2601002913
  • Open Access
  • Review

mTOR Signalling in Diabetic Peripheral Neuropathy: Balancing Neuropathic Pain and Schwann Cell-Mediated Repair

  • Ka Huen Cheng 1,2,   
  • John Akrofi Kubi 1,2,*,   
  • Augustine Suurinobah Brah 1,2,   
  • Mireku Yaw Asante 1,2,   
  • Yizhou Zhu 1,2,   
  • Kelvin Wai Kwok Yeung 1,2,*

Received: 07 Dec 2025 | Revised: 19 Jan 2026 | Accepted: 23 Jan 2026 | Published: 02 Feb 2026

Abstract

Diabetic peripheral neuropathy (DPN) is a prevalent secondary complication of diabetes mellitus, characterised by nerve fibre degeneration, neurosensory deficits, and chronic neuropathic pain, all of which have significant clinical impact by increasing disability, reducing quality of life, and complicating diabetes management. While oxidative stress and neuroinflammation are established contributors to DPN pathogenesis, the specific involvement of the mammalian target of rapamycin (mTOR) signalling pathway in DPN remains incompletely defined. Recent findings indicate cell-type-specific dysregulation of mTOR signalling in diabetic peripheral nerves, with direct implications for targeted clinical interventions. This review outlines the pathophysiology, clinical manifestations, and therapeutic approaches for DPN, with a particular emphasis on the differential regulation of mTOR signalling in sensory neurons and Schwann cells. A greater understanding of these molecular mechanisms could improve diagnosis and refine treatment plans for DPN patients in clinical settings. Literature published from 1990 to 2025 was systematically reviewed to enhance understanding of the mTOR pathway’s contributions to DPN pathogenesis. This review clarifies that mTOR operates differently in sensory neurons and Schwann cells during persistent hyperglycaemia in DPN. Overactive mTOR in sensory neurons increases neuropathic pain by enhancing neuron excitability, altering ion channels, and disrupting synapses. In vitro studies indicate reduced mTOR activity in Schwann cells, likely impairing repair processes such as dedifferentiation, survival, myelin production, and nerve support. Human tissue studies yield mixed results, leaving the consistency of these changes across patients unresolved. Consequently, further research is essential to clarify the precise and consistent impact of mTOR alterations in specific cell types.

References 

  • 1.

    Feldman, E.L.; Callaghan, B.C.; Pop-Busui, R.; et al. Diabetic neuropathy. Nat. Rev. Dis. Primers 2019, 5, 41. https://doi.org/10.1038/s41572-019-0092-1.

  • 2.

    Eid, S.A.; Rumora, A.E.; Beirowski, B.; et al. New perspectives in diabetic neuropathy. Neuron 2023, 111, 2623–2641. https://doi.org/10.1016/j.neuron.2023.05.003.

  • 3.

    The International Diabetes Federation (IDF). Diabetes Atlas, 11th ed.; IDF: Brussels, Belgium, 2025. 

  • 4.

    Tesfaye, S.; Boulton, A.J.; Dyck, P.J.; et al. Diabetic neuropathies: Update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 2010, 33, 2285–2293. https://doi.org/10.2337/dc10-1303.

  • 5.

    Abbott, C.A.; Malik, R.A.; van Ross, E.R.; et al. Prevalence and characteristics of painful diabetic neuropathy in a large community-based diabetic population in the U.K. Diabetes Care 2011, 34, 2220–2224. https://doi.org/10.2337/dc11-1108.

  • 6.

    Gylfadottir, S.S.; Weeracharoenkul, D.; Andersen, S.T.; et al. Painful and non-painful diabetic polyneuropathy: Clinical characteristics and diagnostic issues. J. Diabetes Investig. 2019, 10, 1148–1157. https://doi.org/10.1111/jdi.13105.

  • 7.

    Dyck, P.J.; Kratz, K.M.; Karnes, J.L.; et al. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: The Rochester Diabetic Neuropathy Study. Neurology 1993, 43, 817–824. https://doi.org/10.1212/wnl.43.4.817.

  • 8.

    Tesfaye, S.; Stevens, L.K.; Stephenson, J.M.; et al. Prevalence of diabetic peripheral neuropathy and its relation to glycaemic control and potential risk factors: The EURODIAB IDDM Complications Study. Diabetologia 1996, 39, 1377–1384. https://doi.org/10.1007/s001250050586.

  • 9.

    Sun, J.; Wang, Y.; Zhang, X.; et al. Prevalence of peripheral neuropathy in patients with diabetes: A systematic review and meta-analysis. Prim. Care Diabetes 2020, 14, 435–444. https://doi.org/10.1016/j.pcd.2019.12.005.

  • 10.

    Young, M.J.; Boulton, A.J.; MacLeod, A.F.; et al. A multicentre study of the prevalence of diabetic peripheral neuropathy in the United Kingdom hospital clinic population. Diabetologia 1993, 36, 150–154. https://doi.org/10.1007/bf00400697.

  • 11.

    Tesfaye, S.; Chaturvedi, N.; Eaton, S.E.; et al. Vascular risk factors and diabetic neuropathy. N. Engl. J. Med. 2005, 352, 341–350. https://doi.org/10.1056/NEJMoa032782.

  • 12.

    Partanen, J.; Niskanen, L.; Lehtinen, J.; et al. Natural history of peripheral neuropathy in patients with non-insulin-dependent diabetes mellitus. N. Engl. J. Med. 1995, 333, 89–94. https://doi.org/10.1056/nejm199507133330203.

  • 13.

    Albers, J.W.; Herman, W.H.; Pop-Busui, R.; et al. Effect of prior intensive insulin treatment during the Diabetes Control and Complications Trial (DCCT) on peripheral neuropathy in type 1 diabetes during the Epidemiology of Diabetes Interventions and Complications (EDIC) Study. Diabetes Care 2010, 33, 1090–1096. https://doi.org/10.2337/dc09-1941.

