- 1.
Pohl, S.; Akamp, T.; Smeda, M.; et al. Understanding dental pulp inflammation: From signaling to structure. Front. Immunol. 2024, 15, 1474466. https://doi.org/10.3389/fimmu.2024.1474466.
- 2.
Hajishafiee, M.; Kapellas, K.; Listl, S.; et al. Effect of sugar-sweetened beverage taxation on sugars intake and dental caries: An umbrella review of a global perspective. BMC Public Health 2023, 23, 986. https://doi.org/10.1186/s12889-023-15884-5.
- 3.
Large, J.F.; Madigan, C.; Pradeilles, R.; et al. Impact of unhealthy food and beverage consumption on children’s risk of dental caries: A systematic review. Nutr. Rev. 2024, 82, 1539–1555. https://doi.org/10.1093/nutrit/nuad147.
- 4.
Li, Y.; Xiang, Y.; Ren, H.; et al. Association between periodontitis and dental caries: A systematic review and meta-analysis. Clin. Oral Investig. 2024, 28, 306. https://doi.org/10.1007/s00784-024-05687-2.
- 5.
Duncan, H.F.; Kirkevang, L.-L.; Peters, O.A.; et al. Treatment of pulpal and apical disease: The european society of endodontology (ESE) S3-level clinical practice guideline. Int. Endod. J. 2023, 56, 238–295. https://doi.org/10.1111/iej.13974.
- 6.
Kyaw, M.S.; Kamano, Y.; Yahata, Y.; et al. Endodontic regeneration therapy: Current strategies and tissue engineering solutions. Cells 2025, 14, 422. https://doi.org/10.3390/cells14060422.
- 7.
Gulabivala, K.; Ng, Y.L. Factors that affect the outcomes of root canal treatment and retreatment—A reframing of the principles. Int. Endod. J. 2023, 56, 82–115. https://doi.org/10.1111/iej.13897.
- 8.
Kahler, B.; Taha, N.A.; Lu, J.; et al. Vital pulp therapy for permanent teeth with diagnosis of irreversible pulpitis: Biological basis and outcome. Aust. Dent. J. 2023, 68, S110–S122. https://doi.org/10.1111/adj.12997.
- 9.
Asgary, S.; Nosrat, A. Vital pulp therapy: Evidence-based techniques and outcomes. Iran. Endod. J. 2025, 20, e2. https://doi.org/10.22037/iej.v20i1.47141.
- 10.
Gronthos, S.; Mankani, M.; Brahim, J.; et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci. USA 2000, 97, 13625–13630. https://doi.org/10.1073/pnas.240309797.
- 11.
Li, P.; Ou, Q.; Shi, S.; et al. Immunomodulatory properties of mesenchymal stem cells/dental stem cells and their therapeutic applications. Cell Mol. Immunol. 2023, 20, 558–569. https://doi.org/10.1038/s41423-023-00998-y.
- 12.
Farjaminejad, R.; Farjaminejad, S.; Garcia-Godoy, F. Regenerative endodontic therapies: Harnessing stem cells, scaffolds, and growth factors. Polymers 2025, 17, 1475. https://doi.org/10.3390/polym17111475.
- 13.
Han, F.; Liu, Z.; Wei, Q.; et al. Minimally invasive implantable biomaterials for bone reconstruction. Engineering 2025, 46, 23–46. https://doi.org/10.1016/j.eng.2024.01.031.
- 14.
Luo, B.; Wang, S.; Song, X.; et al. An encapsulation-free and hierarchical porous triboelectric scaffold with dynamic hydrophilicity for efficient cartilage regeneration. Adv. Mater. 2024, 36, e2401009. https://doi.org/10.1002/adma.202401009.
- 15.
Li, X.-L.; Fan, W.; Fan, B. Dental pulp regeneration strategies: A review of status quo and recent advances. Bioact. Mater. 2024, 38, 258–275. https://doi.org/10.1016/j.bioactmat.2024.04.031.
- 16.
Su, W.; Liao, C.; Liu, X. Angiogenic and neurogenic potential of dental-derived stem cells for functional pulp regeneration: A narrative review. Int. Endod. J. 2025, 58, 391–410. https://doi.org/10.1111/iej.14180.
- 17.
Gao, J.; Wang, Y.; Zhang, T.; et al. Dental pulp stem cells conditioned medium-functionalized microspheres for endodontic regeneration. Front. Cell Dev. Biol. 2025, 13, 1627220. https://doi.org/10.3389/fcell.2025.1627220.
- 18.
Li, X.; Xia, Y.; Wang, Z.; et al. Three-dimensional matrix stiffness-based stem cell soil: Tri-phase biomechanical structure promoted human dental pulp stem cells to achieve pulpodentin regeneration. Mater. Today Bio 2025, 31, 101591. https://doi.org/10.1016/j.mtbio.2025.101591.
- 19.
Mohd Nor, N.H.; Mansor, N.I.; Mohd Kashim, M.I.A.; et al. From teeth to therapy: A review of therapeutic potential within the secretome of stem cells from human exfoliated deciduous teeth. Int. J. Mol. Sci. 2023, 24, 11763. https://doi.org/10.3390/ijms241411763.
- 20.
Yang, N.; Shen, R.; Yang, W.; et al. Biomimetic pulp scaffolds prepared from extracellular matrix derived from stem cells from human exfoliated deciduous teeth promote pulp-dentine complex regeneration. Int. Endod. J. 2024, 57, 1279–1292. https://doi.org/10.1111/iej.14099.
- 21.
Ding, J.; Sun, Z.; Ma, L.; et al. Microspheres of stem cells from human exfoliated deciduous teeth exhibit superior pulp regeneration capacity. Dent. Mater. 2025, 41, 70–80. https://doi.org/10.1016/j.dental.2024.10.015.
- 22.
Kim, D.; Kim, S.G. Cell homing strategies in regenerative endodontic therapy. Cells 2025, 14, 201. https://doi.org/10.3390/cells14030201.
- 23.
Gomez-Sosa, J.F.; Cardier, J.E.; Wittig, O.; et al. Allogeneic bone marrow mesenchymal stromal cell transplantation induces dentin pulp complex-like formation in immature teeth with pulp necrosis and apical periodontitis. J. Endod. 2024, 50, 483–492. https://doi.org/10.1016/j.joen.2024.01.002.
- 24.
