Downloads

Su, J., Xiao, B., Wang, J., & Zhu, X. Advanced Carbon Electrocatalysts for Selective Oxygen Reduction into Hydrogen Peroxide: Understandings of Active Sites. Science for Energy and Environment. 2024, 1(1). doi: Retrieved from https://www.sciltp.com/journals/see/article/view/324

Review

Advanced Carbon Electrocatalysts for Selective Oxygen Reduction into Hydrogen Peroxide: Understandings of Active Sites

Jiaxin Su 1,2, Bingbing Xiao 1,2, Jun Wang 1,2,* and Xiaofeng Zhu 1,2,*

1 State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, China

2 Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu 610299, China

* Correspondence: junwang091@163.com (J.W.); xfzhu@swust.edu.cn (X.Z.)

Received: 17 January 2024; Revised: 25 January 2024; Accepted: 19 February 2024; Published: 5 March 2024

 

Abstract: Electrochemical conversion of oxygen-to-hydrogen peroxide (H2O2) through oxygen reduction (ORR) is becoming a green and effective solution to replacing conventional anthraquinone industry. Advanced carbon is currently one of the most promising catalysts for H2O2 electrosynthesis by a selective two-electron ORR (2e-ORR), owing to its chemical and catalytic merits. To realize better performance of 2e-ORR over advanced carbons, extensive efforts is devoted to constructing highly efficient carbon-based active sites, which requests in-depth understanding of their underlying catalytic roles. Here, an informative and critical review of recent investigations on active sites on advanced carbons for 2e-ORR is provided. Together with our recent findings, the review first highlights the promoting progress on heteroatom-doped carbons, and their direct/indirect contributions for 2e-ORR has been emphasized. Simultaneously, defect engineering of carbon scaffold is briefly demonstrated as a practical strategy for achieving outstanding H2O2 production. Meanwhile, the review also offers analysis on striking influence of surface modification for carbon active site. Finally, challenges and perspectives of the advanced carbon catalysts for 2e-ORR are outlined. Such reviewed fundamentals of active sites in this emerging field would shed light to future impactful progress in ORR and broader research of energy and catalysis.

Keywords:

carbon-based materials oxygen reduction reaction active sites mechanism

References

  1. Zhang, Q.; Chen, Y.; Pan, J.; Daiyan, R.; Lovell, E.C.; Yun, J.; Amal, R.; Lu, X. Electrosynthesis of Hydrogen Peroxide through Selective Oxygen Reduction: A Carbon Innovation from Active Site Engineering to Device Design. Small 2023, 19(40), 2302338.
  2. Hydrogen Peroxide Market Size & Share Report, 2021–2028. Available online: https://www.grandviewresearch.com/industry-analysis/hydrogen-peroxide-market (accessed on 15 January 2024).
  3. Xia, C.; Kim, J.Y.; Wang, H. Recommended Practice to Report Selectivity in Electrochemical Synthesis of H2O2. Nat. Catal. 2020, 3(8), 605.
  4. Yang, S.; Verdaguer-Casadevall, A.; Arnarson, L.; Silvioli, L.; Čolić, V.; Frydendal, R.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I.E.L. Toward the Decentralized Electrochemical Production of H2O2: A Focus on the Catalysis. ACS Catal. 2018, 8(5), 4064.
  5. Wei, Z.; Zhao, S.; Li, W.; Zhao, X.; Chen, C.; Phillips, D.L.; Zhu, Y.; Choi, W. Artificial Photosynthesis of H2O2 through Reversible Photoredox Transformation between Catechol and o-Benzoquinone on Polydopamine-coated CdS. ACS Catal. 2022, 12(18), 11436.
  6. Li, W.; Wei, Z.; Sheng, Y.; Xu, J.; Ren, Y.; Jing, J.; Yang, J.; Li, J.; Zhu, Y. Dual Cocatalysts Synergistically Promote Perylene Diimide Polymer Charge Transfer for Enhanced Photocatalytic Water Oxidation. ACS Energy Lett. 2023, 8(6), 2652.
  7. Wei, Z.; Liu, M.; Zhang, Z.; Yao, W.; Tan, H.; Zhu, Y. Efficient Visible-light-driven Selective Oxygen Reduction to Hydrogen Peroxide by Oxygen-enriched Graphitic Carbon Nitride Polymers. Energy Environ. Sci. 2018, 11(9), 2581.
  8. Zhang, L.; Liang, J.; Yue, L.; Xu, Z.; Dong, K.; Liu, Q.; Luo, Y.; Li, T.; Cheng, X.; Cui, G.; et al. N-doped Carbon Nanotubes Supported CoSe2 Nanoparticles: A Highly Efficient and Stable Catalyst for H2O2 Electrosynthesis in Acidic Media. Nano Res. 2022, 15(1), 304.
  9. Tian, Y.; Deng, D.; Xu, L.; Li, M.; Chen, H.; Wu, Z.; Zhang, S. Strategies for Sustainable Production of Hydrogen Peroxide via Oxygen Reduction Reaction: From Catalyst Design to Device Setup. Nanomicro Lett 2023, 15(1), 122.