  • 14.

    Nathan, D.M.; Genuth, S.; Lachin, J.; et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 1993, 329, 977–986. https://doi.org/10.1056/nejm199309303291401.

  • 15.

    Borrelli, E.P. Estimating the annual cost burden of diabetic peripheral neuropathy in the United States. Endocrine 2025, 90, 60–65. https://doi.org/10.1007/s12020-025-04318-4.

  • 16.

    Wang, R.; Xuan, D.D.; Xuan, J.; et al. The Economic Burden of Patients with Diabetic Peripheral Neuropathic Pain Based on a Real-World Study in China. Clin. Outcomes Res. 2025, 17, 437–446. https://doi.org/10.2147/ceor.S501243.

  • 17.

    Tesfaye, S.; Vileikyte, L.; Rayman, G.; et al. Painful diabetic peripheral neuropathy: Consensus recommendations on diagnosis, assessment and management. Diabetes Metab. Res. Rev. 2011, 27, 629–638. https://doi.org/10.1002/dmrr.1225.

  • 18.

    Raputova, J.; Srotova, I.; Vlckova, E.; et al. Sensory phenotype and risk factors for painful diabetic neuropathy: A cross-sectional observational study. Pain. 2017, 158, 2340–2353. https://doi.org/10.1097/j.pain.0000000000001034.

  • 19.

    Vinik, A.I. CLINICAL PRACTICE. Diabetic Sensory and Motor Neuropathy. N. Engl. J. Med. 2016, 374, 1455–1464. https://doi.org/10.1056/NEJMcp1503948.

  • 20.

    Bell, D.S.H. Diabetic Mononeuropathies and Diabetic Amyotrophy. Diabetes Ther. 2022, 13, 1715–1722. https://doi.org/10.1007/s13300-022-01308-x.

  • 21.

    Feldman, E.L.; Stevens, M.J.; Thomas, P.K.; et al. A practical two-step quantitative clinical and electrophysiological assessment for the diagnosis and staging of diabetic neuropathy. Diabetes Care 1994, 17, 1281–1289. https://doi.org/10.2337/diacare.17.11.1281.

  • 22.

    Jayaprakash, P.; Bhansali, A.; Bhansali, S.; et al. Validation of bedside methods in evaluation of diabetic peripheral neuropathy. Indian. J. Med. Res. 2011, 133, 645–649.

  • 23.

    England, J.D.; Gronseth, G.S.; Franklin, G.; et al. Distal symmetric polyneuropathy: A definition for clinical research: Report of the American Academy of Neurology, the American Association of Electrodiagnostic Medicine, and the American Academy of Physical Medicine and Rehabilitation. Neurology 2005, 64, 199–207. https://doi.org/10.1212/01.Wnl.0000149522.32823.Ea.

  • 24.

    Lauria, G.; Hsieh, S.T.; Johansson, O.; et al. European Federation of Neurological Societies/Peripheral Nerve Society Guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society. Eur. J. Neurol. 2010, 17, 903-e49. https://doi.org/10.1111/j.1468-1331.2010.03023.x.

  • 25.

    Petropoulos, I.N.; Ponirakis, G.; Ferdousi, M.; et al. Corneal Confocal Microscopy: A Biomarker for Diabetic Peripheral Neuropathy. Clin. Ther. 2021, 43, 1457–1475. https://doi.org/10.1016/j.clinthera.2021.04.003.

  • 26.

    Pham, M.; Oikonomou, D.; Bäumer, P.; et al. Proximal neuropathic lesions in distal symmetric diabetic polyneuropathy: Findings of high-resolution magnetic resonance neurography. Diabetes Care 2011, 34, 721–723. https://doi.org/10.2337/dc10-1491.

  • 27.

    Oates, P.J. Polyol pathway and diabetic peripheral neuropathy. Int. Rev. Neurobiol. 2002, 50, 325–392. https://doi.org/10.1016/s0074-7742(02)50082-9.

  • 28.

    Ho, E.C.; Lam, K.S.; Chen, Y.S.; et al. Aldose reductase-deficient mice are protected from delayed motor nerve conduction velocity, increased c-Jun NH2-terminal kinase activation, depletion of reduced glutathione, increased superoxide accumulation, and DNA damage. Diabetes 2006, 55, 1946–1953. https://doi.org/10.2337/db05-1497.

  • 29.

    Yagihashi, S.; Yamagishi, S.I.; Wada Ri, R.; et al. Neuropathy in diabetic mice overexpressing human aldose reductase and effects of aldose reductase inhibitor. Brain 2001, 124, 2448–2458. https://doi.org/10.1093/brain/124.12.2448.

  • 30.

    Niimi, N.; Yako, H.; Takaku, S.; et al. Aldose Reductase and the Polyol Pathway in Schwann Cells: Old and New Problems. Int. J. Mol. Sci. 2021, 22, 1031. https://doi.org/10.3390/ijms22031031.

  • 31.

    Bierhaus, A.; Haslbeck, K.M.; Humpert, P.M.; et al. Loss of pain perception in diabetes is dependent on a receptor of the immunoglobulin superfamily. J. Clin. Investig. 2004, 114, 1741–1751. https://doi.org/10.1172/jci18058.

  • 32.

    Russell, J.W.; Golovoy, D.; Vincent, A.M.; et al. High glucose-induced oxidative stress and mitochondrial dysfunction in neurons. FASEB J. 2002, 16, 1738–1748. https://doi.org/10.1096/fj.01-1027com.

  • 33.

    Akude, E.; Zherebitskaya, E.; Chowdhury, S.K.; et al. Diminished superoxide generation is associated with respiratory chain dysfunction and changes in the mitochondrial proteome of sensory neurons from diabetic rats. Diabetes 2011, 60, 288–297. https://doi.org/10.2337/db10-0818.

  • 34.