Kim, E.J.; Kim, K.H.; Kim, H.Y.; et al. Harnessing the dental cells derived from human induced pluripotent stem cells for hard tissue engineering. J. Adv. Res. 2024, 61, 119–131. https://doi.org/10.1016/j.jare.2023.08.012.
- 25.
Jochums, A.; Volk, J.; Perduns, R.; et al. Influence of 2-hydroxyethyl methacrylate (HEMA) exposure on angiogenic differentiation of dental pulp stem cells (DPSCs). Dent. Mater. 2021, 37, 534–546. https://doi.org/10.1016/j.dental.2020.12.008.
- 26.
Yuan, X.; Yuan, Z.; Wang, Y.; et al. Vascularized pulp regeneration via injecting simvastatin functionalized GelMA cryogel microspheres loaded with stem cells from human exfoliated deciduous teeth. Mater. Today Bio 2022, 13, 100209. https://doi.org/10.1016/j.mtbio.2022.100209.
- 27.
Gu, T.; Guo, R.; Fang, Y.; et al. METTL3-mediated pre-miR-665/DLX3 m6A methylation facilitates the committed differentiation of stem cells from apical papilla. Exp. Mol. Med. 2024, 56, 1426–1438. https://doi.org/10.1038/s12276-024-01245-8.
- 28.
Smeda, M.; Galler, K.M.; Woelflick, M.; et al. Molecular biological comparison of dental pulp- and apical papilla-derived stem cells. Int. J. Mol. Sci. 2022, 23, 2615. https://doi.org/10.3390/ijms23052615.
- 29.
Xiao, Y.; Chen, L.; Xu, Y.; et al. Circ-ZNF236 mediates stem cells from apical papilla differentiation by regulating LGR4-induced autophagy. Int. Endod. J. 2024, 57, 431–450. https://doi.org/10.1111/iej.14021.
- 30.
Kadkhoda, Z.; Motie, P.; Rad, M.R.; et al. Comparison of periodontal ligament stem cells with mesenchymal stem cells from other sources: A scoping systematic review of in vitro and In vivo studies. Curr. Stem Cell Res. Ther. 2024, 19, 497–522. https://doi.org/10.2174/1574888x17666220429123319.
- 31.
Ju, Y.; Hu, Y.; Yang, P.; et al. Extracellular vesicle-loaded hydrogels for tissue repair and regeneration. Mater. Today Bio 2023, 18, 100522. https://doi.org/10.1016/j.mtbio.2022.100522.
- 32.
Cerneckis, J.; Cai, H.; Shi, Y. Induced pluripotent stem cells (iPSCs): Molecular mechanisms of induction and applications. Signal Transduct. Target. Ther. 2024, 9, 112. https://doi.org/10.1038/s41392-024-01809-0.
- 33.
Kim, E.J.; Mai, H.N.; Lee, D.J.; et al. Strategies for differentiation of hiPSCs into dental epithelial cell lineage. Cell Tissue Res. 2021, 386, 415–421. https://doi.org/10.1007/s00441-021-03512-w.
- 34.
Wang, S.; Niu, Y.; Jia, P.; et al. Alkaline activation of endogenous latent TGFβ1 by an injectable hydrogel directs cell homing for in situ complex tissue regeneration. Bioact. Mater. 2022, 15, 316–329. https://doi.org/10.1016/j.bioactmat.2021.12.015.
- 35.
Chang, M.C.; Chen, N.Y.; Chen, J.H.; et al. bFGF stimulated plasminogen activation factors, but inhibited alkaline phosphatase and SPARC in stem cells from apical papilla: Involvement of MEK/ERK, TAK1 and p38 signaling. J. Adv. Res. 2022, 40, 95–107. https://doi.org/10.1016/j.jare.2021.12.006.
- 36.
Wu, P.-H.; Wang, Y.-H.; Lin, Y.-C.; et al. Roles of basic fibroblast growth factor, stem cells from dental pulp and apical papilla in the repair and regeneration of dental pulp and other tissues/organs. J. Dent. Sci. 2025, 20, 2066–2075. https://doi.org/10.1016/j.jds.2025.05.014.
- 37.
Usta, S.N.; Avcı, E.; Oktay, A.N.; et al. Combination of chitosan nanoparticles, EDTA, and irrigation activation enhances TGF-β1 release from dentin: A laboratory study. J. Endod. 2025, 51, 1081–1087. https://doi.org/10.1016/j.joen.2025.04.011.
- 38.
Lott, K.; Collier, P.; Ringor, M.; et al. Administration of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) to induce neural differentiation of dental pulp stem cells (DPSC) isolates. Biomedicines 2023, 11, 255. https://doi.org/10.3390/biomedicines11020255.
- 39.
Rosa, V.; Cavalcanti, B.N.; Nör, J.E.; et al. Guidance for evaluating biomaterials’ properties and biological potential for dental pulp tissue engineering and regeneration research. Dent. Mater. 2025, 41, 248–264. https://doi.org/10.1016/j.dental.2024.12.003.
- 40.
Zhang, Z.; Warner, K.A.; Mantesso, A.; et al. PDGF-BB signaling via PDGFR-β regulates the maturation of blood vessels generated upon vasculogenic differentiation of dental pulp stem cells. Front. Cell Dev. Biol. 2022, 10, 977725. https://doi.org/10.3389/fcell.2022.977725.
- 41.
Divband, B.; Pouya, B.; Hassanpour, M.; et al. Towards induction of angiogenesis in dental pulp stem cells using chitosan-based hydrogels releasing basic fibroblast growth factor. Biomed. Res. 2022, 2022, 5401461. https://doi.org/10.1155/2022/5401461.
- 42.
Wang, C.; Liu, X.; Zhou, J.; et al. Sensory nerves drive migration of dental pulp stem cells via the CGRP-Ramp1 axis in pulp repair. Cell. Mol. Life Sci. 2024, 81, 373. https://doi.org/10.1007/s00018-024-05400-2.
- 43.
Chmilewsky, F.; Ayaz, W.; Appiah, J.; et al. Nerve growth factor secretion from pulp fibroblasts is modulated by complement C5a receptor and implied in neurite outgrowth. Sci. Rep. 2016, 6, 31799. https://doi.org/10.1038/srep31799.
- 44.
Ahmed, M.N.; Shi, D.; Dailey, M.T.; et al. Dental pulp cell sheets enhance facial nerve regeneration via local neurotrophic factor delivery. Tissue Eng. Part A 2021, 27, 1128–1139. https://doi.org/10.1089/ten.TEA.2020.0265.
- 45.