  10. Wang, D.; Li, S.; Zhang, X.; Feng, B.; Pei, Y.; Zhu, Y.; Xu, W.; Li, Z.-H.; Qiao, M.; Zong, B. Pyrolyzed Polydopamine-modified Carbon Black for Selective and Durable Electrocatalytic Oxygen Reduction to Hydrogen Peroxide in Acidic Medium. Appl. Catal. B 2022, 305, 121036.
  11. Sa, Y.J.; Kim, J.H.; Joo, S.H. Active Edge-Site-Rich Carbon Nanocatalysts with Enhanced Electron Transfer for Efficient Electrochemical Hydrogen Peroxide Production. Angew. Chem. Int. Ed. 2019, 58(4), 1100.
  12. Zhang, D.; Wang, Z.; Liu, F.; Yi, P.; Peng, L.; Chen, Y.; Wei, L.; Li, H. Unraveling the pH-Dependent Oxygen Reduction Performance on Single-Atom Catalysts: From Single- to Dual-Sabatier Optima. J. Am. Chem. Soc. 2024, 146, 3210–3219. https://doi.org/10.1021/jacs.3c11246 10.1021/jacs.3c11246.
  13. Zhang, T.; Wu, J.; Wang, Z.; Wei, Z.; Liu, J.; Gong, X. Transfer of Molecular Oxygen and Electrons Improved by the Regulation of C-N/C=O for Highly Efficient 2e-ORR. Chem. Eng. J. 2022, 433, 133591.
  14. Wang, Z.; Li, Q.-K.; Zhang, C.; Cheng, Z.; Chen, W.; McHugh, E.A.; Carter, R.A.; Yakobson, B.I.; Tour, J.M. Hydrogen Peroxide Generation with 100% Faradaic Efficiency on Metal-Free Carbon Black. ACS Catal. 2021, 11(4), 2454.
  15. Chang, Q.; Zhang, P.; Mostaghimi, A.H.B.; Zhao, X.; Denny, S.R.; Lee, J.H.; Gao, H.; Zhang, Y.; Xin, H.L.; Siahrostami, S.; et al. Promoting H2O2 Production via 2-electron Oxygen Reduction by Coordinating Partially Oxidized Pd with Defect Carbon. Nat. Commun. 2020, 11(1), 2178.
  16. Du, J.; Jiang, S.; Zhang, R.; Wang, P.; Ma, C.; Zhao, R.; Cui, C.; Zhang, Y.; Kang, Y. Generation of Pd–O for Promoting Electrochemical H2O2 Production. ACS Catal. 2023, 13(10), 6887.
  17. Yang, H.; Wang, B.; Li, H.; Ni, B.; Wang, K.; Zhang, Q.; Wang, X. Trimetallic Sulfide Mesoporous Nanospheres as Superior Electrocatalysts for Rechargeable Zn–Air Batteries. Adv. Energy Mater. 2018, 8(34), 1801839.
  18. Xia, F.; Li, B.; Liu, Y.; Liu, Y.; Gao, S.; Lu, K.; Kaelin, J.; Wang, R.; Marks, T.J.; Cheng, Y. Carbon Free and Noble Metal Free Ni2Mo6S8 Electrocatalyst for Selective Electrosynthesis of H2O2. Adv. Funct. Mater. 2021, 31(47), 2104716.
  19. Zhang, L.; Liang, J.; Yue, L.; Dong, K.; Xu, Z.; Li, T.; Liu, Q.; Luo, Y.; Liu, Y.; Gao, S.; et al. CoTe Nanoparticle-Embedded N-doped Hollow Carbon Polyhedron: An Efficient Catalyst for H2O2 Electrosynthesis in Acidic Media. J. Mater. Chem. A 2021, 9(38), 21703.
  20. Song, M.; Liu, W.; Zhang, J.; Zhang, C.; Huang, X.; Wang, D. Single-Atom Catalysts for H2O2 Electrosynthesis via Two-Electron Oxygen Reduction Reaction. Adv. Funct. Mater. 2023, 33(15), 2212087.
  21. Xiao, C.; Cheng, L.; Zhu, Y.; Wang, G.; Chen, L.; Wang, Y.; Chen, R.; Li, Y.; Li, C. Super-Coordinated Nickel N4Ni1O2 Site Single-Atom Catalyst for Selective H2O2 Electrosynthesis at High Current Densities. Angew. Chem. Int. Ed. 2022, 61(38), e202206544.
  22. Wang, N.; Ma, S.; Zuo, P.; Duan, J.; Hou, B. Recent Progress of Electrochemical Production of Hydrogen Peroxide by Two-Electron Oxygen Reduction Reaction. Adv. Sci. 2021, 8(15), 2100076.
  23. Zhao, H.; Yuan, Z.-Y. Design Strategies of Non-Noble Metal-Based Electrocatalysts for Two-Electron Oxygen Reduction to Hydrogen Peroxide. ChemSusChem 2021, 14(7), 1616.