    Chowdhury, S.K.; Smith, D.R.; Fernyhough, P. The role of aberrant mitochondrial bioenergetics in diabetic neuropathy. Neurobiol. Dis. 2013, 51, 56–65. https://doi.org/10.1016/j.nbd.2012.03.016.

  • 35.

    Roy Chowdhury, S.K.; Smith, D.R.; Saleh, A.; et al. Impaired adenosine monophosphate-activated protein kinase signalling in dorsal root ganglia neurons is linked to mitochondrial dysfunction and peripheral neuropathy in diabetes. Brain 2012, 135, 1751–1766. https://doi.org/10.1093/brain/aws097.

  • 36.

    Viader, A.; Golden, J.P.; Baloh, R.H.; et al. Schwann cell mitochondrial metabolism supports long-term axonal survival and peripheral nerve function. J. Neurosci. 2011, 31, 10128–10140. https://doi.org/10.1523/jneurosci.0884-11.2011.

  • 37.

    Kowluru, R.A.; Mishra, M. Oxidative stress, mitochondrial damage and diabetic retinopathy. Biochim. Biophys. Acta 2015, 1852, 2474–2483. https://doi.org/10.1016/j.bbadis.2015.08.001.

  • 38.

    Malik, R.A.; Tesfaye, S.; Newrick, P.G.; et al. Sural nerve pathology in diabetic patients with minimal but progressive neuropathy. Diabetologia 2005, 48, 578–585. https://doi.org/10.1007/s00125-004-1663-5.

  • 39.

    Coppey, L.J.; Gellett, J.S.; Davidson, E.P.; et al. Effect of antioxidant treatment of streptozotocin-induced diabetic rats on endoneurial blood flow, motor nerve conduction velocity, and vascular reactivity of epineurial arterioles of the sciatic nerve. Diabetes 2001, 50, 1927–1937. https://doi.org/10.2337/diabetes.50.8.1927.

  • 40.

    Ii, M.; Nishimura, H.; Kusano, K.F.; et al. Neuronal nitric oxide synthase mediates statin-induced restoration of vasa nervorum and reversal of diabetic neuropathy. Circulation 2005, 112, 93–102. https://doi.org/10.1161/circulationaha.104.511964.

  • 41.

    Negi, G.; Sharma, S.S. Inhibition of IκB kinase (IKK) protects against peripheral nerve dysfunction of experimental diabetes. Mol. Neurobiol. 2015, 51, 591–598. https://doi.org/10.1007/s12035-014-8784-8.

  • 42.

    Sandireddy, R.; Yerra, V.G.; Areti, A.; et al. Neuroinflammation and oxidative stress in diabetic neuropathy: Futuristic strategies based on these targets. Int. J. Endocrinol. 2014, 2014, 674987. https://doi.org/10.1155/2014/674987.

  • 43.

    Anand, P.; Terenghi, G.; Warner, G.; et al. The role of endogenous nerve growth factor in human diabetic neuropathy. Nat. Med. 1996, 2, 703–707. https://doi.org/10.1038/nm0696-703.

  • 44.

    Brussee, V.; Cunningham, F.A.; Zochodne, D.W. Direct insulin signaling of neurons reverses diabetic neuropathy. Diabetes 2004, 53, 1824–1830. https://doi.org/10.2337/diabetes.53.7.1824.

  • 45.

    Epidemiology of Diabetes Interventions and Complications (EDIC). Design, implementation, and preliminary results of a long-term follow-up of the Diabetes Control and Complications Trial cohort. Diabetes Care 1999, 22, 99–111. https://doi.org/10.2337/diacare.22.1.99.

  • 46.

    Gerstein, H.C.; Miller, M.E.; Byington, R.P.; et al. Effects of intensive glucose lowering in type 2 diabetes. N. Engl. J. Med. 2008, 358, 2545–2559. https://doi.org/10.1056/NEJMoa0802743.

  • 47.

    Duckworth, W.; Abraira, C.; Moritz, T.; et al. Glucose control and vascular complications in veterans with type 2 diabetes. N. Engl. J. Med. 2009, 360, 129–139. https://doi.org/10.1056/NEJMoa0808431.

  • 48.

    Rosenstock, J.; Tuchman, M.; LaMoreaux, L.; et al. Pregabalin for the treatment of painful diabetic peripheral neuropathy: A double-blind, placebo-controlled trial. Pain. 2004, 110, 628–638. https://doi.org/10.1016/j.pain.2004.05.001.

  • 49.

    Wernicke, J.F.; Pritchett, Y.L.; D'Souza, D.N.; et al. A randomized controlled trial of duloxetine in diabetic peripheral neuropathic pain. Neurology 2006, 67, 1411–1420. https://doi.org/10.1212/01.wnl.0000240225.04000.1a.

  • 50.

    Wu, L.; Wang, X.J.; Luo, X.; et al. Diabetic peripheral neuropathy based on Schwann cell injury: Mechanisms of cell death regulation and therapeutic perspectives. Front. Endocrinol. 2024, 15, 1427679. https://doi.org/10.3389/fendo.2024.1427679.

  • 51.

    Max, M.B.; Lynch, S.A.; Muir, J.; et al. Effects of desipramine, amitriptyline, and fluoxetine on pain in diabetic neuropathy. N. Engl. J. Med. 1992, 326, 1250–1256. https://doi.org/10.1056/nejm199205073261904.

  • 52.

    Schwartz, S.; Etropolski, M.; Shapiro, D.Y.; et al. Safety and efficacy of tapentadol ER in patients with painful diabetic peripheral neuropathy: Results of a randomized-withdrawal, placebo-controlled trial. Curr. Med. Res. Opin. 2011, 27, 151–162. https://doi.org/10.1185/03007995.2010.537589.

  • 53.

    Goodwin, B.; Chiplunkar, M.; Salerno, R.; et al. Topical capsaicin for the management of painful diabetic neuropathy: A narrative systematic review. Pain. Manag. 2023, 13, 309–316. https://doi.org/10.2217/pmt-2023-0006.