Rajasekar, V.; Abdalla, M.M.; Neelakantan, P.; et al. Cellular dynamics and signalling mechanisms in dentine repair: A narrative review. Int. Endod. J. 2025, 58, 1354–1383. https://doi.org/10.1111/iej.14261.
- 46.
Liang, C.; Liang, Q.; Xu, X.; et al. Bone morphogenetic protein 7 mediates stem cells migration and angiogenesis: Therapeutic potential for endogenous pulp regeneration. Int. J. Oral Sci. 2022, 14, 38. https://doi.org/10.1038/s41368-022-00188-y.
- 47.
Lee, S.S.; Santschi, M.; Ferguson, S.J. A biomimetic macroporous hybrid scaffold with sustained drug delivery for enhanced bone regeneration. Biomacromolecules 2021, 22, 2460–2471. https://doi.org/10.1021/acs.biomac.1c00241.
- 48.
Wang, D.; Lyu, Y.; Yang, Y.; et al. Schwann cell-derived EVs facilitate dental pulp regeneration through endogenous stem cell recruitment via SDF-1/CXCR4 axis. Acta Biomater. 2022, 140, 610–624. https://doi.org/10.1016/j.actbio.2021.11.039.
- 49.
Mosaddad, S.A.; Rasoolzade, B.; Namanloo, R.A.; et al. Stem cells and common biomaterials in dentistry: A review study. J. Mater. Sci. Mater. Med. 2022, 33, 55. https://doi.org/10.1007/s10856-022-06676-1.
- 50.
Liu, S.; Sun, J.; Yuan, S.; et al. Treated dentin matrix induces odontogenic differentiation of dental pulp stem cells via regulation of Wnt/β-catenin signaling. Bioact. Mater. 2022, 7, 85–97. https://doi.org/10.1016/j.bioactmat.2021.05.026.
- 51.
Kornsuthisopon, C.; Chansaenroj, A.; Manokawinchoke, J.; et al. Non-canonical Wnt signaling participates in Jagged1-induced osteo/odontogenic differentiation in human dental pulp stem cells. Sci. Rep. 2022, 12, 7583. https://doi.org/10.1038/s41598-022-11596-9.
- 52.
He, F.; Yang, Z.; Tan, Y.; et al. Effects of notch ligand delta1 on the proliferation and differentiation of human dental pulp stem cells in vitro. Arch. Oral Biol. 2009, 54, 216–222. https://doi.org/10.1016/j.archoralbio.2008.10.003.
- 53.
Zhang, S.; Yu, M.; Li, M.; et al. Notch signaling hydrogels enable rapid vascularization and promote dental pulp tissue regeneration. Adv. Sci. 2024, 11, e2310285. https://doi.org/10.1002/advs.202310285.
- 54.
Xie, Z.; Zhan, P.; Zhang, X.; et al. Providing biomimetic microenvironment for pulp regeneration via hydrogel-mediated sustained delivery of tissue-specific developmental signals. Mater. Today Bio 2024, 26, 101102. https://doi.org/10.1016/j.mtbio.2024.101102.
- 55.
Lu, X.; Liu, Y.; Dai, L.; et al. EGFL6 promotes angiogenesis and odontogenesis in pulp regeneration via MAPK signaling pathways. Curr. Stem Cell Res. Ther. 2025. https://doi.org/10.2174/011574888x362657250528171158.
- 56.
Yu, Q.; Hua, R.; Zhao, B.; et al. Melatonin protects TEGDMA-induced preodontoblast mitochondrial apoptosis via the JNK/MAPK signaling pathway. Acta Biochim. Biophys. Sin. 2024, 56, 393–404. https://doi.org/10.3724/abbs.2023263.
- 57.
Wu, Y.; He, M.; Li, C.; et al. Zirconia/dental pulp stem cell composite scaffolds repair osteogenic defect via regulating macrophages. Front. Bioeng. Biotechnol. 2025, 13, 1632000. https://doi.org/10.3389/fbioe.2025.1632000.
- 58.
Yang, J.; Shuai, J.; Siow, L.; et al. MicroRNA-146a-loaded magnesium silicate nanospheres promote bone regeneration in an inflammatory microenvironment. Bone Res. 2024, 12, 2. https://doi.org/10.1038/s41413-023-00299-0.
- 59.
Zhang, X.; Zhang, L.; Zhou, L.; et al. BRCC3 aggravates pulpitis by activating the NF-κB signaling pathway in dental pulp cells. Biochim. Biophys. Acta. Mol. Basis. Dis. 2025, 1871, 167698. https://doi.org/10.1016/j.bbadis.2025.167698.
- 60.
Ni, C.; Wu, G.; Miao, T.; et al. Wnt4 prevents apoptosis and inflammation of dental pulp cells induced by LPS by inhibiting the IKK/NF-κB pathway. Exp. Ther. Med. 2023, 25, 75. https://doi.org/10.3892/etm.2022.11774.
- 61.
Zhang, Q.; Cao, S.; Zhang, M.; et al. Biodentine counteracts the aging process of human dental pulp stem cells through Wnt/β-catenin pathway. Int. Dent. J. 2025, 75, 100819. https://doi.org/10.1016/j.identj.2025.03.028.
- 62.
Zheng, X.; Wang, J.; Zhou, H.; et al. Dental pulp stem cells alleviate Schwann cell pyroptosis via mitochondrial transfer to enhance facial nerve regeneration. Bioact. Mater. 2025, 47, 313–326. https://doi.org/10.1016/j.bioactmat.2025.01.031.
- 63.
Prasad Kumara, P.A.; Cooper, P.R.; Cathro, P.; et al. Bioceramics in endodontics: Limitations and future innovations—A Review. Dent. J. 2025, 13, 157. https://doi.org/10.3390/dj13040157.
- 64.
Dong, X.; Xu, X. Bioceramics in endodontics: Updates and future perspectives. Bioengineering 2023, 10, 354. https://doi.org/10.3390/bioengineering10030354.
- 65.
Dawood, A.E.; Parashos, P.; Wong, R.H.K.; et al. Calcium silicate-based cements: Composition, properties, and clinical applications. J. Investig. Clin. Dent. 2017, 8, e12195. https://doi.org/10.1111/jicd.12195.
- 66.
Wang, X.; Xiao, Y.; Song, W.; et al. Clinical application of calcium silicate-based bioceramics in endodontics. J. Transl. Med. 2023, 21, 853. https://doi.org/10.1186/s12967-023-04550-4.
- 67.
