- 1.
Mayba, J.N.; Gooderham, M.J. Review of Atopic Dermatitis and Topical Therapies. J. Cutan. Med. Surg. 2017, 21, 227–236. https://doi.org/10.1177/1203475416685077.
- 2.
Weidinger, S.; Beck, L.A.; Bieber, T.; et al. Atopic dermatitis. Nat. Rev. Dis. Primers 2018, 4, 1. https://doi.org/10.1038/s41572-018-0001-z.
- 3.
Thomsen, S.F. Atopic Dermatitis: Natural History, Diagnosis, and Treatment. ISRN Allergy 2014, 2014, 354250. https://doi.org/10.1155/2014/354250.
- 4.
Mansouri, Y.; Guttman-Yassky, E. Immune Pathways in Atopic Dermatitis, and Definition of Biomarkers through Broad and Targeted Therapeutics. J. Clin. Med. 2015, 4, 858–873. https://doi.org/10.3390/jcm4050858.
- 5.
DaVeiga, S.P. Epidemiology of atopic dermatitis: A review. Allergy Asthma Proc. 2012, 33, 227–234. https://doi.org/10.2500/aap.2012.33.3569.
- 6.
Silverberg, J.I.; Gelfand, J.M.; Margolis, D.J.; et al. Patient burden and quality of life in atopic dermatitis in US adults. Ann. Allergy Asthma Immunol. 2018, 121, 340–347. https://doi.org/10.1016/j.anai.2018.07.006.
- 7.
Wang, A.; Xu Landén, N. New insights into T cells and their signature cytokines in atopic dermatitis. IUBMB Life 2015, 67, 601–610. https://doi.org/10.1002/iub.1405.
- 8.
Nakajima, S.; Tie, D.; Nomura, T.; et al. Novel pathogenesis of atopic dermatitis from the view of cytokines in mice and humans. Cytokine 2021, 148, 155664. https://doi.org/10.1016/j.cyto.2021.155664.
- 9.
Alsulami, S.; Aldoboke, A.; Nooh, R.; et al. Prevalence of Asthma, Allergic Rhinitis, and Atopic Dermatitis and Their Association With Oral Health in Saudi Arabia. Cureus 2023, 15, e38061. https://doi.org/10.7759/cureus.38061.
- 10.
Smirnova, J.; Montgomery, S.; Lindberg, M.; et al. Associations of self-reported atopic dermatitis with comorbid conditions in adults: A population-based cross-sectional study. BMC Dermatol. 2020, 20, 23. https://doi.org/10.1186/s12895-020-00117-8.
- 11.
Qasim, S.S.B.; Al-Otaibi, D.; Al-Jasser, R.; et al. An Evidence-Based Update on the Molecular Mechanisms Underlying Periodontal Diseases. Int. J. Mol. Sci. 2020, 21, 3829. https://doi.org/10.3390/ijms21113829.
- 12.
Uesaka, K.; Oka, H.; Kato, R.; et al. Bioinformatics in bioscience and bioengineering: Recent advances, applications, and perspectives. J. Biosci. Bioeng. 2022, 134, 363–373. https://doi.org/10.1016/j.jbiosc.2022.08.004.
- 13.
Werfel, T.; Allam, J.-P.; Biedermann, T.; et al. Cellular and molecular immunologic mechanisms in patients with atopic dermatitis. J. Allergy Clin. Immunol. 2016, 138, 336–349. https://doi.org/10.1016/j.jaci.2016.06.010.
- 14.
Genco, R.J.; Van Dyke, T.E. Reducing the risk of CVD in patients with periodontitis. Nat. Rev. Cardiol. 2010, 7, 479–480. https://doi.org/10.1038/nrcardio.2010.120.
- 15.
Kebschull, M.; Demmer, R.T.; Papapanou, P.N. “Gum Bug, Leave My Heart Alone!”—Epidemiologic and Mechanistic Evidence Linking Periodontal Infections and Atherosclerosis. J. Dent. Res. 2010, 89, 879–902. https://doi.org/10.1177/0022034510375281.
- 16.
Corbella, S.; Veronesi, P.; Galimberti, V.; et al. Is periodontitis a risk indicator for cancer? A meta-analysis. PLoS ONE 2018, 13, e0195683. https://doi.org/10.1371/journal.pone.0195683.
- 17.
Bingham, C.O.; Moni, M. Periodontal disease and rheumatoid arthritis: The evidence accumulates for complex pathobiologic interactions. Curr. Opin. Rheumatol. 2013, 25, 345–353. https://doi.org/10.1097/BOR.0b013e32835fb8ec.
- 18.