  • 54.

    Petersen, E.A.; Stauss, T.G.; Scowcroft, J.A.; et al. Effect of High-frequency (10-kHz) Spinal Cord Stimulation in Patients With Painful Diabetic Neuropathy: A Randomized Clinical Trial. JAMA Neurol. 2021, 78, 687–698. https://doi.org/10.1001/jamaneurol.2021.0538.

  • 55.

    Ziegler, D.; Low, P.A.; Litchy, W.J.; et al. Efficacy and safety of antioxidant treatment with α-lipoic acid over 4 years in diabetic polyneuropathy: The NATHAN 1 trial. Diabetes Care 2011, 34, 2054–2060. https://doi.org/10.2337/dc11-0503.

  • 56.

    Yang, Y.; Zhao, B.; Wang, Y.; et al. Diabetic neuropathy: Cutting-edge research and future directions. Signal Transduct. Target. Ther. 2025, 10, 132. https://doi.org/10.1038/s41392-025-02175-1.

  • 57.

    Callaghan, B.C.; Xia, R.; Reynolds, E.; et al. Association Between Metabolic Syndrome Components and Polyneuropathy in an Obese Population. JAMA Neurol. 2016, 73, 1468–1476. https://doi.org/10.1001/jamaneurol.2016.3745.

  • 58.

    Kluding, P.M.; Pasnoor, M.; Singh, R.; et al. The effect of exercise on neuropathic symptoms, nerve function, and cutaneous innervation in people with diabetic peripheral neuropathy. J. Diabetes Complicat. 2012, 26, 424–429. https://doi.org/10.1016/j.jdiacomp.2012.05.007.

  • 59.

    Arthur-Farraj, P.J.; Latouche, M.; Wilton, D.K.; et al. c-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration. Neuron 2012, 75, 633–647. https://doi.org/10.1016/j.neuron.2012.06.021.

  • 60.

    Woodhoo, A.; Alonso, M.B.; Droggiti, A.; et al. Notch controls embryonic Schwann cell differentiation, postnatal myelination and adult plasticity. Nat. Neurosci. 2009, 12, 839–847. https://doi.org/10.1038/nn.2323.

  • 61.

    Clements, M.P.; Byrne, E.; Camarillo Guerrero, L.F.; et al. The Wound Microenvironment Reprograms Schwann Cells to Invasive Mesenchymal-like Cells to Drive Peripheral Nerve Regeneration. Neuron 2017, 96, 98-114.e117. https://doi.org/10.1016/j.neuron.2017.09.008.

  • 62.

    Stassart, R.M.; Fledrich, R.; Velanac, V.; et al. A role for Schwann cell-derived neuregulin-1 in remyelination. Nat. Neurosci. 2013, 16, 48–54. https://doi.org/10.1038/nn.3281.

  • 63.

    Fricker, F.R.; Lago, N.; Balarajah, S.; et al. Axonally derived neuregulin-1 is required for remyelination and regeneration after nerve injury in adulthood. J. Neurosci. 2011, 31, 3225–3233. https://doi.org/10.1523/jneurosci.2568-10.2011.

  • 64.

    Zhang, L.; Yu, C.; Vasquez, F.E.; et al. Hyperglycemia alters the schwann cell mitochondrial proteome and decreases coupled respiration in the absence of superoxide production. J. Proteome Res. 2010, 9, 458–471. https://doi.org/10.1021/pr900818g.

  • 65.

    Kato, A.; Tatsumi, Y.; Yako, H.; et al. Recurrent short-term hypoglycemia and hyperglycemia induce apoptosis and oxidative stress via the ER stress response in immortalized adult mouse Schwann (IMS32) cells. Neurosci. Res. 2019, 147, 26–32. https://doi.org/10.1016/j.neures.2018.11.004.

  • 66.

    Sango, K.; Suzuki, T.; Yanagisawa, H.; et al. High glucose-induced activation of the polyol pathway and changes of gene expression profiles in immortalized adult mouse Schwann cells IMS32. J. Neurochem. 2006, 98, 446–458. https://doi.org/10.1111/j.1471-4159.2006.03885.x.

  • 67.

    Suzuki, T.; Sekido, H.; Kato, N.; et al. Neurotrophin-3-induced production of nerve growth factor is suppressed in Schwann cells exposed to high glucose: Involvement of the polyol pathway. J. Neurochem. 2004, 91, 1430–1438. https://doi.org/10.1111/j.1471-4159.2004.02824.x.

  • 68.

    Sekido, H.; Suzuki, T.; Jomori, T.; et al. Reduced cell replication and induction of apoptosis by advanced glycation end products in rat Schwann cells. Biochem. Biophys. Res. Commun. 2004, 320, 241–248. https://doi.org/10.1016/j.bbrc.2004.05.159.

  • 69.

    Tosaki, T.; Kamiya, H.; Yasuda, Y.; et al. Reduced NGF secretion by Schwann cells under the high glucose condition decreases neurite outgrowth of DRG neurons. Exp. Neurol. 2008, 213, 381–387. https://doi.org/10.1016/j.expneurol.2008.06.017.

  • 70.

    Zhang, X.; Zhao, S.; Yuan, Q.; et al. TXNIP, a novel key factor to cause Schwann cell dysfunction in diabetic peripheral neuropathy, under the regulation of PI3K/Akt pathway inhibition-induced DNMT1 and DNMT3a overexpression. Cell Death Dis. 2021, 12, 642. https://doi.org/10.1038/s41419-021-03930-2.

  • 71.

    Viader, A.; Sasaki, Y.; Kim, S.; et al. Aberrant Schwann cell lipid metabolism linked to mitochondrial deficits leads to axon degeneration and neuropathy. Neuron 2013, 77, 886–898. https://doi.org/10.1016/j.neuron.2013.01.012.