  24. Bu, Y.; Wang, Y.; Han, G.-F.; Zhao, Y.; Ge, X.; Li, F.; Zhang, Z.; Zhong, Q.; Baek, J.-B. Carbon-Based Electrocatalysts for Efficient Hydrogen Peroxide Production. Adv. Mater. 2021, 33(49), 2103266.
  25. Hu, C.; Paul, R.; Dai, Q.; Dai, L. Carbon-based Metal-free Electrocatalysts: From Oxygen Reduction to Multifunctional Electrocatalysis. Chem. Soc. Rev. 2021, 50(21), 11785.
  26. Long, Y.; Lin, J.; Ye, F.; Liu, W.; Wang, D.; Cheng, Q.; Paul, R.; Cheng, D.; Mao, B.; Yan, R.; et al. Tailoring the Atomic-Local Environment of Carbon Nanotube Tips for Selective H2O2 Electrosynthesis at High Current Densities. Adv. Mater. 2023, 35(46), 2303905.
  27. He, H.; Liu, S.; Liu, Y.; Zhou, L.; Wen, H.; Shen, R.; Zhang, H.; Guo, X.; Jiang, J.; Li, B. Review and Perspectives on Carbon-based Electrocatalysts for the Production of H2O2 via Two-electron Oxygen Reduction. Green Chem. 2023, 25(23), 9501.
  28. Wei, L.; Dong, Z.; Chen, R.; Wu, Q.; Li, J. Review of Carbon-based Nanocomposites as Electrocatalyst for H2O2 Production from Oxygen. Ionics 2022, 28(9), 4045.
  29. Peng, W.; Liu, J.; Liu, X.; Wang, L.; Yin, L.; Tan, H.; Hou, F.; Liang, J. Facilitating Two-electron Oxygen Reduction with Pyrrolic Nitrogen Sites for Electrochemical Hydrogen Peroxide Production. Nat. Commun. 2023, 14(1), 4430.
  30. Yang, Y.; He, F.; Shen, Y.; Chen, X.; Mei, H.; Liu, S.; Zhang, Y. A Biomass Derived N/C-catalyst for the Electrochemical Production of Hydrogen Peroxide. Chem. Commun. 2017, 53(72), 9994.
  31. Zhang, J.; Zhang, G.; Jin, S.; Zhou, Y.; Ji, Q.; Lan, H.; Liu, H.; Qu, J. Graphitic N in Nitrogen-Doped Carbon Promotes Hydrogen Peroxide Synthesis from Electrocatalytic Oxygen Reduction. Carbon 2020, 163, 154.
  32. Chen, G.; Liu, J.; Qingqing, l.; Guan, P.; Yu, X.; Xing, L.; Zhang, J.; Che, R. A Direct H2O2 Production Based on Hollow Porous Carbon Sphere-sulfur Nanocrystal Composites by Confinement Effect as Oxygen Reduction Electrocatalysts. Nano Res. 2019, 12, 2614–2622.
  33. Jia, N.; Yang, T.; Shi, S.; Chen, X.; An, Z.; Chen, Y.; Yin, S.; Chen, P. N,F-codoped Carbon Nanocages: An Efficient Electrocatalyst for Hydrogen Peroxide Electroproduction in Alkaline and Acidic Solutions. ACS Sustain. Chem. Eng. 2020, 8(7), 2883.
  34. Li, L.; Tang, C.; Zheng, Y.; Xia, B.; Zhou, X.; Xu, H.; Qiao, S.-Z. Tailoring Selectivity of Electrochemical Hydrogen Peroxide Generation by Tunable Pyrrolic-Nitrogen-Carbon. Adv. Energy Mater. 2020, 10(21), 2000789.
  35. Wan, J.; Zhang, G.; Hongrun, J.; Wu, J.; Zhang, N.; Yao, B.; Liu, K.; Liu, M.; Liu, T.; Huang, L. Microwave-assisted Synthesis of Well-defined Nitrogen Doping Configuration with High Centrality in Carbon to Identify the Active Sites for Electrochemical Hydrogen Peroxide Production. Carbon 2022, 191, 340–349.
  36. Ri, K.; Pak, S.; Sun, D.; Zhong, Q.; Yang, S.; Sin, S.; Wu, L.; Sun, Y.; Cao, H.; Han, C.; et al. Boron-doped rGO Electrocatalyst for High Effective Generation of Hydrogen Peroxide: Mechanism and Effect of Oxygen-enriched Air. Appl. Catal. B 2024, 343, 123471.
  37. Xiang, F.; Zhao, X.; Yang, J.; Li, N.; Gong, W.; Liu, Y.; Burguete-Lopez, A.; Li, Y.; Niu, X.; Fratalocchi, A. Enhanced Selectivity in the Electroproduction of H2O2 via F/S Dual-Doping in Metal-Free Nanofibers. Adv. Mater. 2023, 35(7), 2208533.