Preshaw, P.M.; Alba, A.L.; Herrera, D.; et al. Periodontitis and diabetes: A two-way relationship. Diabetologia 2012, 55, 21–31. https://doi.org/10.1007/s00125-011-2342-y.
- 19.
Simpson, T.C.; Clarkson, J.E.; Worthington, H.V.; et al. Treatment of periodontitis for glycaemic control in people with diabetes mellitus. Cochrane Database Syst. Rev. 2022, 4. https://doi.org/10.1002/14651858.CD004714.pub4.
- 20.
Barrett, T.; Wilhite, S.E.; Ledoux, P.; et al. NCBI GEO: Archive for functional genomics data sets—Update. Nucleic Acids Res. 2012, 41, D991–D995. https://doi.org/10.1093/nar/gks1193.
- 21.
Szklarczyk, D.; Gable, A.L.; Lyon, D.; et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. https://doi.org/10.1093/nar/gky1131.
- 22.
Bader, G.D.; Hogue, C.W. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 2003, 4, 2. https://doi.org/10.1186/1471-2105-4-2.
- 23.
Chin, C.-H.; Chen, S.-H.; Wu, H.-H.; et al. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 2014, 8, S11. https://doi.org/10.1186/1752-0509-8-S4-S11.
- 24.
Shen, Y.; Gao, Y.; Shi, J.; et al. MicroRNA–Disease Network Analysis Repurposes Methotrexate for the Treatment of Abdominal Aortic Aneurysm in Mice. Genom. Proteom. Bioinform. 2023, 21, 1030–1042. https://doi.org/10.1016/j.gpb.2022.08.002.
- 25.
Lu, M.; Zhang, Q.; Deng, M.; et al. An Analysis of Human MicroRNA and Disease Associations. PLoS ONE 2008, 3, e3420. https://doi.org/10.1371/journal.pone.0003420.
- 26.
Cui, C.; Zhong, B.; Fan, R.; et al. HMDD v4.0: A database for experimentally supported human microRNA-disease associations. Nucleic Acids Res. 2024, 52, D1327–D1332. https://doi.org/10.1093/nar/gkad717.
- 27.
Huang, H.-Y.; Lin, Y.-C.-D.; Cui, S.; et al. miRTarBase update 2022: An informative resource for experimentally validated miRNA–target interactions. Nucleic Acids Res. 2022, 50, D222–D230. https://doi.org/10.1093/nar/gkab1079.
- 28.
Li, J.; Han, X.; Wan, Y.; et al. TAM 2.0: Tool for MicroRNA set analysis. Nucleic Acids Res. 2018, 46, W180–W185. https://doi.org/10.1093/nar/gky509.
- 29.
Han, H.; Cho, J.-W.; Lee, S.; et al. TRRUST v2: An expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res. 2018, 46, D380–D386. https://doi.org/10.1093/nar/gkx1013.
- 30.
Yang, G.; Seok, J.K.; Kang, H.C.; et al. Skin Barrier Abnormalities and Immune Dysfunction in Atopic Dermatitis. Int. J. Mol. Sci. 2020, 21, 2867. https://doi.org/10.3390/ijms21082867.
- 31.
Vitales-Noyola, M.; Martínez-Martínez, R.; Loyola-Rodríguez, J.P.; et al. Quantitative and functional analysis of CD 69 + T regulatory lymphocytes in patients with periodontal disease. J. Oral Pathol. Med. 2017, 46, 549–557. https://doi.org/10.1111/jop.12514.
- 32.
Martín, P.; Gómez, M.; Lamana, A.; et al. The leukocyte activation antigen CD69 limits allergic asthma and skin contact hypersensitivity. J. Allergy Clin. Immunol. 2010, 126, 355–365.e3. https://doi.org/10.1016/j.jaci.2010.05.010.
- 33.
Wedi, B.; Wieczorek, D.; Stünkel, T.; et al. Staphylococcal exotoxins exert proinflammatory effects through inhibition of eosinophil apoptosis, increased surface antigen expression (CD11b, CD45, CD54, and CD69), and enhanced cytokine-activated oxidative burst, thereby triggering allergic inflammatory reactions. J. Allergy Clin. Immunol. 2002, 109, 477–484. https://doi.org/10.1067/mai.2002.121702.
- 34.
Smith, P.C.; Muñoz, V.C.; Collados, L.; et al. In situ detection of matrix metalloproteinase-9 (MMP-9) in gingival epithelium in human periodontal disease. J. Periodontal Res. 2004, 39, 87–92. https://doi.org/10.1111/j.1600-0765.2004.00705.x.
- 35.