  • 72.

    Dey, I.; Midha, N.; Singh, G.; et al. Diabetic Schwann cells suffer from nerve growth factor and neurotrophin-3 underproduction and poor associability with axons. Glia 2013, 61, 1990–1999. https://doi.org/10.1002/glia.22570.

  • 73.

    Saxton, R.A.; Sabatini, D.M. mTOR Signaling in Growth, Metabolism, and Disease. Cell 2017, 168, 960–976. https://doi.org/10.1016/j.cell.2017.02.004.

  • 74.

    Yang, H.; Rudge, D.G.; Koos, J.D.; et al. mTOR kinase structure, mechanism and regulation. Nature 2013, 497, 217–223. https://doi.org/10.1038/nature12122.

  • 75.

    Sarbassov, D.D.; Guertin, D.A.; Ali, S.M.; et al. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005, 307, 1098–1101. https://doi.org/10.1126/science.1106148.

  • 76.

    Kim, D.H.; Sarbassov, D.D.; Ali, S.M.; et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002, 110, 163–175. https://doi.org/10.1016/s0092-8674(02)00808-5.

  • 77.

    Inoki, K.; Zhu, T.; Guan, K.L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003, 115, 577–590. https://doi.org/10.1016/s0092-8674(03)00929-2.

  • 78.

    Sancak, Y.; Peterson, T.R.; Shaul, Y.D.; et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008, 320, 1496–1501. https://doi.org/10.1126/science.1157535.

  • 79.

    Gwinn, D.M.; Shackelford, D.B.; Egan, D.F.; et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 2008, 30, 214–226. https://doi.org/10.1016/j.molcel.2008.03.003.

  • 80.

    Sarbassov, D.D.; Ali, S.M.; Kim, D.H.; et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 2004, 14, 1296–1302. https://doi.org/10.1016/j.cub.2004.06.054.

  • 81.

    Sarbassov, D.D.; Ali, S.M.; Sengupta, S.; et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell 2006, 22, 159–168. https://doi.org/10.1016/j.molcel.2006.03.029.

  • 82.

    Liu, K.; Yang, Y.; Zhou, F.; et al. Inhibition of PI3K/AKT/mTOR signaling pathway promotes autophagy and relieves hyperalgesia in diabetic rats. Neuroreport 2020, 31, 644–649. https://doi.org/10.1097/wnr.0000000000001461.

  • 83.

    Dai, D.F.; Kang, P.; Bai, H. The mTOR signaling pathway in cardiac aging. J. Cardiovasc. Aging 2023, 3, 24. https://doi.org/10.20517/jca.2023.10.

  • 84.

    Yao, X.; Wang, X.; Zhang, R.; et al. Dysregulated mast cell activation induced by diabetic milieu exacerbates the progression of diabetic peripheral neuropathy in mice. Nat. Commun. 2025, 16, 4170. https://doi.org/10.1038/s41467-025-59562-z.

  • 85.

    Norrmén, C.; Figlia, G.; Lebrun-Julien, F.; et al. mTORC1 controls PNS myelination along the mTORC1-RXRγ-SREBP-lipid biosynthesis axis in Schwann cells. Cell Rep. 2014, 9, 646–660. https://doi.org/10.1016/j.celrep.2014.09.001.

  • 86.

    Amin, N.G.; Rahim, A.A.; Rohoma, K.; et al. The relation of mTOR with diabetic complications and insulin resistance in patients with type 2 diabetes mellitus. Diabetol. Metab. Syndr. 2024, 16, 222. https://doi.org/10.1186/s13098-024-01450-5.

  • 87.

    He, W.Y.; Zhang, B.; Zhao, W.C.; et al. mTOR activation due to APPL1 deficiency exacerbates hyperalgesia via Rab5/Akt and AMPK signaling pathway in streptozocin-induced diabetic rats. Mol. Pain. 2019, 15, 1744806919880643. https://doi.org/10.1177/1744806919880643.

  • 88.

    Aghanoori, M.R.; Smith, D.R.; Shariati-Ievari, S.; et al. Insulin-like growth factor-1 activates AMPK to augment mitochondrial function and correct neuronal metabolism in sensory neurons in type 1 diabetes. Mol. Metab. 2019, 20, 149–165. https://doi.org/10.1016/j.molmet.2018.11.008.

  • 89.

    He, W.Y.; Zhang, B.; Xiong, Q.M.; et al. Intrathecal administration of rapamycin inhibits the phosphorylation of DRG Nav1.8 and attenuates STZ-induced painful diabetic neuropathy in rats. Neurosci. Lett. 2016, 619, 21–28. https://doi.org/10.1016/j.neulet.2016.02.064.

  • 90.

    Wang, S.; Kobayashi, K.; Kogure, Y.; et al. Negative Regulation of TRPA1 by AMPK in Primary Sensory Neurons as a Potential Mechanism of Painful Diabetic Neuropathy. Diabetes 2018, 67, 98–109. https://doi.org/10.2337/db17-0503.

  • 91.

    Liu, S.Y.; Chen, L.; Li, X.C.; et al. Lycium barbarum polysaccharide protects diabetic peripheral neuropathy by enhancing autophagy via mTOR/p70S6K inhibition in Streptozotocin-induced diabetic rats. J. Chem. Neuroanat. 2018, 89, 37–42. https://doi.org/10.1016/j.jchemneu.2017.12.011.

  • 92.

    He, W.Y.; Zhang, B.; Zhao, W.C.; et al. Contributions of mTOR Activation-Mediated Upregulation of Synapsin II and Neurite Outgrowth to Hyperalgesia in STZ-Induced Diabetic Rats. ACS Chem. Neurosci. 2019, 10, 2385–2396. https://doi.org/10.1021/acschemneuro.8b00680.

  • 93.