  38. Xia, Y.; Zhao, X.; Xia, C.; Wu, Z.-Y.; Zhu, P.; Kim, J.Y.; Bai, X.; Gao, G.; Hu, Y.; Zhong, J.; et al. Highly Active and Selective Oxygen Reduction to H2O2 on Boron-doped Carbon for High Production Rates. Nat. Commun. 2021, 12(1), 4225.
  39. Chen, S.; Chen, Z.; Siahrostami, S.; Kim, T.R.; Nordlund, D.; Sokaras, D.; Nowak, S.; To, J.W.F.; Higgins, D.; Sinclair, R.; et al. Defective Carbon-Based Materials for the Electrochemical Synthesis of Hydrogen Peroxide. ACS Sustain. Chem. Eng. 2018, 6(1), 311.
  40. Lee, K.; Lim, J.; Lee, M.J.; Ryu, K.; Lee, H.; Kim, J.Y.; Ju, H.; Cho, H.-S.; Kim, B.-H.; Hatzell, M.C.; et al. Structure-controlled Graphene Electrocatalysts for High-performance H2O2 Production. Energy Environ. Sci. 2022, 15(7), 2858.
  41. Zhang, C.; Shen, W.; Guo, K.; Xiong, M.; Zhang, J.; Lu, X. A Pentagonal Defect-Rich Metal-Free Carbon Electrocatalyst for Boosting Acidic O2 Reduction to H2O2 Production. J. Am. Chem. Soc. 2023, 145(21), 11589.
  42. Shen, W.; Zhang, C.; Wang, X.; Huang, Y.; Du, Z.; Alomar, M.; Wang, J.; Lv, J.; Zhang, J.; Lu, X. Sulfur-Doped Defective Nanocarbons Derived from Fullerenes as Electrocatalysts for Efficient and Selective H2O2 Electroproduction. ACS Mater. Lett. 2024, 6(1), 17.
  43. Wu, Q.; Zou, H.; Mao, X.; He, J.; Shi, Y.; Chen, S.; Yan, X.; Wu, L.; Lang, C.; Zhang, B.; et al. Unveiling the Dynamic Active Site of Defective Carbon-based Electrocatalysts for Hydrogen Peroxide Production. Nat. Commun. 2023, 14(1), 6275.
  44. Wang, W.; Zheng, Y.; Hu, Y.; Liu, Y.; Chen, S. Intrinsic Carbon Defects for the Electrosynthesis of H2O2. The J. Phys. Chem. Lett. 2022, 13(38), 8914.
  45. Dong, K.; Liang, J.; Wang, Y.; Xu, Z.; Liu, Q.; Luo, Y.; Li, T.; Li, L.; Shi, X.; Asiri, A.M.; et al. Honeycomb Carbon Nanofibers: A Superhydrophilic O2-Entrapping Electrocatalyst Enables Ultrahigh Mass Activity for the Two-Electron Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 2021, 60(19), 10583.
  46. Fan, M.; Wang, Z.; Sun, K.; Wang, A.; Zhao, Y.; Yuan, Q.; Wang, R.; Raj, J.; Wu, J.; Jiang, J.; et al. N-B-OH Site-Activated Graphene Quantum Dots for Boosting Electrochemical Hydrogen Peroxide Production. Adv. Mater. 2023, 35(17), 2209086.
  47. Jing, L.; Tian, Q.; Li, X.; Sun, J.; Wang, W.; Yang, H.; Chai, X.; Hu, Q.; He, C. Dual-Engineering of Porous Structure and Carbon Edge Enables Highly Selective H2O2 Electrosynthesis. Adv. Funct. Mater. 2023, 33(47), 2305795.
  48. Zhang, D.; Tsounis, C.; Ma, Z.; Djaidiguna, D.; Bedford, N.M.; Thomsen, L.; Lu, X.; Chu, D.; Amal, R.; Han, Z. Highly Selective Metal-Free Electrochemical Production of Hydrogen Peroxide on Functionalized Vertical Graphene Edges. Small 2022, 18(1), 2105082.
  49. Kim, H.W.; Ross, M.B.; Kornienko, N.; Zhang, L.; Guo, J.; Yang, P.; McCloskey, B.D. Efficient Hydrogen Peroxide Generation Using Reduced Graphene Oxide-based Oxygen Reduction Electrocatalysts. Nat. Catal. 2018, 1(4), 282.
  50. Lu, Z.; Chen, G.; Siahrostami, S.; Chen, Z.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, D.; Liu, Y.; et al. High-efficiency Oxygen Reduction to Hydrogen Peroxide Catalysed by Oxidized Carbon Materials. Nat. Catal. 2018, 1(2), 156.
  51. Han, G.-F.; Li, F.; Zou, W.; Karamad, M.; Jeon, J.-P.; Kim, S.-W.; Kim, S.-J.; Bu, Y.; Fu, Z.; Lu, Y.; et al. Building and Identifying Highly Active Oxygenated Groups in Carbon Materials for Oxygen Reduction to H2O2. Nat. Commun. 2020, 11(1), 2209.
