.1016/j.jaci.2016.06.010.
  • 14.
    Genco, R.J.; Van Dyke, T.E. Reducing the risk of CVD in patients with periodontitis. Nat. Rev. Cardiol. 2010, 7, 479–480. https://doi.org/10.1038/nrcardio.2010.120.
  • 15.
    Kebschull, M.; Demmer, R.T.; Papapanou, P.N. “Gum Bug, Leave My Heart Alone!”—Epidemiologic and Mechanistic Evidence Linking Periodontal Infections and Atherosclerosis. J. Dent. Res. 2010, 89, 879–902. https://doi.org/10.1177/0022034510375281.
  • 16.
    Corbella, S.; Veronesi, P.; Galimberti, V.; et al. Is periodontitis a risk indicator for cancer? A meta-analysis. PLoS ONE 2018, 13, e0195683. https://doi.org/10.1371/journal.pone.0195683.
  • 17.
    Bingham, C.O.; Moni, M. Periodontal disease and rheumatoid arthritis: The evidence accumulates for complex pathobiologic interactions. Curr. Opin. Rheumatol. 2013, 25, 345–353. https://doi.org/10.1097/BOR.0b013e32835fb8ec.
  • 18.
    Preshaw, P.M.; Alba, A.L.; Herrera, D.; et al. Periodontitis and diabetes: A two-way relationship. Diabetologia 2012, 55, 21–31. https://doi.org/10.1007/s00125-011-2342-y.
  • 19.
    Simpson, T.C.; Clarkson, J.E.; Worthington, H.V.; et al. Treatment of periodontitis for glycaemic control in people with diabetes mellitus. Cochrane Database Syst. Rev. 2022, 4. https://doi.org/10.1002/14651858.CD004714.pub4.
  • 20.
    Barrett, T.; Wilhite, S.E.; Ledoux, P.; et al. NCBI GEO: Archive for functional genomics data sets—Update. Nucleic Acids Res. 2012, 41, D991–D995. https://doi.org/10.1093/nar/gks1193.
  • 21.
    Szklarczyk, D.; Gable, A.L.; Lyon, D.; et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. https://doi.org/10.1093/nar/gky1131.
  • 22.
    Bader, G.D.; Hogue, C.W. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 2003, 4, 2. https://doi.org/10.1186/1471-2105-4-2.
  • 23.
    Chin, C.-H.; Chen, S.-H.; Wu, H.-H.; et al. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 2014, 8, S11. https://doi.org/10.1186/1752-0509-8-S4-S11.
  • 24.
    Shen, Y.; Gao, Y.; Shi, J.; et al. MicroRNA–Disease Network Analysis Repurposes Methotrexate for the Treatment of Abdominal Aortic Aneurysm in Mice. Genom. Proteom. Bioinform. 2023, 21, 1030–1042. https://doi.org/10.1016/j.gpb.2022.08.002.
  • 25.
    Lu, M.; Zhang, Q.; Deng, M.; et al. An Analysis of Human MicroRNA and Disease Associations. PLoS ONE 2008, 3, e3420. https://doi.org/10.1371/journal.pone.0003420.
  • 26.
    Cui, C.; Zhong, B.; Fan, R.; et al. HMDD v4.0: A database for experimentally supported human microRNA-disease associations. Nucleic Acids Res. 2024, 52, D1327–D1332. https://doi.org/10.1093/nar/gkad717.
  • 27.
    Huang, H.-Y.; Lin, Y.-C.-D.; Cui, S.; et al. miRTarBase update 2022: An informative resource for experimentally validated miRNA–target interactions. Nucleic Acids Res. 2022, 50, D222–D230. https://doi.org/10.1093/nar/gkab1079.
  • 28.
    Li, J.; Han, X.; Wan, Y.; et al. TAM 2.0: Tool for MicroRNA set analysis. Nucleic Acids Res. 2018, 46, W180–W185. https://doi.org/10.1093/nar/gky509.
  • 29.
    Han, H.; Cho, J.-W.; Lee, S.; et al. TRRUST v2: An expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res. 2018, 46, D380–D386. https://doi.org/10.1093/nar/gkx1013.
  • 30.
    Yang, G.; Seok, J.K.; Kang, H.C.; et al. Skin Barrier Abnormalities and Immune Dysfunction in Atopic Dermatitis. Int. J. Mol. Sci. 2020, 21, 2867. https://doi.org/10.3390/ijms21082867.
  • 31.
    Vitales-Noyola, M.; Martínez-Martínez, R.; Loyola-Rodríguez, J.P.; et al. Quantitative and functional analysis of CD 69 + T regulatory lymphocytes in patients with periodontal disease. J. Oral Pathol. Med. 2017, 46, 549–557. https://doi.org/10.1111/jop.12514.
  • 32.
    Martín, P.; Gómez, M.; Lamana, A.; et al. The leukocyte activation antigen CD69 limits allergic asthma and skin contact hypersensitivity. J. Allergy Clin. Immunol. 2010, 126, 355–365.e3. https://doi.org/10.1016/j.jaci.2010.05.010.
  • 33.
    Wedi, B.; Wieczorek, D.; Stünkel, T.; et al. Staphylococcal exotoxins exert proinflammatory effects through inhibition of eosinophil apoptosis, increased surface antigen expression (CD11b, CD45, CD54, and CD69), and enhanced cytokine-activated oxidative burst, thereby triggering allergic inflammatory reactions. J. Allergy Clin. Immunol. 2002, 109, 477–484. https://doi.org/10.1067/mai.2002.121702.
  • 34.