    Beirowski, B.; Wong, K.M.; Babetto, E.; et al. mTORC1 promotes proliferation of immature Schwann cells and myelin growth of differentiated Schwann cells. Proc. Natl. Acad. Sci. USA 2017, 114, E4261–E4270. https://doi.org/10.1073/pnas.1620761114.

  • 94.

    Hackett, A.R.; Strickland, A.; Milbrandt, J. Disrupting insulin signaling in Schwann cells impairs myelination and induces a sensory neuropathy. Glia 2020, 68, 963–978. https://doi.org/10.1002/glia.23755.

  • 95.

    Figlia, G.; Gerber, D.; Suter, U. Myelination and mTOR. Glia 2018, 66, 693–707. https://doi.org/10.1002/glia.23273.

  • 96.

    Zhu, L.; Hao, J.; Cheng, M.; et al. Hyperglycemia-induced Bcl-2/Bax-mediated apoptosis of Schwann cells via mTORC1/S6K1 inhibition in diabetic peripheral neuropathy. Exp. Cell Res. 2018, 367, 186–195. https://doi.org/10.1016/j.yexcr.2018.03.034.

  • 97.

    Tiong, Y.L.; Ng, K.Y.; Koh, R.Y.; et al. Melatonin Prevents Oxidative Stress-Induced Mitochondrial Dysfunction and Apoptosis in High Glucose-Treated Schwann Cells via Upregulation of Bcl2, NF-κB, mTOR, Wnt Signalling Pathways. Antioxidants 2019, 8, 198. https://doi.org/10.3390/antiox8070198.

  • 98.

    Wu, L.Y.; Li, M.; Qu, M.L.; et al. High glucose up-regulates Semaphorin 3A expression via the mTOR signaling pathway in keratinocytes: A potential mechanism and therapeutic target for diabetic small fiber neuropathy. Mol. Cell Endocrinol. 2018, 472, 107–116. https://doi.org/10.1016/j.mce.2017.11.025.

  • 99.

    Feldman, E.L.; Callaghan, B.C.; Pop-Busui, R.; et al. Diabetic neuropathy. Nat. Rev. Dis. Primers 2019, 5, 42. https://doi.org/10.1038/s41572-019-0097-9.

  • 100.

    Della-Flora Nunes, G.; Wilson, E.R.; Hurley, E.; et al. Activation of mTORC1 and c-Jun by Prohibitin1 loss in Schwann cells may link mitochondrial dysfunction to demyelination. Elife 2021, 10, e66278. https://doi.org/10.7554/eLife.66278.

  • 101.

    Gonçalves, N.P.; Vægter, C.B.; Pallesen, L.T. Peripheral Glial Cells in the Development of Diabetic Neuropathy. Front. Neurol. 2018, 9, 268. https://doi.org/10.3389/fneur.2018.00268.

  • 102.

    Sherman, D.L.; Krols, M.; Wu, L.M.; et al. Arrest of myelination and reduced axon growth when Schwann cells lack mTOR. J. Neurosci. 2012, 32, 1817–1825. https://doi.org/10.1523/jneurosci.4814-11.2012.

  • 103.

    Eid, S.A.; El Massry, M.; Hichor, M.; et al. Targeting the NADPH Oxidase-4 and Liver X Receptor Pathway Preserves Schwann Cell Integrity in Diabetic Mice. Diabetes 2020, 69, 448–464. https://doi.org/10.2337/db19-0517.

  • 104.

    Sun, L.Q.; Chen, Y.Y.; Wang, X.; et al. The protective effect of alpha lipoic acid on Schwann cells exposed to constant or intermittent high glucose. Biochem. Pharmacol. 2012, 84, 961–973. https://doi.org/10.1016/j.bcp.2012.07.005.

  • 105.

    Majd, H.; Amin, S.; Ghazizadeh, Z.; et al. Deriving Schwann cells from hPSCs enables disease modeling and drug discovery for diabetic peripheral neuropathy. Cell Stem Cell 2023, 30, 632–647.e10. https://doi.org/10.1016/j.stem.2023.04.006.

  • 106.

    Kagiava, A.; Karaiskos, C.; Richter, J.; et al. AAV9-mediated Schwann cell-targeted gene therapy rescues a model of demyelinating neuropathy. Gene Ther. 2021, 28, 659–675. https://doi.org/10.1038/s41434-021-00250-0.

  • 107.

    Kagiava, A.; Richter, J.; Tryfonos, C.; et al. Efficacy of AAV serotypes to target Schwann cells after intrathecal and intravenous delivery. Sci. Rep. 2021, 11, 23358. https://doi.org/10.1038/s41598-021-02694-1.

  • 108.

    Zhang, L.; Chen, X.; Wang, X.; et al. AAV-mediated Gene Cocktails Enhance Supporting Cell Reprogramming and Hair Cell Regeneration. Adv. Sci. 2024, 11, e2304551. https://doi.org/10.1002/advs.202304551.

  • 109.

    Sun, Q.; Zhang, L.; Chen, T.; et al. AAV-mediated Gpm6b expression supports hair cell reprogramming. Cell Prolif. 2024, 57, e13620. https://doi.org/10.1111/cpr.13620.

  • 110.

    Lee, S.H.S.; Chang, H.; Kim, J.H.; et al. Inhibition of mTOR via an AAV-Delivered shRNA Tested in a Rat OIR Model as a Potential Antiangiogenic Gene Therapy. Invest. Ophthalmol. Vis. Sci. 2020, 61, 45. https://doi.org/10.1167/iovs.61.2.45.

  • 111.

    Cha, S.; Seo, W.I.; Woo, H.N.; et al. AAV expressing an mTOR-inhibiting siRNA exhibits therapeutic potential in retinal vascular disorders by preserving endothelial integrity. FEBS Open Bio 2022, 12, 71–81. https://doi.org/10.1002/2211-5463.13281.

  • 112.