  52. Zhang, H.; Li, Y.; Zhao, Y.; Li, G.; Zhang, F. Carbon Black Oxidized by Air Calcination for Enhanced H2O2 Generation and Effective Organics Degradation. ACS Appl. Mater. Interfaces 2019, 11(31), 27846.
  53. Su, J.; Jiang, L.; Xiao, B.; Liu, Z.; Wang, H.; Zhu, Y.; Wang, J.; Zhu, X. Dipole–Dipole Tuned Electronic Reconfiguration of Defective Carbon Sites for Efficient Oxygen Reduction into H2O2. Small. https://doi.org/10.1002/smll.202310317, 2310317.
  54. Wu, K.-H.; Wang, D.; Lu, X.; Zhang, X.; Xie, Z.; Liu, Y.; Su, B.-J.; Chen, J.-M.; Su, D.-S.; Qi, W.; et al. Highly Selective Hydrogen Peroxide Electrosynthesis on Carbon: In Situ Interface Engineering with Surfactants. Chem 2020, 6(6), 1443.
  55. Zhang, Q.; Zhou, M.; Ren, G.; Li, Y.; Li, Y.; Du, X. Highly Efficient Electrosynthesis of Hydrogen Peroxide on a Superhydrophobic Three-phase Interface by Natural Air Diffusion. Nat. Commun. 2020, 11(1), 1731.
  56. Zhang, X.; Zhao, X.; Zhu, P.; Adler, Z.; Wu, Z.-Y.; Liu, Y.; Wang, H. Electrochemical Oxygen Reduction to Hydrogen Peroxide at Practical Rates in Strong Acidic Media. Nat. Commun. 2022, 13(1), 2880.
  57. Cui, L.; Chen, B.; Zhang, L.; He, C.; Shu, C.; Kang, H.; Qiu, J.; Jing, W.; Ostrikov, K.; Zhang, Z. An Anti-electrowetting Carbon Film Electrode with Self-sustained Aeration for Industrial H2O2 Electrosynthesis. Energy Environ. Sci. 2024, 17, 655–667. https://doi.org/10.1039/D3EE03223J 10.1039/D3EE03223J.
  58. Zhu, X.; Hu, C.; Amal, R.; Dai, L.; Lu, X. Heteroatom-doped Carbon Catalysts for Zinc–Air Batteries: Progress, Mechanism, and Opportunities. Energy Environ. Sci. 2020, 13(12), 4536.
  59. Wohlgemuth, S.-A.; White, R.J.; Willinger, M.-G.; Titirici, M.-M.; Antonietti, M. A One-pot Hydrothermal Synthesis of Sulfur and Nitrogen Doped Carbon Aerogels with Enhanced Electrocatalytic Activity in the Oxygen Reduction Reaction. Green Chem. 2012, 14(5), 1515.
  60. Sheng, X.; Daems, N.; Geboes, B.; Kurttepeli, M.; Bals, S.; Breugelmans, T.; Hubin, A.; Vankelecom, I.F.J.; Pescarmona, P.P. N-doped Ordered Mesoporous Carbons Prepared by a Two-step Nanocasting Strategy as Highly Active and Selective Electrocatalysts for the Reduction of O2 to H2O2. Appl. Catal. B 2015, 176–177, 212–224.
  61. Singh, S.K.; Takeyasu, K.; Nakamura, J. Active Sites and Mechanism of Oxygen Reduction Reaction Electrocatalysis on Nitrogen-Doped Carbon Materials. Adv. Mater. 2019, 31(13), 1804297.
  62. Fellinger, T.-P.; Hasché, F.; Strasser, P.; Antonietti, M. Mesoporous Nitrogen-Doped Carbon for the Electrocatalytic Synthesis of Hydrogen Peroxide. J. Am. Chem. Soc. 2012, 134(9), 4072.
  63. Miao, H.; Li, S.H.; Wang, Z.H.; Sun, S.S.; Kuang, M.; Liu, Z.P.; Yuan, J.L. Enhancing the Pyridinic N Content of Nitrogen-doped Graphene and Improving its Catalytic Activity for Oxygen Reduction Reaction. Int. J. Hydrogen Energy 2017, 42(47), 28298.
  64. Wu, J.J.; Ma, L.L.; Yadav, R.M.; Yang, Y.C.; Zhang, X.; Vajtai, R.; Lou, J.; Ajayan, P.M. Nitrogen-Doped Graphene with Pyridinic Dominance as a Highly Active and Stable Electrocatalyst for Oxygen Reduction. ACS Appl. Mater. Interfaces 2015, 7(27), 14763.
  65. Kong, F.; Cui, X.; Huang, Y.; Yao, H.; Chen, Y.; Tian, H.; Meng, G.; Chen, C.; Chang, Z.; Shi, J. N-Doped Carbon Electrocatalyst: Marked ORR Activity in Acidic Media without the Contribution from Metal Sites? Angew. Chem. Int. Ed. 2022, 61(15), e202116290.