    Smith, P.C.; Muñoz, V.C.; Collados, L.; et al. In situ detection of matrix metalloproteinase-9 (MMP-9) in gingival epithelium in human periodontal disease. J. Periodontal Res. 2004, 39, 87–92. https://doi.org/10.1111/j.1600-0765.2004.00705.x.
  • 35.
    Kumar, M.S.; Vamsi, G.; Sripriya, R.; et al. Expression of Matrix Metalloproteinases (MMP-8 and -9) in Chronic Periodontitis Patients With and Without Diabetes Mellitus. J. Periodontol. 2006, 77, 1803–1808. https://doi.org/10.1902/jop.2006.050293.
  • 36.
    Valenzuela, F.; Fernández, J.; Aroca, M.; et al. Gingival Crevicular Fluid Zinc- and Aspartyl-Binding Protease Profile of Individuals with Moderate/Severe Atopic Dermatitis. Biomolecules 2020, 10, 1600. https://doi.org/10.3390/biom10121600.
  • 37.
    Wang, L.; Li, X.-H.; Ning, W.-C. Evaluation of ICAM-1 and VCAM-1 Gene Polymorphisms in Patients with Periodontal Disease. Med. Sci. Monit. 2016, 22, 2386–2391. https://doi.org/10.12659/MSM.896979.
  • 38.
    Chen, L.; Lin, S.; Amin, S.; et al. VCAM-1 blockade delays disease onset, reduces disease severity and inflammatory cells in an atopic dermatitis model. Immunol. Cell Biol. 2010, 88, 334–342. https://doi.org/10.1038/icb.2009.107.
  • 39.
    Marinović Kulišić, S.; Takahashi, M.; Himelreich Perić, M.; et al. Immunohistochemical Analysis of Adhesion Molecules E-Selectin, Intercellular Adhesion Molecule-1, and Vascular Cell Adhesion Molecule-1 in Inflammatory Lesions of Atopic Dermatitis. Life 2023, 13, 933. https://doi.org/10.3390/life13040933.
  • 40.
    Liu, Y.; Wang, Z.; Jiang, W.; et al. Systemic Type 2 Inflammation-Associated Atopic Dermatitis Exacerbates Periodontitis. Int. Arch. Allergy Immunol. 2024, 185, 84–98. https://doi.org/10.1159/000533434.
  • 41.
    Jiménez, C.; Fernández, J.; Aroca, M.; et al. Association of Periodontitis and Atopic Dermatitis with the Levels of IL-13, IL-31, and TSLP in the Gingival Crevicular Fluid. Int. J. Mol. Sci. 2023, 24, 15592. https://doi.org/10.3390/ijms242115592.
  • 42.
    Gilmore, T.D. The Rel/NF-κB signal transduction pathway: Introduction. Oncogene 1999, 18, 6842–6844. https://doi.org/10.1038/sj.onc.1203237.
  • 43.
    Huber, M.A.; Denk, A.; Peter, R.U.; et al. The IKK-2/IκBα/NF-κB Pathway Plays a Key Role in the Regulation of CCR3 and eotaxin-1 in Fibroblasts. J. Biol. Chem. 2002, 277, 1268–1275. https://doi.org/10.1074/jbc.M109358200.
  • 44.
    Kumar, A.; Mahendra, J.; Mahendra, L.; et al. Synergistic Effect of Biphasic Calcium Phosphate and Platelet-Rich Fibrin Attenuate Markers for Inflammation and Osteoclast Differentiation by Suppressing NF-κB/MAPK Signaling Pathway in Chronic Periodontitis. Molecules 2021, 26, 6578. https://doi.org/10.3390/molecules26216578.
  • 45.
    Lawrence, T. The Nuclear Factor NF-B Pathway in Inflammation. Cold Spring Harb. Perspect. Biol. 2009, 1, a001651. https://doi.org/10.1101/cshperspect.a001651.
  • 46.
    Perkins, N.D. Integrating cell-signalling pathways with NF-κB and IKK function. Nat. Rev. Mol. Cell Biol. 2007, 8, 49–62. https://doi.org/10.1038/nrm2083.
  • 47.
    Mao, X.; Chen, M.; Wang, Y.; et al. MicroRNA-21 regulates the ERK/NF-κB signaling pathway to affect the proliferation, migration, and apoptosis of human melanoma A375 cells by targeting SPRY1, PDCD4, and PTEN. Mol. Carcinog. 2017, 56, 886–894. https://doi.org/10.1002/mc.22542.
  • 48.
    Wang, Y.; Li, H.; Shi, Y.; et al. miR-143-3p impacts on pulmonary inflammatory factors and cell apoptosis in mice with mycoplasmal pneumonia by regulating TLR4/MyD88/NF-κB pathway. Biosci. Rep. 2020, 40, BSR20193419. https://doi.org/10.1042/BSR20193419.
  • 49.
    Jablonska, E.; Gorniak, P.; Prusisz, W.; et al. MiR-155 Amplifies AKT and NFkB Signaling By Targeting Multiple Regulators of BCR Signal in DLBCL. Blood 2015, 126, 2455. https://doi.org/10.1182/blood.V126.23.2455.2455.
Share this article:
How to Cite
Lin, K.; Xie, L.; Gao, G.; Zhang, Y.; Li, N.; Lv, C.; Chen, Z. Unraveling the Underlying Comorbidity Mechanisms of Atopic Dermatitis and Periodontitis via Bioinformatics. Regenerative Medicine and Dentistry 2025, 2 (4), 17. https://doi.org/10.53941/rmd.2025.100017.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.