    Homs, J.; Pagès, G.; Ariza, L.; et al. Intrathecal administration of IGF-I by AAVrh10 improves sensory and motor deficits in a mouse model of diabetic neuropathy. Mol. Ther. Methods Clin. Dev. 2014, 1, 7. https://doi.org/10.1038/mtm.2013.7.

  • 113.

    Cermenati, G.; Abbiati, F.; Cermenati, S.; et al. Diabetes-induced myelin abnormalities are associated with an altered lipid pattern: Protective effects of LXR activation. J. Lipid Res. 2012, 53, 300–310. https://doi.org/10.1194/jlr.M021188.

  • 114.

    McArthur, J.C.; Stocks, E.A.; Hauer, P.; et al. Epidermal nerve fiber density: Normative reference range and diagnostic efficiency. Arch. Neurol. 1998, 55, 1513–1520. https://doi.org/10.1001/archneur.55.12.1513.

  • 115.

    Chandrasekaran, K.; Choi, J.; Salimian, M.; et al. Administration of AICAR, an AMPK Activator, Prevents and Reverses Diabetic Polyneuropathy (DPN) by Regulating Mitophagy. Int. J. Mol. Sci. 2024, 26, 80. https://doi.org/10.3390/ijms26010080.

  • 116.

    Neumann, S.; Woolf, C.J. Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron 1999, 23, 83–91. https://doi.org/10.1016/s0896-6273(00)80755-2.

  • 117.

    Park, K.K.; Liu, K.; Hu, Y.; et al. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 2008, 322, 963–966. https://doi.org/10.1126/science.1161566.

  • 118.

    Kubi, J.A.; Chen, A.C.H.; Fong, S.W.; et al. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the differentiation of embryonic stem cells towards pancreatic lineage and pancreatic beta cell function. Environ. Int. 2019, 130, 104885. https://doi.org/10.1016/j.envint.2019.05.079.

  • 119.

    Mittendorfer, B.; Patterson, B.W.; Smith, G.I.; et al. β Cell function and plasma insulin clearance in people with obesity and different glycemic status. J. Clin. Investig. 2022, 132, e154068. https://doi.org/10.1172/jci154068.

  • 120.

    Okura, A.; Inoue, K.; Sakuma, E.; et al. SGK1 in Schwann cells is a potential molecular switch involved in axonal and glial regeneration during peripheral nerve injury. Biochem. Biophys. Res. Commun. 2022, 607, 158–165. https://doi.org/10.1016/j.bbrc.2022.03.123.

  • 121.

    Kubi, J.A.; Brah, A.S.; Cheung, K.M.C.; et al. A new osteogenic protein isolated from Dioscorea opposita Thunb accelerates bone defect healing through the mTOR signaling axis. Bioact. Mater. 2023, 27, 429–446. https://doi.org/10.1016/j.bioactmat.2023.04.018.

  • 122.

    Brah, A.S.K., J.A.; Cheung, K.M.; et al. Neuroimmune Axis as a Potential Therapeutic Target of Dioscorea Opposita Thunb-derived HKUOT-S2 Protein for Accelerated Bone Regeneration. Tissue Eng. 2024, 30, S452–S452.

  • 123.

    Brah, A.S.K., J.A.; Cheung, K.; et al. Naturally-derived bioactive phytoprotein promotes bone defect repairs through neuro-osteogenic crosstalk. Tissue Eng. 2025, 31, E895–E896.

  • 124.

    Lee, S.; Ashizawa, A.T.; Kim, K.S.; et al. Liposomes to target peripheral neurons and Schwann cells. PLoS ONE 2013, 8, e78724. https://doi.org/10.1371/journal.pone.0078724.

  • 125.

    Figueiredo, D.M.; Hallewell, R.A.; Chen, L.L.; et al. Delivery of recombinant tetanus-superoxide dismutase proteins to central nervous system neurons by retrograde axonal transport. Exp. Neurol. 1997, 145, 546–554. https://doi.org/10.1006/exnr.1997.6490.

  • 126.

    Lopes, C.D.F.; Gonçalves, N.P.; Gomes, C.P.; et al. BDNF gene delivery mediated by neuron-targeted nanoparticles is neuroprotective in peripheral nerve injury. Biomaterials 2017, 121, 83–96. https://doi.org/10.1016/j.biomaterials.2016.12.025.

  • 127.

    Lopes, C.D.; Oliveira, H.; Estevão, I.; et al. In vivo targeted gene delivery to peripheral neurons mediated by neurotropic poly(ethylene imine)-based nanoparticles. Int. J. Nanomed. 2016, 11, 2675–2683. https://doi.org/10.2147/ijn.S104374.

  • 128.

    Katiyar, N.; Raju, G.; Madhusudanan, P.; et al. Neuronal delivery of nanoparticles via nerve fibres in the skin. Sci. Rep. 2021, 11, 2566. https://doi.org/10.1038/s41598-021-81995-x.

  • 129.

    Chen, J.; Zhu, L.; Chen, Y.; et al. Targeted neural stem cell-derived extracellular vesicles loaded with Sinomenine alleviate diabetic peripheral neuropathy via WNT5a/TRPV1 pathway modulation. J. Nanobiotechnol. 2025, 23, 588. https://doi.org/10.1186/s12951-025-03678-3.

  • 130.

    Homs, J.; Ariza, L.; Pagès, G.; et al. Schwann cell targeting via intrasciatic injection of AAV8 as gene therapy strategy for peripheral nerve regeneration. Gene Ther. 2011, 18, 622–630. https://doi.org/10.1038/gt.2011.7.

  • 131.

    Mason, M.R.; Ehlert, E.M.; Eggers, R.; et al. Comparison of AAV serotypes for gene delivery to dorsal root ganglion neurons. Mol. Ther. 2010, 18, 715–724. https://doi.org/10.1038/mt.2010.19.

  • 132.