Kumar, M.S.; Vamsi, G.; Sripriya, R.; et al. Expression of Matrix Metalloproteinases (MMP-8 and -9) in Chronic Periodontitis Patients With and Without Diabetes Mellitus. J. Periodontol. 2006, 77, 1803–1808. https://doi.org/10.1902/jop.2006.050293.
- 36.
Valenzuela, F.; Fernández, J.; Aroca, M.; et al. Gingival Crevicular Fluid Zinc- and Aspartyl-Binding Protease Profile of Individuals with Moderate/Severe Atopic Dermatitis. Biomolecules 2020, 10, 1600. https://doi.org/10.3390/biom10121600.
- 37.
Wang, L.; Li, X.-H.; Ning, W.-C. Evaluation of ICAM-1 and VCAM-1 Gene Polymorphisms in Patients with Periodontal Disease. Med. Sci. Monit. 2016, 22, 2386–2391. https://doi.org/10.12659/MSM.896979.
- 38.
Chen, L.; Lin, S.; Amin, S.; et al. VCAM-1 blockade delays disease onset, reduces disease severity and inflammatory cells in an atopic dermatitis model. Immunol. Cell Biol. 2010, 88, 334–342. https://doi.org/10.1038/icb.2009.107.
- 39.
Marinović Kulišić, S.; Takahashi, M.; Himelreich Perić, M.; et al. Immunohistochemical Analysis of Adhesion Molecules E-Selectin, Intercellular Adhesion Molecule-1, and Vascular Cell Adhesion Molecule-1 in Inflammatory Lesions of Atopic Dermatitis. Life 2023, 13, 933. https://doi.org/10.3390/life13040933.
- 40.
Liu, Y.; Wang, Z.; Jiang, W.; et al. Systemic Type 2 Inflammation-Associated Atopic Dermatitis Exacerbates Periodontitis. Int. Arch. Allergy Immunol. 2024, 185, 84–98. https://doi.org/10.1159/000533434.
- 41.
Jiménez, C.; Fernández, J.; Aroca, M.; et al. Association of Periodontitis and Atopic Dermatitis with the Levels of IL-13, IL-31, and TSLP in the Gingival Crevicular Fluid. Int. J. Mol. Sci. 2023, 24, 15592. https://doi.org/10.3390/ijms242115592.
- 42.
Gilmore, T.D. The Rel/NF-κB signal transduction pathway: Introduction. Oncogene 1999, 18, 6842–6844. https://doi.org/10.1038/sj.onc.1203237.
- 43.
Huber, M.A.; Denk, A.; Peter, R.U.; et al. The IKK-2/IκBα/NF-κB Pathway Plays a Key Role in the Regulation of CCR3 and eotaxin-1 in Fibroblasts. J. Biol. Chem. 2002, 277, 1268–1275. https://doi.org/10.1074/jbc.M109358200.
- 44.
Kumar, A.; Mahendra, J.; Mahendra, L.; et al. Synergistic Effect of Biphasic Calcium Phosphate and Platelet-Rich Fibrin Attenuate Markers for Inflammation and Osteoclast Differentiation by Suppressing NF-κB/MAPK Signaling Pathway in Chronic Periodontitis. Molecules 2021, 26, 6578. https://doi.org/10.3390/molecules26216578.
- 45.
Lawrence, T. The Nuclear Factor NF-B Pathway in Inflammation. Cold Spring Harb. Perspect. Biol. 2009, 1, a001651. https://doi.org/10.1101/cshperspect.a001651.
- 46.
Perkins, N.D. Integrating cell-signalling pathways with NF-κB and IKK function. Nat. Rev. Mol. Cell Biol. 2007, 8, 49–62. https://doi.org/10.1038/nrm2083.
- 47.
Mao, X.; Chen, M.; Wang, Y.; et al. MicroRNA-21 regulates the ERK/NF-κB signaling pathway to affect the proliferation, migration, and apoptosis of human melanoma A375 cells by targeting SPRY1, PDCD4, and PTEN. Mol. Carcinog. 2017, 56, 886–894. https://doi.org/10.1002/mc.22542.
- 48.
Wang, Y.; Li, H.; Shi, Y.; et al. miR-143-3p impacts on pulmonary inflammatory factors and cell apoptosis in mice with mycoplasmal pneumonia by regulating TLR4/MyD88/NF-κB pathway. Biosci. Rep. 2020, 40, BSR20193419. https://doi.org/10.1042/BSR20193419.
- 49.
Jablonska, E.; Gorniak, P.; Prusisz, W.; et al. MiR-155 Amplifies AKT and NFkB Signaling By Targeting Multiple Regulators of BCR Signal in DLBCL. Blood 2015, 126, 2455. https://doi.org/10.1182/blood.V126.23.2455.2455.