  66. Zhang, J.; Sun, Y.; Zhu, J.; Kou, Z.; Hu, P.; Liu, L.; Li, S.; Mu, S.; Huang, Y. Defect and Pyridinic Nitrogen Engineering of Carbon-based Metal-free Nanomaterial Toward Oxygen Reduction. Nano Energy 2018, 52, 307.
  67. Tuci, G.; Zafferoni, C.; D’Ambrosio, P.; Caporali, S.; Ceppatelli, M.; Rossin, A.; Tsoufis, T.; Innocenti, M.; Giambastiani, G. Tailoring Carbon Nanotube N-Dopants while Designing Metal-Free Electrocatalysts for the Oxygen Reduction Reaction in Alkaline Medium. ACS Catal. 2013, 3(9), 2108.
  68. Wan, K.; Long, G.-F.; Liu, M.-Y.; Du, L.; Liang, Z.-X.; Tsiakaras, P. Nitrogen-doped Ordered Mesoporous Carbon: Synthesis and Active sites for Electrocatalysis of Oxygen Reduction Reaction. Appl. Catal. B 2015, 165, 566.
  69. Iglesias, D.; Giuliani, A.; Melchionna, M.; Marchesan, S.; Criado, A.; Nasi, L.; Bevilacqua, M.; Tavagnacco, C.; Vizza, F.; Prato, M.; et al. N-Doped Graphitized Carbon Nanohorns as a Forefront Electrocatalyst in Highly Selective O2 Reduction to H2O2. Chem 2018, 4(1), 106.
  70. Sun, Y.; Li, S.; Jovanov, Z.P.; Bernsmeier, D.; Wang, H.; Paul, B.; Wang, X.; Kühl, S.; Strasser, P. Structure, Activity, and Faradaic Efficiency of Nitrogen-Doped Porous Carbon Catalysts for Direct Electrochemical Hydrogen Peroxide Production. ChemSusChem 2018, 11(19), 3388.
  71. Rao, C.V.; Cabrera, C.R.; Ishikawa, Y. In Search of the Active Site in Nitrogen-Doped Carbon Nanotube Electrodes for the Oxygen Reduction Reaction. J. Phys. Chem. Lett. 2010, 1, 2622.
  72. Yu, S.-S.; Zheng, W.-T. Effect of N/B Doping on the Electronic and Field Emission Properties for Carbon Nanotubes, Carbon Nanocones, and Graphene Nanoribbons. Nanoscale 2010, 2(7), 1069.
  73. Meyer, J.C.; Kurasch, S.; Park, H.J.; Skakalova, V.; Künzel, D.; Groß, A.; Chuvilin, A.; Algara-Siller, G.; Roth, S.; Iwasaki, T.; et al. Experimental Analysis of Charge Redistribution due to Chemical Bonding by High-Resolution Transmission Electron Microscopy. Nat. Mater. 2011, 10(3), 209.
  74. Kondo, T.; Casolo, S.; Suzuki, T.; Shikano, T.; Sakurai, M.; Harada, Y.; Saito, M.; Oshima, M.; Trioni, M.I.; Tantardini, G. F.; et al. Atomic-scale Characterization of Nitrogen-doped Graphite: Effects of Dopant Nitrogen on the Local Electronic Structure of the Surrounding Carbon Atoms. Phys. Rev. B 2012, 86(3), 035436.
  75. Roldán, L.; Truong-Phuoc, L.; Ansón-Casaos, A.; Pham-Huu, C.; García-Bordejé, E. Mesoporous Carbon Doped with N,S Heteroatoms Prepared by One-pot Auto-assembly of Molecular Precursor for Electrocatalytic Hydrogen Peroxide Synthesis. Catal. Today 2018, 301, 2–10.
  76. He, W.; Wang, Y.; Jiang, C.; Lu, L. Structural Effects of a Carbon Matrix in Non-precious Metal O2-reduction Electrocatalysts. Chem. Soc. Rev. 2016, 45(9), 2396.
  77. Zhao, K.; Su, Y.; Quan, X.; Liu, Y.; Chen, S.; Yu, H. Enhanced H2O2 Production by Selective Electrochemical Reduction of O2 on Fluorine-doped Hierarchically Porous Carbon. J. Catal. 2018, 357, 118.
  78. Wang, W.; Lu, X.; Su, P.; Li, Y.; Cai, J.; Zhang, Q.; Zhou, M.; Arotiba, O. Enhancement of Hydrogen Peroxide Production by Electrochemical Reduction of Oxygen on Carbon Nanotubes Modified with Fluorine. Chemosphere 2020, 259, 127423.
  79. Jang, A.R.; Lee, Y.-W.; Lee, S.-S.; Hong, J.; Beak, S.-H.; Pak, S.; Lee, J.; Shin, H.S.; Ahn, D.; Hong, W.-K.; et al. Electrochemical and Electrocatalytic Reaction Characteristics of Boron-incorporated Graphene via a Simple Spin-on Dopant Process. J. Mater. Chem. A 2018, 6(17), 7351.