    Towne, C.; Pertin, M.; Beggah, A.T.; et al. Recombinant adeno-associated virus serotype 6 (rAAV2/6)-mediated gene transfer to nociceptive neurons through different routes of delivery. Mol. Pain. 2009, 5, 52. https://doi.org/10.1186/1744-8069-5-52.

  • 133.

    Kudo, M.; Wupuer, S.; Fujiwara, M.; et al. Specific gene expression in unmyelinated dorsal root ganglion neurons in nonhuman primates by intra-nerve injection of AAV 6 vector. Mol. Ther. Methods Clin. Dev. 2021, 23, 11–22. https://doi.org/10.1016/j.omtm.2021.07.009.

  • 134.

    Chan, K.Y.; Jang, M.J.; Yoo, B.B.; et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat. Neurosci. 2017, 20, 1172–1179. https://doi.org/10.1038/nn.4593.

  • 135.

    Kügler, S.; Kilic, E.; Bähr, M. Human synapsin 1 gene promoter confers highly neuron-specific long-term transgene expression from an adenoviral vector in the adult rat brain depending on the transduced area. Gene Ther. 2003, 10, 337–347. https://doi.org/10.1038/sj.gt.3301905.

  • 136.

    Hasegawa, H.; Abbott, S.; Han, B.X.; et al. Analyzing somatosensory axon projections with the sensory neuron-specific Advillin gene. J. Neurosci. 2007, 27, 14404–14414. https://doi.org/10.1523/jneurosci.4908-07.2007.

  • 137.

    Zurborg, S.; Piszczek, A.; Martínez, C.; et al. Generation and characterization of an Advillin-Cre driver mouse line. Mol. Pain. 2011, 7, 66. https://doi.org/10.1186/1744-8069-7-66.

  • 138.

    Sahenk, Z.; Galloway, G.; Clark, K.R.; et al. AAV1.NT-3 gene therapy for charcot-marie-tooth neuropathy. Mol. Ther. 2014, 22, 511–521. https://doi.org/10.1038/mt.2013.250.

  • 139.

    Riethmacher, D.; Sonnenberg-Riethmacher, E.; Brinkmann, V.; et al. Severe neuropathies in mice with targeted mutations in the ErbB3 receptor. Nature 1997, 389, 725–730. https://doi.org/10.1038/39593.

  • 140.

    Britsch, S.; Li, L.; Kirchhoff, S.; et al. The ErbB2 and ErbB3 receptors and their ligand, neuregulin-1, are essential for development of the sympathetic nervous system. Genes. Dev. 1998, 12, 1825–1836. https://doi.org/10.1101/gad.12.12.1825.

  • 141.

    Morris, J.K.; Lin, W.; Hauser, C.; et al. Rescue of the cardiac defect in ErbB2 mutant mice reveals essential roles of ErbB2 in peripheral nervous system development. Neuron 1999, 23, 273–283. https://doi.org/10.1016/s0896-6273(00)80779-5.

  • 142.

    Syed, N.; Reddy, K.; Yang, D.P.; et al. Soluble neuregulin-1 has bifunctional, concentration-dependent effects on Schwann cell myelination. J. Neurosci. 2010, 30, 6122–6131. https://doi.org/10.1523/jneurosci.1681-09.2010.

  • 143.

    Monk, K.R.; Naylor, S.G.; Glenn, T.D.; et al. A G protein-coupled receptor is essential for Schwann cells to initiate myelination. Science 2009, 325, 1402–1405. https://doi.org/10.1126/science.1173474.

  • 144.

    Monk, K.R.; Oshima, K.; Jörs, S.; et al. Gpr126 is essential for peripheral nerve development and myelination in mammals. Development 2011, 138, 2673–2680. https://doi.org/10.1242/dev.062224.

  • 145.

    Liebscher, I.; Schön, J.; Petersen, S.C.; et al. A tethered agonist within the ectodomain activates the adhesion G protein-coupled receptors GPR126 and GPR133. Cell Rep. 2014, 9, 2018–2026. https://doi.org/10.1016/j.celrep.2014.11.036.

  • 146.

    Bradley, E.C.; Cunningham, R.L.; Wilde, C.; et al. In vivo identification of small molecules mediating Gpr126/Adgrg6 signaling during Schwann cell development. Ann. N. Y. Acad. Sci. 2019, 1456, 44–63. https://doi.org/10.1111/nyas.14233.

  • 147.

    Cosgaya, J.M.; Chan, J.R.; Shooter, E.M. The neurotrophin receptor p75NTR as a positive modulator of myelination. Science 2002, 298, 1245–1248. https://doi.org/10.1126/science.1076595.

  • 148.

    Pabbidi, R.M.; Yu, S.Q.; Peng, S.; et al. Influence of TRPV1 on diabetes-induced alterations in thermal pain sensitivity. Mol. Pain. 2008, 4, 9. https://doi.org/10.1186/1744-8069-4-9.

  • 149.

    Averill, S.; McMahon, S.B.; Clary, D.O.; et al. Immunocytochemical localization of trkA receptors in chemically identified subgroups of adult rat sensory neurons. Eur. J. Neurosci. 1995, 7, 1484–1494. https://doi.org/10.1111/j.1460-9568.1995.tb01143.x.

  • 150.

    Fang, X.; Djouhri, L.; McMullan, S.; et al. trkA is expressed in nociceptive neurons and influences electrophysiological properties via Nav1.8 expression in rapidly conducting nociceptors. J. Neurosci. 2005, 25, 4868–4878. https://doi.org/10.1523/jneurosci.0249-05.2005.

Share this article:
How to Cite
Cheng, K. H.; Kubi, J. A.; Brah, A. S.; Asante, M. Y.; Zhu, Y.; Yeung, K. W. K. mTOR Signalling in Diabetic Peripheral Neuropathy: Balancing Neuropathic Pain and Schwann Cell-Mediated Repair. Regenerative Medicine and Dentistry 2026, 3 (1), 2. https://doi.org/10.53941/rmd.2026.100002.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.