Karunakaran, S.; Praveen, N.; Selvandran, K.E.; et al. Effectiveness of mineral trioxide aggregate and its modifications in inducing dentin bridge formation during pulp capping: A systematic review. J. Conserv. Dent. Endod. 2025, 28, 222–230. https://doi.org/10.4103/jcde.Jcde_848_24.
- 68.
Kim, H.-G.; Lee, B.-N.; Jeong, H.-J.; et al. Effect of bioactive glass into mineral trioxide aggregate on the biocompatibility and mineralization potential of dental pulp stem cells. Biomater. Res. 2025, 29, 0142. https://doi.org/10.34133/bmr.0142.
- 69.
Qiao, L.; Zheng, X.; Xie, C.; et al. Bioactive materials in vital pulp therapy: Promoting dental pulp repair through inflammation modulation. Biomolecules 2025, 15, 258. https://doi.org/10.3390/biom15020258.
- 70.
Abuarqoub, D.; Aslam, N.; Zaza, R.; et al. The immunomodulatory and regenerative effect of biodentine™ on human THP-1 cells and dental pulp stem cells: In vitro study. BioMed Res. Int. 2022, 2022, 2656784. https://doi.org/10.1155/2022/2656784.
- 71.
Yang, N.; Yang, W.; Shen, R.; et al. In vitro and in vivo evaluation of iRoot BP Plus as a coronal sealing material for regenerative endodontic procedures. Clin. Oral Investig. 2024, 28, 70. https://doi.org/10.1007/s00784-023-05468-3.
- 72.
Zeng, Q.; Zhou, C.; Li, M.; et al. Concentrated growth factor combined with iRoot BP Plus promotes inflamed pulp repair: An in vitro and in vivo study. BMC Oral Health. 2023, 23, 225. https://doi.org/10.1186/s12903-023-02903-5.
- 73.
Christie, B.; Musri, N.; Djustiana, N.; et al. Advances and challenges in regenerative dentistry: A systematic review of calcium phosphate and silicate-based materials on human dental pulp stem cells. Mater. Today Bio 2023, 23, 100815. https://doi.org/10.1016/j.mtbio.2023.100815.
- 74.
Sequeira, D.B.; Diogo, P.; Gomes, B.P.F.A.; et al. Scaffolds for dentin–pulp complex regeneration. Medicina 2024, 60, 7. https://doi.org/10.3390/medicina60010007.
- 75.
Radulescu, D.-E.; Vasile, O.R.; Andronescu, E.; et al. Latest research of doped hydroxyapatite for bone tissue engineering. Int. J. Mol. Sci. 2023, 24, 13157. https://doi.org/10.3390/ijms241713157.
- 76.
Zhou, X.; Xue, J.; Zhang, Y.; et al. Evolution of biological hydroxyapatite modification strategy: Anti-inflammation approach rescues the calcium–NOD-like receptor–inflammation axis-mediated periodontal redevelopment failure. Biomater. Res. 2025, 29, 0131. https://doi.org/10.34133/bmr.0131.
- 77.
Chi, C.W.; Lohanathan, B.P.; Wong, C.C.; et al. Multiple growth factors accommodated degradable submicron calcium sulfate hemihydrate/porous hydroxyapatite for dentin-pulp regeneration. Biomater. Adv. 2022, 140, 213045. https://doi.org/10.1016/j.bioadv.2022.213045.
- 78.
Liu, Y.; Zhao, Q.; Chen, C.; et al. β-tricalcium phosphate/gelatin composite scaffolds incorporated with gentamycin-loaded chitosan microspheres for infected bone defect treatment. PLoS ONE. 2022, 17, e0277522. https://doi.org/10.1371/journal.pone.0277522.
- 79.
Wu, H.; Wei, X.; Liu, Y.; et al. Dynamic degradation patterns of porous polycaprolactone/β-tricalcium phosphate composites orchestrate macrophage responses and immunoregulatory bone regeneration. Bioact. Mater. 2023, 21, 595–611. https://doi.org/10.1016/j.bioactmat.2022.07.032.
- 80.
Gu, Y.; Xie, X.; Zhuang, R.; et al. A biphasic calcium phosphate cement enhances dentin regeneration by dental pulp stem cells and promotes macrophages M2 phenotype in vitro. Tissue Eng. Part A 2021, 27, 1113–1127. https://doi.org/10.1089/ten.TEA.2020.0257.
- 81.
Duan, Y.; Zheng, K.; Hu, W.; et al. Anti-inflammatory cerium-containing nano-scaled mesoporous bioactive glass for promoting regenerative capability of dental pulp cells. Int. Endod. J. 2024, 57, 727–744. https://doi.org/10.1111/iej.14055.
- 82.
Washio, A.; Morotomi, T.; Yoshii, S.; et al. Bioactive glass-based endodontic sealer as a promising root canal filling material without semisolid core materials. Materials 2019, 12, 3967. https://doi.org/10.3390/ma12233967.
- 83.
Zhu, N.; Chatzistavrou, X.; Papagerakis, P.; et al. Silver-doped bioactive glass/chitosan hydrogel with potential application in dental pulp repair. ACS Biomater. Sci. Eng. 2019, 5, 4624–4633. https://doi.org/10.1021/acsbiomaterials.9b00811.
- 84.
Li, Z.; Xie, K.; Yang, S.; et al. Multifunctional Ca-Zn-Si-based micro-nano spheres with anti-infective, anti-inflammatory, and dentin regenerative properties for pulp capping application. J. Mater. Chem. B 2021, 9, 8289–8299. https://doi.org/10.1039/d1tb01517f.
- 85.
Sun, W.; Wu, W.; Dong, X.; et al. Frontier and hot topics in the application of hydrogel in the biomedical field: A bibliometric analysis based on CiteSpace. J. Biol. Eng. 2024, 18, 40. https://doi.org/10.1186/s13036-024-00435-2.
- 86.
Umapathy, V.R.; Natarajan, P.M.; Swamikannu, B. Regenerative strategies in dentistry: Harnessing stem cells, biomaterials and bioactive materials for tissue repair. Biomolecules 2025, 15, 546. https://doi.org/10.3390/biom15040546.
- 87.
Wang, X.; Zheng, Z.; Zhang, Y.; et al. Application of hydrogel-loaded dental stem cells in the field of tissue regeneration. Human Cell 2024, 38, 2. https://doi.org/10.1007/s13577-024-01134-2.
- 88.