  80. Yu, X.; Han, P.; Wei, Z.; Huang, L.; Gu, Z.; Peng, S.; Ma, J.; Zheng, G. Boron-Doped Graphene for Electrocatalytic N2 Reduction. Joule 2018, 2(8), 1610.
  81. Vineesh, T.V.; Kumar, M.P.; Takahashi, C.; Kalita, G.; Alwarappan, S.; Pattanayak, D.K.; Narayanan, T.N. Bifunctional Electrocatalytic Activity of Boron-Doped Graphene Derived from Boron Carbide. Adv. Energy Mater. 2015, 5(17), 1500658.
  82. Liu, L.; Yan, C.; Luo, X.; Li, C.; Zhang, D.; Peng, H.; Wang, H.; Zheng, B.; Guo, Y. Phosphorus Doped Hierarchical Porous Carbon: An Efficient Oxygen Reduction Electrocatalyst for On-site H2O2 Production. Inorg. Chem. Front. 2023, 10(12), 3632.
  83. Gu, Y.-y.; Fu, H.; Huang, Z.; Lin, R.; Wu, Z.; Li, M.; Cui, Y.; Fu, R.; Wang, S. O/F Co-doped CNTs Promoted Graphite Felt Gas Diffusion Cathode for Highly Efficient and Durable H2O2 Evolution without Aeration. J. Clean. Prod. 2022, 341, 130799.
  84. Ji, L.; Rao, M.; Zheng, H.; Zhang, L.; Li, Y.; Duan, W.; Guo, J.; Cairns, E.J.; Zhang, Y. Graphene Oxide as a Sulfur Immobilizer in High Performance Lithium/Sulfur Cells. J. Am. Chem. Soc. 2011, 133(46), 18522.
  85. Paraknowitsch, J.P.; Thomas, A. Doping Carbons Beyond Nitrogen: An Overview of Advanced Heteroatom Doped Carbons with Boron, Sulphur and Phosphorus for Energy Applications. Energy Environ. Sci. 2013, 6(10), 2839.
  86. Zhu, C.; Li, H.; Fu, S.; Du, D.; Lin, Y. Highly Efficient Nonprecious Metal Catalysts Towards Oxygen Reduction Reaction Based on Three-dimensional Porous Carbon Nanostructures. Chem. Soc. Rev. 2016, 45(3), 517.
  87. Feng, X.; Bai, Y.; Liu, M.; Li, Y.; Yang, H.; Wang, X.; Wu, C. Untangling the Respective Effects of Heteroatom-doped Carbon Materials in Batteries, Supercapacitors and the ORR to Design High Performance Materials. Energy Environ. Sci. 2021, 14(4), 2036.
  88. Hu, C.; Dai, L. Doping of Carbon Materials for Metal-Free Electrocatalysis. Adv. Mater. 2019, 31(7), 1804672.
  89. Wiggins-Camacho, J.D.; Stevenson, K.J. Effect of Nitrogen Concentration on Capacitance, Density of States, Electronic Conductivity, and Morphology of N-Doped Carbon Nanotube Electrodes. J. Phys. Chem. C 2009, 113(44), 19082.
  90. Liu, J.; Gong, Z.; Yan, M.; He, G.; Gong, H.; Ye, G.; Fei, H. Electronic Structure Regulation of Single-Atom Catalysts for Electrochemical Oxygen Reduction to H2O2. Small 2022, 18(3), 2103824.
  91. Deng, D.; Yu, L.; Pan, X.; Wang, S.; Chen, X.; Hu, P.; Sun, L.; Bao, X. Size Effect of Graphene on Electrocatalytic Activation of Oxygen. Chem. Commun. 2011, 47(36), 10016.
  92. San Roman, D.; Krishnamurthy, D.; Garg, R.; Hafiz, H.; Lamparski, M.; Nuhfer, N.T.; Meunier, V.; Viswanathan, V.; Cohen-Karni, T. Engineering Three-Dimensional (3D) Out-of-Plane Graphene Edge Sites for Highly Selective Two-Electron Oxygen Reduction Electrocatalysis. ACS Catal. 2020, 10(3), 1993.
  93. Zhang, T.; Li, W.; Huang, K.; Guo, H.; Li, Z.; Fang, Y.; Yadav, R.M.; Shanov, V.; Ajayan, P.M.; Wang, L.; et al. Regulation of Functional Groups on Graphene Quantum Dots Directs Selective CO2 to CH4 Conversion. Nat. Commun. 2021, 12(1), 5265.
  94. Song, D.; Guo, H.; Huang, K.; Zhang, H.; Chen, J.; Wang, L.; Lian, C.; Wang, Y. Carboxylated Carbon Quantum Dot-induced Binary Metal–organic Framework Nanosheet Synthesis to Boost the Electrocatalytic Performance. Mater. Today 2022, 54, 42–51.