Zhou, L.; Shi, W.; Zhang, X.; et al. Injectable tannin-containing hydroxypropyl chitin hydrogel as novel bioactive pulp capping material accelerates repair of inflamed dental pulp. Biomolecules 2024, 14, 1129. https://doi.org/10.3390/biom14091129.
- 89.
Zhang, Y.; Huang, X.; Luo, Y.; et al. A carbon dot nanozyme hydrogel enhances pulp regeneration activity by regulating oxidative stress in dental pulpitis. J. Nanobiotechnol. 2024, 22, 537. https://doi.org/10.1186/s12951-024-02810-z.
- 90.
Yin, J.; Lei, Q.; Luo, X.; et al. Degradable hydrogel fibers encapsulate and deliver metformin and periodontal ligament stem cells for dental and periodontal regeneration. J. Appl. Oral Sci. 2023, 31, e20220447. https://doi.org/10.1590/1678-7757-2022-0447.
- 91.
Wen, B.; Dai, Y.; Han, X.; et al. Biomineralization-inspired mineralized hydrogel promotes the repair and regeneration of dentin/bone hard tissue. NPJ Regen. Med. 2023, 8, 11. https://doi.org/10.1038/s41536-023-00286-3.
- 92.
Noohi, P.; Abdekhodaie, M.J.; Saadatmand, M.; et al. The development of a dental light curable PRFe-loaded hydrogel as a potential scaffold for pulp-dentine complex regeneration: An in vitro study. Int. Endod. J. 2023, 56, 447–464. https://doi.org/10.1111/iej.13882.
- 93.
Fei, Y.; Wang, X.; Ling, Z.; et al. Angiogenic apoptotic vesicle-laden silk fibroin/sodium alginate hydrogel for pulp regeneration. Mater. Today Bio 2025, 33, 102060. https://doi.org/10.1016/j.mtbio.2025.102060.
- 94.
dos Reis-Prado, A.H.; Rahimnejad, M.; Dal-Fabbro, R.; et al. Injectable thermosensitive antibiotic-laden chitosan hydrogel for regenerative endodontics. Bioact. Mater. 2025, 46, 406–422. https://doi.org/10.1016/j.bioactmat.2024.12.026.
- 95.
Qiu, Y.; Tian, J.; Kong, S.; et al. SrCuSi4O10/gelMA composite hydrogel-mediated vital pulp therapy: Integrating antibacterial property and enhanced pulp regeneration activity. Adv. Healthc. Mater. 2023, 12, 2300546. https://doi.org/10.1002/adhm.202300546.
- 96.
Soe, Z.C.; Nan, D.N.; Wahyudi, R.; et al. Asiaticoside-loaded nanosponges hydrogel has an anti-inflammatory effect and promotes human dental pulp regeneration. J. Endod. 2025, 51, 931–938. https://doi.org/10.1016/j.joen.2025.04.004.
- 97.
Wang, W.; Wang, A.; Hu, G.; et al. Potential of an aligned porous hydrogel scaffold combined with periodontal ligament stem cells or gingival mesenchymal stem cells to promote tissue regeneration in rat periodontal defects. ACS Biomater. Sci. Eng. 2023, 9, 1961–1975. https://doi.org/10.1021/acsbiomaterials.2c01440.
- 98.
Zhang, X.; Zhou, X.; Zhai, W.; et al. Novel L-(CaP-ZnP)/SA nanocomposite hydrogel with dual anti-inflammatory and mineralization effects for efficient vital pulp therapy. Int. J. Nanomed. 2024, 19, 6659–6676. https://doi.org/10.2147/ijn.S464871.
- 99.
Xie, Z.; Jiang, W.; Liu, H.; et al. Antimicrobial peptide- and dentin matrix-functionalized hydrogel for vital pulp therapy via synergistic bacteriostasis, immunomodulation, and dentinogenesis. Adv. Healthc. Mater. 2024, 13, 2303709. https://doi.org/10.1002/adhm.202303709.
- 100.
Nguyen, N.T.; Luu, C.H.; Nguyen, N.H.; et al. Dual-functional injectable hydrogels as antimicrobial and angiogenic therapeutics for dental pulp regeneration. J. Mater. Chem. B 2025, 13, 6765–6783. https://doi.org/10.1039/d5tb00559k.
- 101.
Osman, M.; Sharmin, Z.; Suchy, S.; et al. Bioinspired smart dentin ECM-chitosan hydrogels for dentin-pulp complex regeneration. J. Dent. 2025, 159, 105811. https://doi.org/10.1016/j.jdent.2025.105811.
- 102.
Pascale, C.; Geaman, J.; Mendoza, C.; et al. In vitro assessment of antimicrobial potential of low molecular weight chitosan and its ability to mechanically reinforce and control endogenous proteolytic activity of dentine. Int. Endod. J. 2023, 56, 1337–1349. https://doi.org/10.1111/iej.13962.
- 103.
Ribeiro, J.S.; Sanz, C.K.; Münchow, E.A.; et al. Photocrosslinkable methacrylated gelatin hydrogel as a cell-friendly injectable delivery system for chlorhexidine in regenerative endodontics. Dent. Mater. 2022, 38, 1507–1517. https://doi.org/10.1016/j.dental.2022.07.002.
- 104.
Khayat, A.; Monteiro, N.; Smith, E.E.; et al. GelMA-encapsulated hDPSCs and HUVECs for dental pulp regeneration. J. Dent. Res. 2017, 96, 192–199. https://doi.org/10.1177/0022034516682005.
- 105.
Li, B.; Li, H.; Yang, H.; et al. Preparation and antibacterial properties of an AgBr@SiO2/GelMA composite hydrogel. Biomed. Mater. 2022, 17, 025005. https://doi.org/10.1088/1748-605X/ac49f7.
- 106.
Li, R.; Xu, S.; Guo, Y.; et al. Application of collagen in bone regeneration. J. Orthop. Transl. 2025, 50, 129–143. https://doi.org/10.1016/j.jot.2024.10.002.
- 107.
Dal-Fabbro, R.; Daghrery, A.; Anselmi, C.; et al. Recent advances in injectable hydrogel biotherapeutics for regenerative dental medicine. Macromol. Biosci. 2025, e00096. https://doi.org/10.1002/mabi.202500096.
- 108.
Lee, K.Y.; Mooney, D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012, 37, 106–126. https://doi.org/10.1016/j.progpolymsci.2011.06.003.
- 109.
Du, W.; Gong, J.-S.; Chen, X.; et al. Ångstrom-scale silver particle-infused hydrogels eliminate orthopedic implant infections and support fracture healing. Biomater. Transl. 2025, 6, 85–102. https://doi.org/10.12336/biomatertransl.2025.01.007.
- 110.
Wu, D.T.; Munguia-Lopez, J.G.; Cho, Y.W.; et al. Polymeric Scaffolds for Dental, Oral, and Craniofacial Regenerative Medicine. Molecules 2021, 26, 7043. https://doi.org/10.3390/molecules26227043.
- 111.
Jajoo, S.S.; Chaudhary, S.M.; Patil, K.; et al. A systematic review on polyester scaffolds in dental three-dimensional cell printing: Transferring art from the laboratories to the clinics. Int. J. Clin. Pediatr. Dent. 2023, 16, 494–498. https://doi.org/10.5005/jp-journals-10005-2609.
- 112.
Dawood, R.M.; Mahdee, A.F. Fabrication and characterization of 3D-printed polymeric-based scaffold coated with bioceramic and naringin for a potential use in dental pulp regeneration (in vitro study). Int. Endod. J. 2025, 58, 627–642. https://doi.org/10.1111/iej.14194.
- 113.
Chen, G.; Chen, J.; Yang, B.; et al. Combination of aligned PLGA/Gelatin electrospun sheets, native dental pulp extracellular matrix and treated dentin matrix as substrates for tooth root regeneration. Biomaterials 2015, 52, 56–70. https://doi.org/10.1016/j.biomaterials.2015.02.011.
- 114.
Han, S.; Yang, H.; Ni, X.; et al. Programmed release of vascular endothelial growth factor and exosome from injectable chitosan nanofibrous microsphere-based PLGA-PEG-PLGA hydrogel for enhanced bone regeneration. Int. J. Biol. Macromol. 2023, 253, 126721. https://doi.org/10.1016/j.ijbiomac.2023.126721.
- 115.
Anselmi, C.; Mendes Soares, I.P.; Chang, S.; et al. Quercetin-calcium hydroxide scaffolds modulate dental pulp stem cell response in vitro under a simulated inflammatory environment. Int. Endod. J. 2025, 58, 1073–1090. https://doi.org/10.1111/iej.14243.
- 116.
Zakrzewski, W.; Dobrzyński, M.; Zawadzka-Knefel, A.; et al. Nanomaterials application in endodontics. Materials 2021, 14, 5296. https://doi.org/10.3390/ma14185296.
- 117.
Wang, K.-N.; Li, Z.-Z.; Zhou, K.; et al. Cell membrane-coated nanoparticles for dental, oral, and craniofacial diseases. Research 2024, 7, 0478. https://doi.org/10.34133/research.0478.
- 118.
Ban, G.; Hou, Y.; Shen, Z.; et al. Potential biomedical limitations of graphene nanomaterials. Int. J. Nanomed. 2023, 18, 1695–1708. https://doi.org/10.2147/ijn.S402954.
- 119.
Chen, X.; Zou, M.; Liu, S.; et al. Applications of graphene family nanomaterials in regenerative medicine: Recent advances, challenges, and future perspectives. Int. J. Nanomed. 2024, 19, 5459–5478. https://doi.org/10.2147/ijn.S464025.
- 120.
Rosa, V.; Xie, H.; Dubey, N.; et al. Graphene oxide-based substrate: Physical and surface characterization, cytocompatibility and differentiation potential of dental pulp stem cells. Dent. Mater. 2016, 32, 1019–1025. https://doi.org/10.1016/j.dental.2016.05.008.
- 121.
Balhuc, S.; Campian, R.; Labunet, A.; et al. Dental applications of systems based on hydroxyapatite nanoparticles—An evidence-based update. Crystals 2021, 11, 674. https://doi.org/10.3390/cryst11060674.
- 122.
Dawood, R.M.; Mahdee, A.F. Inducing osteogenesis in human pulp stem cells cultured on nano-hydroxyapatite and naringin-coated 3D-printed poly lactic acid scaffolds. Polymers 2025, 17, 596. https://doi.org/10.3390/polym17050596.
- 123.
Ghosh, S.; Liang, C.; Lee, S.J.; et al. Engineering next-generation smart delivery materials for dentistry. Adv. Colloid Interface Sci. 2025, 344, 103607. https://doi.org/10.1016/j.cis.2025.103607.
- 124.
Gai, Y.; Zhou, H.; Yang, Y.; et al. Injectable body temperature responsive hydrogel for encephalitis treatment via sustained release of nano-anti-inflammatory agents. Biomater. Transl. 2024, 5, 300–313. https://doi.org/10.12336/biomatertransl.2024.03.006.
- 125.
Bai, Y.; Zhu, S.; Liang, J.; et al. 4D printing of magnetically responsive materials and their applications. Research 2025, 8, 0847. https://doi.org/10.34133/research.0847.
- 126.
Yu, H.; Gao, R.; Liu, Y.; et al. Stimulus-responsive hydrogels as drug delivery systems for inflammation targeted therapy. Adv. Sci. 2024, 11, 2306152. https://doi.org/10.1002/advs.202306152.
- 127.
Liao, Z.; Zhang, L.; Li, J.; et al. Near-infrared smart responsive orthopedic implants with synergistic antimicrobial and bone integration-promoting properties. J. Orthop. Transl. 2025, 52, 55–69. https://doi.org/10.1016/j.jot.2025.03.015.
- 128.
Chen, Y.; Kong, M.; Zhang, T.; et al. Advancing bioprinting technology utilizing portable bioprinters: From various fevice designs to dental applications. Ann. Biomed. Eng. 2025, 53, 2408–2425. https://doi.org/10.1007/s10439-025-03789-w.
- 129.
Dolui, S.; Sahu, B.; Banerjee, S. Stimuli-responsive functional polymeric materials: Recent advances and future perspectives. Macromol. Chem. Phys. 2025, 226, 2400472. https://doi.org/10.1002/macp.202400472.
- 130.
Wang, L.; Ou, Y.; Wang, J.; et al. Two-stepped pH-responsive peptide microsphere/carboxymethyl chitosan complex: Enhanced protection of an inflamed dentin-pulp complex. J. Mater. Chem. B 2025, 13, 4879–4892. https://doi.org/10.1039/d4tb02826k.
- 131.
Mizoguchi, T.; Verkade, H.; Heath, J.K.; et al. Sdf1/Cxcr4 signaling controls the dorsal migration of endodermal cells during zebrafish gastrulation. Development 2008, 135, 2521–2529. https://doi.org/10.1242/dev.020107.