  95. Wang, W.; Shang, L.; Chang, G.; Yan, C.; Shi, R.; Zhao, Y.; Waterhouse, G.I.N.; Yang, D.; Zhang, T. Intrinsic Carbon-Defect-Driven Electrocatalytic Reduction of Carbon Dioxide. Adv. Mater. 2019, 31(19), 1808276.
  96. Zhu, J.; Huang, Y.; Mei, W.; Zhao, C.; Zhang, C.; Zhang, J.; Amiinu, I.; Mu, S. Effects of Intrinsic Pentagon Defects on Electrochemical Reactivity of Carbon Nanomaterials. Angew. Chem. Int. Ed. 2019, 58, 3859.
  97. Lee, S.; Kim, H.; Lee, J.; Kuk, Y.; Chung, K.H.; Kim, H.; Kahng, S.-J. Donor and Acceptor-like Electronic States in a One-dimensional Semiconductor. Surf. Sci. 2006, 600(22), 4937.
  98. Fan, H.; Wang, J.; Wu, P.; Zheng, L.; Xiang, J.; Liu, H.; Han, B.; Jiang, L. Hydrophobic Ionic Liquid Tuning Hydrophobic Carbon to Superamphiphilicity for Reducing Diffusion Resistance in Liquid-liquid Catalysis Systems. Chem 2021, 7(7), 1852.
  99. Chen, Q.; Peng, Q.; Zhao, X.; Sun, H.; Wang, S.; Zhu, Y.; Liu, Z.; Wang, C.; He, X. Grafting Carbon Nanotubes Densely on Carbon Fibers by Poly (propylene imine) for Interfacial Enhancement of Carbon Fiber Composites. Carbon 2020, 158, 704–710.
  100. Yang, F.; Ma, X.; Cai, W.-B.; Song, P.; Xu, W. Nature of Oxygen-Containing Groups on Carbon for High-Efficiency Electrocatalytic CO2 Reduction Reaction. J. Am. Chem. Soc. 2019, 141(51), 20451.
  101. Sang, Z.-y.; Hou, F.; Wang, S.-h.; Liang, J. Research Progress on Carbon-based Non-metallic Nanomaterials as Catalysts for the Two-electron Oxygen Reduction for Hydrogen Peroxide Production. New Carbon Mater 2022, 37(1), 136–151.
  102. Yan, H.; Zhao, X.; Guo, N.; Lyu, Z.; Du, Y.; Xi, S.; Guo, R.; Chen, C.; Chen, Z.; Liu, W.; et al. Atomic Engineering of High-density Isolated Co Atoms on Graphene with Proximal-atom Controlled Reaction Selectivity. Nat. Commun. 2018, 9(1), 3197.
  103. Zhou, W.; Xie, L.; Gao, J.; Nazari, R.; Zhao, H.; Meng, X.; Sun, F.; Zhao, G.; Ma, J. Selective H2O2 Electrosynthesis by O-doped and Transition-metal-O-doped Carbon Cathodes via O2 Electroreduction: A Critical Review. Chem. Eng. J. 2021, 410, 128368.
  104. Xie, L.; Zhou, W.; Qu, Z.; Ding, Y.; Gao, J.; Sun, F.; Qin, Y. Understanding the Activity Origin of Oxygen-doped Carbon Materials in Catalyzing the Two-electron Oxygen Reduction Reaction Towards Hydrogen Peroxide Generation. J. Colloid Interface Sci. 2022, 610, 934–943.
  105. Chen, Z.; Chen, S.; Siahrostami, S.; Chakthranont, P.; Hahn, C.; Nordlund, D.; Dimosthenis, S.; Nørskov, J.K.; Bao, Z.; Jaramillo, T.F. Development of a Reactor with Carbon Catalysts for Modular-scale, Low-cost Electrochemical Generation of H2O2. React. Chem. Eng. 2017, 2(2), 239–245.
  106. Xia, C.; Xia, Y.; Zhu, P.; Fan, L.; Wang, H. Direct Electrosynthesis of Pure Aqueous H2O2 Solutions up to 20% by Weight Using a Solid Electrolyte. Science 2019, 366(6462), 226.
  107. Zhao, J.; Zhang, X.; Xu, J.; Tang, W.; Lin Wang, Z.; Ru Fan, F. Contact-electro-catalysis for Direct Synthesis of H2O2 under Ambient Conditions. Angew. Chem. Int. Ed. 2023, 62(21), e202300604.
  108. Zhu, X.; Tan, X.; Wu, K.-H.; Haw, S.-C.; Pao, C.-W.; Su, B.-J.; Jiang, J.; Smith, S.C.; Chen, J.-M.; Amal, R.; et al. Intrinsic ORR Activity Enhancement of Pt Atomic Sites by Engineering the d-Band Center via Local Coordination Tuning. Angew. Chem. Int. Ed. 2021, 60(40), 21911.
  109. Zhang, Q.; Guan, J. Applications of Atomically Dispersed Oxygen Reduction Catalysts in Fuel Cells and Zinc–Air Batteries. Energy Environ. Mater. 2021, 4(3), 307–335.