- 132.
Mendt, M.; Cardier, J.E. Role of SDF-1 (CXCL12) in regulating hematopoietic stem and progenitor cells traffic into the liver during extramedullary hematopoiesis induced by G-CSF, AMD3100 and PHZ. Cytokine 2015, 76, 214–221. https://doi.org/10.1016/j.cyto.2015.05.004.
- 133.
Iohara, K.; Zheng, L.; Wake, H.; et al. A novel stem cell source for vasculogenesis in ischemia: Subfraction of side population cells from dental pulp. Stem Cells 2008, 26, 2408–2418. https://doi.org/10.1634/stemcells.2008-0393.
- 134.
Iohara, K.; Zheng, L.; Ito, M.; et al. Regeneration of dental pulp after pulpotomy by transplantation of CD31(-)/CD146(-) side population cells from a canine tooth. Regen. Med. 2009, 4, 377–385. https://doi.org/10.2217/rme.09.5.
- 135.
Sarsenova, M.; Kim, Y.; Raziyeva, K.; et al. Recent advances to enhance the immunomodulatory potential of mesenchymal stem cells. Front. Immunol. 2022, 13, 1010399. https://doi.org/10.3389/fimmu.2022.1010399.
- 136.
Yang, M.; Zhang, C.; Lu, B.Y.; et al. Injectable composite microspheres/hydrogel membranes for Achilles tendon regeneration. Mater. Today Bio 2025, 34, 102129. https://doi.org/10.1016/j.mtbio.2025.102129.
- 137.
Zhong, T.; Gao, N.; Niu, H.; et al. Targeted delivery of engineered extracellular vesicles to simultaneously promote vascularization and muscle regeneration in ischemic limbs. J. Control. Release 2025, 384, 113938. https://doi.org/10.1016/j.jconrel.2025.113938.
- 138.
Suzuki, T.; Lee, C.H.; Chen, M.; et al. Induced migration of dental pulp stem cells for in vivo pulp regeneration. J. Dent. Res. 2011, 90, 1013–1018. https://doi.org/10.1177/0022034511408426.
- 139.
Motizuki, M.; Koinuma, D.; Yokoyama, T.; et al. TGF-β-induced cell motility requires downregulation of ARHGAPs to sustain Rac1 activity. J. Biol. Chem. 2021, 296, 100545. https://doi.org/10.1016/j.jbc.2021.100545.
- 140.
Iohara, K.; Imabayashi, K.; Ishizaka, R.; et al. Complete pulp regeneration after pulpectomy by transplantation of CD105+ stem cells with stromal cell-derived factor-1. Tissue Eng. Part A 2011, 17, 1911–1920. https://doi.org/10.1089/ten.TEA.2010.0615.
- 141.
Bordini, E.A.F.; Stuani, V.T.; Correa, L.E.; et al. Chitosan-calcium aluminate as a cell-homing scaffold: Its bioactivity testing in a microphysiological dental pulp platform. Altern. Lab. Anim. 2024, 52, 107–116. https://doi.org/10.1177/02611929241232558.
- 142.
Ruan, Q.; Tan, S.; Guo, L.; et al. Prevascularization techniques for dental pulp regeneration: Potential cell sources, intercellular communication and construction strategies. Front. Bioeng. Biotechnol. 2023, 11, 1186030. https://doi.org/10.3389/fbioe.2023.1186030.
- 143.
Zhu, M.; Jiang, S.; Zhang, C.; et al. ATP1A1-driven intercellular contact between dental pulp stem cell and endothelial cell enhances vasculogenic activity. Int. Dent. J. 2025, 75, 100870. https://doi.org/10.1016/j.identj.2025.100870.
- 144.
Barone, L.; Gallazzi, M.; Rossi, F.; et al. Human dental pulp mesenchymal stem cell-derived soluble factors combined with a nanostructured scaffold support the generation of a vascular network in vivo. Nanomaterials 2023, 13, 2479. https://doi.org/10.3390/nano13172479.
- 145.
Luo, N.; Deng, Y.W.; Wen, J.; et al. Wnt3a-loaded hydroxyapatite nanowire@mesoporous silica core-shell nanocomposite promotes the regeneration of dentin-pulp complex via angiogenesis, oxidative stress resistance, and odontogenic induction of stem cells. Adv. Healthc. Mater. 2023, 12, e2300229. https://doi.org/10.1002/adhm.202300229.
- 146.
Li, B.; Xian, X.; Lin, X.; et al. Hypoxia alters the proteome profile and enhances the angiogenic potential of dental pulp stem cell-derived exosomes. Biomolecules 2022, 12, 575. https://doi.org/10.3390/biom12040575.
- 147.
Liu, F.; Xiao, J.; Chen, L.H.; et al. Self-assembly of differentiated dental pulp stem cells facilitates spheroid human dental organoid formation and prevascularization. World J. Stem Cells 2024, 16, 287–304. https://doi.org/10.4252/wjsc.v16.i3.287.
- 148.
Yun, Y.G.; Yeo, D.; Tran, T.T.T.; et al. The characterization of the biological effect of hypoxia-mimetic condition on angiogenic potential in mesenchymal stem cells derived from different origins. Cells Dev. 2025, 183, 204039. https://doi.org/10.1016/j.cdev.2025.204039.
- 149.
Luo, H.; Zhang, W.; Zeng, W.; et al. OPN3-mediated positive regulation of angiogenesis in HUVECs through VEGFR2 interaction. Commun. Biol. 2025, 8, 529. https://doi.org/10.1038/s42003-025-07958-4.
- 150.
Zha, K.; Hu, W.; Xiong, Y.; et al. Nanoarchitecture-integrated hydrogel boosts angiogenesis-osteogenesis-neurogenesis tripling for infected bone fracture healing. Adv. Sci. 2024, 11, e2406439. https://doi.org/10.1002/advs.202406439.
- 151.
Zhu, F.; Yu, D.; Qin, X.; et al. The neuropeptide CGRP enters the macrophage cytosol to suppress the NLRP3 inflammasome during pulmonary infection. Cell. Mol. Immunol. 2023, 20, 264–276. https://doi.org/10.1038/s41423-022-00968-w.
- 152.
Ning, W.; Gao, G.; Zhou, Y.; et al. Calcitonin gene-related peptide ameliorates sepsis-induced intestinal injury by suppressing NLRP3 inflammasome activation. Int. Immunopharmacol. 2023, 116, 109747. https://doi.org/10.1016/j.intimp.2023.109747.
- 153.
Jia, P.; Li, J.; Wu, J.; et al. Alkaline treatment enhances the anti-inflammatory and reparative potential of dentin matrix proteins in inflamed pulp. J. Endod. 2025, 51, 1215–1228. https://doi.org/10.1016/j.joen.2025.06.002.
- 154.
Yu, S.; Liu, X.M.; Liu, Y.; et al. Inflammatory microenvironment of moderate pulpitis enhances the osteo-/odontogenic potential of dental pulp stem cells by autophagy. Int. Endod. J. 2024, 57, 1465–1477. https://doi.org/10.1111/iej.14108.
- 155.
Yunna, C.; Mengru, H.; Lei, W.; et al. Macrophage M1/M2 polarization. Eur. J. Pharmacol. 2020, 877, 173090. https://doi.org/10.1016/j.ejphar.2020.173090.
- 156.
Dou, Y.; Zhang, Y.; Liu, Y.; et al. Role of macrophage in intervertebral disc degeneration. Bone Res. 2025, 13, 15. https://doi.org/10.1038/s41413-024-00397-7.
- 157.
Li, J.; Wu, J.; Zhu, L.; et al. Polydopamine-coated bioactive glass for immunomodulation and odontogenesis in pulpitis. Mater. Today Bio 2024, 27, 101130. https://doi.org/10.1016/j.mtbio.2024.101130.
- 158.
Dadgar, A.; Maleki Dizaj, S.; Alizadeh Oskoee, P.; et al. Gelatin nanofibrous scaffolds containing rutin nanoparticles: Physicochemical properties, antibacterial action, and anti-inflammatory effect on dental pulp stem cells. BMC Oral Health. 2025, 25, 1129. https://doi.org/10.1186/s12903-025-06385-5.
- 159.
Maccaferri, M.; Pisciotta, A.; Carnevale, G.; et al. Human dental pulp stem cells modulate pro-inflammatory macrophages both through cell-to-cell contact and paracrine signaling. Front. Immunol. 2024, 15, 1440974. https://doi.org/10.3389/fimmu.2024.1440974.
- 160.
Shen, Z.; Kuang, S.; Zhang, Y.; et al. Chitosan hydrogel incorporated with dental pulp stem cell-derived exosomes alleviates periodontitis in mice via a macrophage-dependent mechanism. Bioact. Mater. 2020, 5, 1113–1126. https://doi.org/10.1016/j.bioactmat.2020.07.002.
- 161.
Tian, J.; Lou, Y.; Li, M.; et al. Dental follicle stem cell-derived small extracellular vesicles ameliorate pulpitis by reprogramming macrophage metabolism. Bioact. Mater. 2025, 51, 179–196. https://doi.org/10.1016/j.bioactmat.2025.04.034.
- 162.
Safi, I.N.; Hussein, B.M.A.; Al-Shammari, A.M. Bio-hybrid dental implants prepared using stem cells with β-TCP-coated titanium and zirconia. J. Periodontal Implant. Sci. 2022, 52, 242–257. https://doi.org/10.5051/jpis.2006080304.
- 163.
Liu, Q.; Gao, Y.; He, J. Stem cells from the apical papilla (SCAPs): Past, present, prospects, and challenges. Biomedicines 2023, 11, 2047. https://doi.org/10.3390/biomedicines11072047.
- 164.
Costela-Ruiz, V.J.; Melguizo-Rodríguez, L.; Bellotti, C.; et al. Different sources of mesenchymal stem cells for tissue regeneration: A guide to identifying the most favorable one in orthopedics and dentistry applications. Int. J. Mol. Sci. 2022, 23, 6356. https://doi.org/10.3390/ijms23116356.
- 165.
Yu, S.; Zhao, Y.; Ma, Y.; et al. Profiling the secretome of human stem cells from dental apical papilla. Stem Cells Dev. 2016, 25, 499–508. https://doi.org/10.1089/scd.2015.0298.
- 166.
Lee, Y.C.; Chan, Y.H.; Hsieh, S.C.; et al. Comparing the osteogenic potentials and bone regeneration capacities of bone marrow and dental pulp mesenchymal stem cells in a rabbit calvarial bone defect model. Int. J. Mol. Sci. 2019, 20, 5015. https://doi.org/10.3390/ijms20205015.
- 167.
Fawzy El-Sayed, K.M.; El Moshy, S.; Radwan, I.A.; et al. Stem cells from dental pulp, periodontal tissues, and other oral sources: Biological concepts and regenerative potential. J. Periodontal Res. 2025. https://doi.org/10.1111/jre.70015.
- 168.
Saghiri, M.A.; Asatourian, A.; Sheibani, N. Angiogenesis in regenerative dentistry. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2015, 119, 122. https://doi.org/10.1016/j.oooo.2014.09.023.
- 169.
Meza, G.; Urrejola, D.; Saint Jean, N.; et al. Personalized cell therapy for pulpitis using autologous dental pulp stem cells and leukocyte platelet-rich fibrin: A case report. J. Endod. 2019, 45, 144–149. https://doi.org/10.1016/j.joen.2018.11.009.
- 170.
Bezgin, T.; Yilmaz, A.D.; Celik, B.N.; et al. Efficacy of platelet-rich plasma as a scaffold in regenerative endodontic treatment. J. Endod. 2015, 41, 36–44. https://doi.org/10.1016/j.joen.2014.10.004.
- 171.
Xuan, K.; Li, B.; Guo, H.; et al. Deciduous autologous tooth stem cells regenerate dental pulp after implantation into injured teeth. Sci. Transl. Med. 2018, 10, eaaf3227. https://doi.org/10.1126/scitranslmed.aaf3227.
- 172.
Brizuela, C.; Meza, G.; Urrejola, D.; et al. Cell-based regenerative endodontics for treatment of periapical lesions: A randomized, controlled phase I/II clinical trial. J. Dent. Res. 2020, 99, 523–529. https://doi.org/10.1177/0022034520913242.
- 173.
Iohara, K.; Murakami, M.; Takeuchi, N.; et al. A novel combinatorial therapy with pulp stem cells and granulocyte colony-stimulating factor for total pulp regeneration. Stem Cells Transl. Med. 2013, 2, 521–533. https://doi.org/10.5966/sctm.2012-0132.
- 174.
Eramo, S.; Natali, A.; Pinna, R.; et al. Dental pulp regeneration via cell homing. Int. Endod. J. 2018, 51, 405–419. https://doi.org/10.1111/iej.12868.